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1. Introduction

Differential and integral inequalities play a fundamental role in global existence,uniqueness,
stability, and other properties of the solutions of various nonlinear differential equations;
see [1–4]. A great deal of attention has been given to differential and integral inequalities;
see [1, 2, 5–8] and the references given therein. Motivated by the results in [1, 5, 7], the
main purpose of this paper is to establish some new impulsive integral inequalities similar to
Bihari’s inequalities.

Let 0 ≤ t0 < t1 < t2 < · · · , limk→∞tk = ∞, R+ = [0,+∞), and I ⊂ R, then we introduce
the following spaces of function:

PC(R+, I) = {u : R+ → I, u is continuous for t /= tk, u(0
+), u(t+k), and u(t−k) exist, and

u(t−
k
) = u(tk), k = 1, 2, . . .},

PC1(R+, I) = {u ∈ PC(R+, I) : u is continuously differentiable for t /= tk, u′(0+), u′(t+
k
),

and u′(t−k) exist, and u′(t−k) = u′(tk), k = 1, 2, . . .}.
To prove our main results, we need the following result (see [1, Theorem 1.4.1]).

Lemma 1.1. Assume that
(A0) the sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · , with limk→∞tk = ∞;
(A1) m ∈ PC1(R+,R) and m(t) is left-continuous at tk, k = 1, 2, . . .;
(A2) for k = 1, 2, . . . , t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t), t /= tk,

m
(
t+k
) ≤ dkm(tk) + bk,

(1.1)

where q, p ∈ PC(R+,R), dk ≥ 0, and bk are constants.
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Then,

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp
(∫ t

t0

p(s)ds
)
+
∫ t

t0

∏

s<tk<t

dk exp
(∫ t

s

p(σ)dσ
)
q(s)ds

+
∑

t0<tk<t

( ∏

tk<tj<t

dj

)
exp

(∫ t

tk

p(s)ds
)
bk, t ≥ t0.

(1.2)

2. Main results

In this section, we will state and prove our results.

Theorem 2.1. Let u, f ∈ PC(R+,R+), bk ≥ 1, and c ≥ 0 be constants. If

u2(t) ≤ c2 + 2
∫ t

0
f(s)u(s)ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk), (2.1)

for t ∈ R+, then

u(t) ≤ c

( ∏

0<tk<t

bk

)
+
∫ t

0

( ∏

0<tk<t

bk

)
f(s)ds, (2.2)

for t ∈ R+.

Proof. Define a function z(t) by

z(t) = (c + ε)2 + 2
∫ t

0
f(s)u(s)ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk), (2.3)

where ε > 0 is an arbitrary small constant. For t /= tk, differentiating (2.3) and then using the
fact that u(t) ≤

√
z(t), we have

z′(t) = 2f(t)u(t) ≤ 2f(t)
√
z(t), (2.4)

and so

d
(√

z(t)
)

dt
=

z′(t)

2
√
z(t)

≤ f(t). (2.5)

For t = tk, we have z(t+
k
) − z(tk) = (b2

k
− 1)u2(tk) ≤ (b2

k
− 1)z(tk); thus z(t+

k
) ≤ b2

k
z(tk). Let√

z(t) = x(t); it follows that

x′(t) ≤ f(t), t /= tk, t ≥ 0,

x
(
t+k
) ≤ bkx(tk), k = 1, 2 . . . .

(2.6)

From Lemma 1.1, we obtain

x(t) ≤ x(0)
( ∏

0<tk<t

bk

)
+
∫ t

0

( ∏

s<tk<t

bk

)
f(s)ds ≤ (c + ε)

( ∏

0<tk<t

bk

)
+
∫ t

0

( ∏

s<tk<t

bk

)
f(s)ds.

(2.7)

Now by using the fact that u(t) ≤
√
z(t) = x(t) in (2.7) and then letting ε → 0, we get the

desired inequality in (2.2). This proof is complete.
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Theorem 2.2. Let u, f ∈ PC(R+,R+) and bk ≥ 1 be constants, and let c be a nonnegative constant.
If

u2(t) ≤ c2 + 2
∫ t

0

[
f(s)u2(s) + h(s)u(s)

]
ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk), (2.8)

for t ∈ R+, then

u(t) ≤ c

( ∏

0<tk<t

bk

)
exp

(∫ t

0
f(s)ds

)
+
∫ t

0

( ∏

s<tk<t

bk

)
exp

(∫ t

s

f(τ)dτ
)
h(s)ds, (2.9)

for t ∈ R+.

Proof. This proof is similar to that of Theorem 2.1; thus we omit the details here.

Theorem 2.3. Let u, f, g, h ∈ PC(R+,R+), c ≥ 0, and bk ≥ 1 be constants. If

u2(t) ≤ c2 + 2
∫ t

0

[
f(s)u(s)

(
u(s) +

∫s

0
g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk),

(2.10)

for t ∈ R+, then

u(t) ≤ c

( ∏

0<tk<t

bk

)
+
∫ t

0

( ∏

s<tk<t

bk

)
[f(s)a(s) + h(s)]ds, (2.11)

for t ∈ R+, where

a(t) = c

( ∏

0<tk<t

bk

)
exp

(∫ t

0
[f(τ) + g(τ)]dτ

)
+
∫ t

0

( ∏

s<tk<t

bk

)
exp

(∫ t

s

[f(τ) + g(τ)]dτ
)
h(s)ds.

(2.12)

Proof. Let ε > 0 be an arbitrary small constant, and define a function z(t) by

z(t) = (c + ε)2 + 2
∫ t

0

[
f(s)u(s)

(
u(s) +

∫s

0
g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk).

(2.13)

Let
√
z(t) = x(t); similar to the proof of Theorem 2.1, we have

x′(t) ≤ f(t)
(
x(t) +

∫ t

0
g(s)x(s)ds

)
+ h(t), t /= tk,

x
(
t+k
) ≤ bkx(tk), k = 1, 2, . . . .

(2.14)

Set v(t) = x(t)+
∫ t
0g(s)x(s)ds; then v(t) ≥ x(t), and so from (2.14)we get that x′(t) ≤ f(t)v(t)+

h(t). Thus, for t /= tk,

v′(t) = x′(t) + g(t)x(t) ≤ f(t)v(t) + h(t) + g(t)x(t) ≤ [f(t) + g(t)]v(t) + h(t), (2.15)
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and for t = tk,

v
(
t+k
) − v(tk) = x

(
t+k
) − x(tk) ≤ (bk − 1)x(tk) ≤ (bk − 1)v(tk), (2.16)

and so v(t+
k
) ≤ bkv(tk). By Lemma 1.1, we have

v(t)≤(c+ε)
( ∏

0<tk<t

bk

)
exp

(∫ t

0
[f(τ)+g(τ)]dτ

)
+
∫ t

0

( ∏

s<tk<t

bk

)
exp

(∫ t

s

[f(τ)+g(τ)]dτ
)
h(s)ds.

(2.17)

Let ε → 0, then we obtain

v(t) ≤ a(t), (2.18)

where a(t) is defined in (2.12). Substituting (2.18) into (2.14), we have

x′(t) ≤ f(t)a(t) + h(t), t /= tk,

x
(
t+k
) ≤ bkx(tk), k = 1, 2, . . . .

(2.19)

Applying Lemma 1.1 again, we obtain

x(t) ≤ (c + ε)
( ∏

0<tk<t

bk

)
+
∫ t

0

( ∏

s<tk<t

bk

)
[f(s)a(s) + h(s)]ds. (2.20)

Now using u(t) ≤ x(t) and letting ε → 0, we get the desired inequality in (2.11).

Theorem 2.4. Let u, f, g, h ∈ PC(R+,R+), c ≥ 0, and bk ≥ 1 be constants. If

u2(t) ≤ c2 + 2
∫ t

0

[
f(s)u(s)

(∫s

0
g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds +

∑

0<tk<t

(b2k − 1)u2(tk), (2.21)

for t ∈ R+, then

u(t) ≤ c

( ∏

0<tk<t

bk

)
exp

(∫ t

0
f(s)

(∫ s

0
g(τ)dτ

)
ds

)

+
∫ t

0

( ∏

s<tk<t

bk

)
exp

(∫ t

s

f(τ)
(∫ τ

0
g(ω)dω

)
dτ

)
h(s)ds,

(2.22)

for t ∈ R+.

Proof. Set

z(t) = (c + ε)2 + 2
∫ t

0

[
f(s)u(s)

(∫ s

0
g(τ)u(τ)dτ

)
+ h(s)u(s)

]
ds +

∑

0<tk<t

(
b2k − 1

)
u2(tk), (2.23)

where ε is an arbitrary small constant; then z(t) is nondecreasing. Let x(t) =
√
z(t), then it

follows for t /= tk that

x′(t) ≤ f(t)
∫ t

0
g(s)x(s)ds + h(t) ≤

(
f(t)

∫ t

0
g(s)ds

)
x(t) + h(t) (2.24)
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since x(t) is nondecreasing. Also, for t = tk, we have x(t+k) ≤ bkx(tk). Applying Lemma 1.1,
we obtain

x(t) ≤ (c + ε)c
( ∏

0<tk<t

bk

)
exp

(∫ t

0
f(s)

(∫s

0
g(τ)dτ

)
ds

)

+
∫ t

0

( ∏

s<tk<t

bk

)
exp

(∫ t

s

f(τ)
(∫ τ

0
g(ω)dω

)
dτ

)
h(s)ds.

(2.25)

Now by using the fact that u(t) ≤ x(t) in (2.25) and letting ε → 0, we get the inequality
(2.22).

Remark 2.5. If bk ≡ 1, then (2.1), (2.8), (2.10), and (2.21) have no impulses. In this case, it is
clear that Theorems 2.2-2.3 improve the corresponding results of [5, Theorem 1].

Theorem 2.6. Let u, f ∈ PC(R+,R+), h(t, s) ∈ C(R2
+,R+), for 0 ≤ s ≤ t < ∞, c ≥ 0, bk ≥ 1, and

p > 1 be constants. Let g ∈ PC(R+,R+) be a nondecreasing function with g(u) > 0, for u > 0, and
g(λu) ≥ μ(λ)g(u), for λ > 0, u ∈ R; here μ(λ) > 0, for λ > 0. If

up(t) ≤ c +
∫ t

0

[
f(s)g(u(s)) +

∫s

0
h(s, σ)g(u(σ))dσ

]
ds +

∑

0<tk<t

(bk − 1)up(tk), (2.26)

for t ∈ R+, then for 0 ≤ t < T,

u(t) ≤
[
G−1

(
G

(
c
∏

0<tk<t

bk

)
+
∫ t

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds
)]1/p

, (2.27)

where

p(t) = f(t) +
∫ t

0
h(t, σ)dσ, (2.28)

G(r) =
∫ r

r0

ds

g
(
s1/p

) for r ≥ r0 > 0, (2.29)

T = sup
{
t ≥ 0 :

[
G

(
c
∏

0<tk<t

bk

)
+
∫ t

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds
]
∈ domG−1

}
. (2.30)

Proof. We first assume that c > 0 and define a function z(t) by the right-hand side of (2.26).
Then, z(t) > 0, z(0) = c, u(t) ≤ (z(t))1/p, and z(t) is nondecreasing. For t /= tk,

z′(t) = f(t)g(u(t)) +
∫ t

0
h(t, σ)g(u(σ))dσ

≤ f(t)g
(
(z(t))1/p

)
+
∫ t

0
h(t, σ)g

(
(z(σ))1/p

)
dσ

≤ g
(
(z(t))1/p

)
[
f(t) +

∫ t

0
h(t, σ)dσ

]
,

(2.31)
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and for t = tk, z(t+k) ≤ bkz(tk). As t ∈ [0, t1], from (2.31)we have

G(z(t)) −G(z(0)) =
∫z(t)

z(0)

ds

g
(
s1/p

) ≤
∫ t

0
p(s)ds, (2.32)

and so

z(t) ≤ G−1
(
G(c) +

∫ t

0
p(s)ds

)
. (2.33)

Now assume that for 0 ≤ t ≤ tn, we have

z(t) ≤ G−1
(
G

(
c
∏

0<tk<t

bk

)
+
∫ t

0

∏

0<tk<t

bk

μ
(
b
1/p
k

)p(s)ds
)
. (2.34)

Then, for t ∈ (tn, tn+1], it follows from (2.32) that G(z(t)) ≤ G(z(t+n)) +
∫ t
tn
p(s)ds. Using z(t+

k
) ≤

bkz(tk), we arrive at

G(z(t)) ≤ G(bnz(tn)) +
∫ t

tn

p(s)ds. (2.35)

From the supposition of g, we see that

G(λu) −G(λv) =
∫λu

0

ds

g
(
s1/p

) −
∫λv

0

ds

g
(
s1/p

) ≤ λ

μ
(
λ1/p

) [G(u) −G(v)], for u ≥ v, λ > 0.

(2.36)

If G(z(tn)) ≤ G(c
∏n−1

k=1bk), then

G(z(t)) ≤ G(bnz(tn)) +
∫ t

tn

p(s)ds ≤ G

(
c

n∏

k=1

bk

)
+
∫ t

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds. (2.37)

Otherwise, we have

G(bnz(tn)) −G

(
c
∏

0<tk<t

bk

)
≤ bn

μ
(
b
1/p
n

)

[
G(z(tn)) −G

(
c
n−1∏

k=1

bk

)]
. (2.38)

This implies, by induction hypothesis, that

G(bnz(tn)) −G

(
c
∏

0<tk<t

bk

)
≤ bn

μ
(
b
1/p
n

)

∫ tn

0

∏

s<tk<tn

bk

μ
(
b
1/p
k

)p(s)ds =
∫ tn

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds.

(2.39)

Thus, (2.35) and (2.39) yield, for 0 < t ≤ tn+1,

G(z(t)) ≤ G

(
c
∏

0<tk<t

bk

)
+
∫ t

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds, (2.40)

and so

z(t) ≤ G−1
[
G

(
c
∏

0<tk<t

bk

)
+
∫ t

0

∏

s<tk<t

bk

μ
(
b
1/p
k

)p(s)ds
]
. (2.41)

Using (2.41) in u(t) ≤ (z(t))1/p, we have the required inequality in (2.27).
If c is nonnegative, we carry out the above procedure with c + ε instead of c, where

ε > 0 is an arbitrary small constant, and by letting ε → 0, we obtain (2.27). The proof is
complete.
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Remark 2.7. If
∫∞
r0
(ds/g(s1/p)) = ∞, then G(∞) = ∞ and the inequality in (2.27) is true for

t ∈ R+.

An interesting and useful special version of Theorem 2.6 is given in what follows.

Corollary 2.8. Let u, f, h, c, p, and bk be as in Theorem 2.6. If

up(t) ≤ c +
∫ t

0

[
f(s)u(s) +

∫s

0
h(s, σ)u(σ)dσ

]
ds +

∑

0<tk<t

(bk − 1)up(tk), (2.42)

for t ∈ R+, then

u(t) ≤
[(

c
∏

0<tk<t

bk

)(p−1)/p
+
p − 1
p

∫ t

0

∏

s<tk<t

b
(p−1)/p
k

p(s)ds
]p/(p−1)

, (2.43)

for t ∈ R+, where p(t) is defined by (2.28).

Proof. Let g(u) = u in Theorem 2.6. Then, (2.26) reduces to (2.42) and

G(r) =
p

p − 1
[r(p−1)/p − r

(p−1)/p
0 ],

G−1(r) =
[
p − 1
p

r + r
(p−1)/p
0

]p/(p−1)
.

(2.44)

Consequently, by Theorem 2.6, we have

u(t) ≤
[(

c
∏

0<tk<t

bk

)(p−1)/p
+
p − 1
p

∫ t

0

∏

s<tk<t

b
(p−1)/p
k p(s)ds

]p/(p−1)
. (2.45)

This proof is complete.

3. Application

Example 3.1. Consider the integrodifferential equations

x′(t) − F

(
t, x(t),

∫ t

0
K[t, s, x(s)]ds

)
= h(t),

x
(
t+k
)
= bkx(tk), k = 1, 2, . . . ,

x(0) = x0,

(3.1)

where 0 = t0 < t1 < t2 < · · · with limk→∞tk = ∞; h : R+ → R and K : R
2
+ × R → R are

continuous; F : R+ × R
2 → R is continuous at t /= tk; limt→t+

k
F(t, ·, ·) and limt→t−

k
F(t, ·, ·) exist

and limt→t−
k
F(t, ·, ·) = F(t, ·, ·); bk are constants with |bk| ≥ 1 (k = 1, 2, . . .). Here, we assume

that the solution x(t) of (3.1) exists on R+. Multiplying both sides of (3.1) by x(t) and then
integrating them from 0 to t, we obtain

x2(t) = x2
0 + 2

∫ t

0

[
x(s)F

(
s, x(s),

∫s

0
K[s, τ, x(τ)]dτ

)
+ h(s)x(s)

]
ds +

∑

0<tk<t

(
b2k − 1

)
x2(tk).

(3.2)
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We assume that

|K(t, s, x(s))| ≤ f(t)g(s)|x(s)|, |F(t, x(t), v)| ≤ f(t)|x(t)| + |v|, (3.3)

where f, g ∈ C(R+,R+). From (3.2) and (3.3), we obtain

|x(t)|2≤|x0|2+2
∫ t

0

[
f(s)|x(s)|

(
|x(s)|+

∫s

0
g(τ)|x(τ)|dτ

)
+|h(s)||x(s)|

]
ds+

∑

0<tk<t

(|bk|2−1
)|x(tk)|2.

(3.4)

Now applying Theorem 2.3, we have

|x(t)| ≤ |x0|
( ∏

0<tk<t

|bk|
)
+
∫ t

0

( ∏

s<tk<t

|bk|
)
[f(s)a(s) + h(s)]ds, (3.5)

where

a(t)= |x0|
( ∏

0<tk<t

|bk|
)
exp

(∫ t

0
[f(τ)+g(τ)]dτ

)
+
∫ t

0

( ∏

s<tk<t

|bk|
)
exp

(∫ t

s

[f(τ) + g(τ)]dτ
)
h(s)ds,

(3.6)

for all t ∈ R+. The inequality (3.5) gives the bound on the solution x(t) of (3.1).
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