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The boundary value problem z
′′
= ((ρ·g·z − p)/γ)[1 + (z′)2]

3/2 − (1/r)·[1 + (z′)2]·z′, r ∈ [r1, r0],
z′(r1) = − tan(π/2 − αg), z′(r0) = − tanαc, z(r0) = 0, and z(r) is strictly decreasing on [r1, r0], is
considered. Here, 0 < r1 < r0, ρ, g, γ, p, αc, αg are constants having the following properties:
ρ, g, γ are strictly positive and 0 < π/2 − αg < αc < π/2. Necessary or sufficient conditions are
given in terms of p for the existence of concave solutions of the above nonlinear boundary value
problem (NLBVP). Numerical illustration is given. This kind of results is useful in the experiment
planning and technology design of single crystal rod growth from the melt by edge-defined film-
fed growth (EFG) method. With this aim, this study was undertaken.

Copyright q 2008 S. Balint and A. M. Balint. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The free surface of the static meniscus, in single crystal rod growth by EFG method, in
hydrostatic approximation is described by the Laplace capillary equation [1, 2]:

−γ ·
(

1
R1

+
1
R2

)
+ ρ·g·z = p. (1.1)

Here, γ is the melt surface tension; ρ is the melt density; g is the gravity acceleration; R1, R2

are the main radii of the free surface curvature at a pointM of the free surface of the meniscus;
z is the coordinate of M with respect to the Oz axis, directed vertically upward; and p is the
pressure difference across the free surface:

p = pm − pg − ρ·g·H. (1.2)
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Figure 1: Axisymmetric meniscus geometry in the rod growth by EFG method.

Here, pm is the pressure in the meniscus melt; pg is the pressure in the gas; H is the melt
column height between the horizontal crucible melt level and the shaper top level (see
Figure 1).

To calculate the free surface shape of the meniscus, shape is convenient to employ the
Laplace equation (1.1) in its differential form. This form of (1.1) can be obtained as a necessary
condition for the minimum of the free energy of the melt column.

For the growth of a single crystal rod of radius r1; 0 < r1 < r0, the differential equation
for axisymmetric meniscus surface is given by the formula

z ′′ =
ρ·g·z − p

γ

[
1 + (z ′)2]3/2

− 1
r
·
[
1 + (z ′)2]·z ′ for 0 < r1 ≤ r ≤ r0, (1.3)

which is the Euler equation for the free energy functional

I(z) =
∫ r0

r1

{
γ ·
[
1 + (z ′)2]1/2 +

1
2
·ρ·g·z2 − p·z

}
·r·dr,

z(r1) = h > 0, z(r0) = 0.

(1.4)

The solution of (1.3) has to satisfy the following boundary conditions, expressing ther-
modynamic requirements:

(a) z′(r1) = − tan
(
π

2
− αg

)
,

(b) z′(r0) = − tanαc,

(c) z(r0) = 0, z(r) is strictly decreasing on [r1, r0].

(1.5)
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However, (a) expresses that at the triple point (r1, z(r1)), where the growth angle αg is
reached, the tangent to the crystal wall is vertical, (b) expresses that at the triple point (r0, 0),
the contact angle is equal to αc, and (c) expresses that the lower edge of the free surface is
fixed to the outer edge of the shaper.

The growth angle αg and the contact angle αc, which appear in the above relations,
are material constants and for semiconductors, in nonregular case, they satisfy the following
conditions:

0 <
π

2
− αg < αc <

π

2
. (1.6)

An important problem of the crystal growers consists in the location of the range,
where p has to be, or can be chosen when ρ, γ, αc, αg and r0, r1 are given a priori.

The state of the arts at the time 1993-1994, concerning the dependence of the shape and
size of the free surface of the meniscus on the pressure difference p across the free surface for
small and large Bond numbers, in the regular case of the growth of single crystal rods by EFG
technique is summarized in [2]. According to [2], for the general differential equation (1.3),
describing the free surface of the meniscus, there is no complete analysis and solution. For
the general equation, only numerical integrations were carried out for a number of process
parameter values that were of practical interest at the moment.

In [3], the authors investigate the pressure difference influence on the meniscus shape
for rods, in the case of middle-range Bond numbers (i.e., B0 = 1) which most frequently
occurs in practice and has been left out of the regular study in [2]. They use a numerical
approach in this case to solve the meniscus surface equation, written in terms of the arc length
of the curve. The stability of the static free surface of the meniscus is analyzed by means of
Jacobi equation. The result is that a large number of static menisci having drop-like shapes
are unstable.

In [4, 5], automated crystal growth processes, based on weight sensors and computers,
are analyzed. An expression for the weight of the meniscus, contacted with crystal and
shaper of arbitrary shape, in which there are terms related to the hydrodynamic factor, is
given.

In [6], it is shown that he hydrodynamic factor is too small to be considered in the
automated crystal growth.

In the present paper, we locate the range where p has to be, or can be chosen in order
to obtain the solution of the nonlinear boundary value problem (NLBVP) (1.3), (1.5) which
is concave and minimizes the free energy functional.

2. Concave free surface of the meniscus in the case of rod growth

Consider NLBVP:

z ′′ =
ρ·g·z − p

γ

[
1 + (z ′)2]3/2 − 1

r
·
[
1 + (z ′)2]·z ′, r ∈ [r1, r0],

z ′(r1) = − tan
(
π

2
− αg

)
, z ′(r0) = − tanαc, z(r0) = 0,

z(r) is strictly decreasing on [r1, r0],

(2.1)
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where r1, r0, g, ρ, γ, p, αc, αg are real numbers having the following properties:

0 < r1 < r0,

g, ρ, γ are strictly positive,

0 < π/2 − αg < αc < π/2.

Theorem 2.1. If there exists a concave solution z = z(r) of the NLBVP (2.1), then n = r0/r1 and p
satisfy the following inequalities:

n

n − 1
·γ ·
αc + αg − π/2

r0
· cosαc +

γ

r0
· cosαg

≤ p ≤ n

n − 1
·γ ·
αc + αg − π/2

r0
· sinαg +

n − 1
n
·ρ·g·r0· tanαc +

n·γ
r0
· sinαc.

(2.2)

Proof. Let z = z(r) be a concave solution of the NLBVP (2.1) and α(r) = −arctan z ′(r). It is
easy to see that the function α(r) verifies the equation

α ′(r) =
p − ρ·g·z(r)

γ
· 1
cosα(r)

− 1
r
· tanα(r), (2.3)

and the boundary conditions

α(r1) =
π

2
− αg, α(r0) = αc. (2.4)

Hence, there exists r ′ ∈ (r1, r0) such that the following equality holds

p = γ ·
αc + αg − π/2

r0 − r1
· cosα(r ′) + ρ·g·z(r ′) +

γ

r ′
· sinα(r ′). (2.5)

Since z ′′(r) < 0 on [r1, r0], the function z ′(r) is strictly decreasing, and α(r) = −arctan z ′(r) is
strictly increasing on [r1, r0]. Therefore, the following inequalities hold:

π

2
− αg ≤ α(r ′) ≤ αc,

cosαc ≤ cosα(r ′) ≤ sinαg,

cosαg ≤ sinα(r ′) ≤ sinαc,

ρ·g·(r0 − r ′)· tan
(
π

2
− αg

)
≤ ρ·g·z(r ′) ≤ ρ·g·(r0 − r ′)· tanαc.

(2.6)

Combining equality (2.5) and inequalities (2.6), we obtain inequality (2.2).
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Corollary 2.2. If n → +∞, then r1 = r0/n → 0, and

γ ·
αc + αg − π/2

r0
· cosαc +

γ

r0
· cosαg ≤ p. (2.7)

Corollary 2.3. If p verifies

p < γ ·
αc + αg − π/2

r0
· cosαc +

γ

r0
· cosαg, (2.8)

then there is no r1 ∈ (0, r0] for which the NLBVP (2.1) has a concave solution.

Corollary 2.4. If n → 1, then r1 = r0/n → r0 and p → +∞.

Theorem 2.5. If p verifies

p >
n

n − 1
·γ ·
αc + αg − π/2

r0
· sinαg +

n − 1
n
·g·ρ·r0· tanαc +

n·γ
r0
· sinαc, (2.9)

then there exist r1 ∈ [r0/n, r0] and a concave solution of the NLBVP (2.1).

Proof. Consider the initial value problem (IVP):

z ′′ =
ρ·g·z − p

γ
·
[
1 + (z ′)2]3/2 − 1

r
·
[
1 + (z ′)2]·z ′ r ∈ (0, r0],

z(r0) = 0, z ′(r0) = − tanαc,
(2.10)

the solution z(r) of this problem, the maximal interval I on which the solution exists, and the
function α(r) defined on I by

α(r) = − arctan z ′(r). (2.11)

Remark that z(r) and α(r) verify

z ′′(r) =
1

cos3α(r)
·
[
ρ·g·z(r) − p

γ
+

sinα(r)
r

]
,

α ′(r) =
1

cosα(r)
·
[
p − ρ·g·z(r)

γ
− sinα(r)

r

]
,

r ∈ I ∩ (0, r0]. (2.12)
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At r0, the following inequalities hold

z ′(r0) = − tanαc < 0,

z ′′(r0) =
1

cos3αc

[
−
p

γ
+

sinαc
r0

]

< − 1
cos3αc

[
n

n − 1
·
αc+αg−π/2

r0
· sinαg+

n − 1
n
·
ρ·g
γ
·r0· tanαc+

n − 1
r0
· sinαc

]
< 0.

(2.13)

Hence, there exists r ′ ∈ I ∩ (0, r0) such that the following inequalities hold

z ′′(r) < 0, − tanαc ≤ z ′(r), z ′(r) ≤ − tan
(
π

2
− αg

)
, (2.14)

for every r ∈ [r ′, r0].
Now, let r∗ be defined by

r∗ = inf
{
r ′ ∈ I ∩ (0, r0)

... such that for any r ∈ [r ′, r0] inequalities (2.14) hold
}
. (2.15)

It is clear that r∗ ≥ 0 and for any r ∈ (r∗, r0] inequalities (2.14) hold. Remark now that the
limits

z ′(r∗ + 0) = lim
r→ r∗
r>r∗

z ′(r), z(r∗ + 0) = lim
r→ r∗
r>r∗

z(r) (2.16)

exist and satisfy

− tanαc ≤ z ′(r∗ + 0) ≤ − tan
(
π

2
− αg

)
,

(r0 − r∗)· tan
(
π

2
− αg

)
≤ z(r∗ + 0) ≤ (r0 − r∗)· tanαc.

(2.17)

The limit z ′′(r∗ + 0) = limr→ r∗, r>r∗z
′′(r) exists too, and z ′′(r∗ + 0) ≤ 0.

Due to the fact that r∗ is minimum, one of the inequalities

− tanαc ≤ z ′(r∗ + 0), z ′(r∗ + 0) ≤ − tan
(
π

2
− αg

)
, z ′′(r∗ + 0) ≤ 0 (2.18)

has to be equality.
The equality − tanαc = z ′(r∗ + 0) is impossible because z ′(r∗ + 0) ≥ z ′(r) > − tanαc for

r ∈ (r∗, r0).
We show in what follows that r∗ ≥ r0/n and z ′(r∗ + 0) = − tan(π/2 − αg).
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If r∗ ≥ r0/n, then we have to show only the equality z ′(r∗ + 0) = − tan(π/2 − αg). This
can be made showing that the equality z ′′(r∗ + 0) = 0 is impossible. Assuming the contrary,
that is, z ′′(r∗ + 0) = 0, using (2.12)1, we obtain

z(r∗ + 0) =
p

g·ρ −
γ

g·ρ·r∗
· sinα(r∗ + 0)

>
n

n − 1
·
γ

g·ρ ·
αc + αg − π/2

r0
· sinαg

+
n − 1
n
·r0· tanαc +

n·γ
g·ρ·r0

· sinαc −
n·γ
g·ρ·r0

· sinαc

>

(
r0 −

1
n
·r0

)
· tanαc

> z

(
r0

n

)

> z(r∗ + 0),

(2.19)

which is impossible.
Assume now that r∗ < r0/n and consider the difference α(r0) − α(r0/n),

α(r0) − α
(
r0

n

)
= α ′(ζ)·

[
r0 −

r0

n

]

=
[
p − g·ρ·z(ζ)

γ
− sinα(ζ)

ζ

]
· 1
cosα(ζ)

·n − 1
n
·r0

>

[
n

n − 1
·
αc + αg − π/2

r0
· sinαg +

n − 1
n
·
g·ρ
γ
·r0· tanαc

+
n

r0
· sinαc −

g·ρ
γ
·n − 1
n
·r0· tanαc −

n

r0
· sinαc

]
· 1
sinαg

·n − 1
n
·r0

=
n

n − 1
·
αc + αg − π/2

r0
·
sinαg
sinαg

·n − 1
n
·r0

= αc + αg −
π

2
.

(2.20)

Hence, α(r0/n) < π/2 − αg, which is impossible.
In this way, it was shown that r∗ ≥ r0/n and z ′(r∗ + 0) = − tan(π/2 − αg).

Theorem 2.6. If for 1 < n ′ < n and p, the inequalities hold

n

n − 1
·γ ·
αc + αg − π/2

r0
· sinαg +

n − 1
n
·g·ρ·r0· tanαc +

n·γ
r0
· sinαc

< p <
n ′

n ′ − 1
·γ ·
αc + αg − π/2

r0
· cosαc +

γ

r0
· cosαg,

(2.21)

then there exist r1 in the closed interval [r0/n, r0/n
′] and a concave solution of the NLBVP (2.1).
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Proof. The existence of r1 and the inequality r1 ≥ r0/n follow from Theorem 2.5. The
inequality r1 ≤ r0/n

′ follows from Theorem 2.1.

Theorem 2.7. A concave solution z1(r) of the NLBVP (2.1) is a weak minimum of the free energy
functional of the melt column

I(z) =
∫ r0

r1

{
γ ·
[
1 + (z ′)2]1/2

+
1
2
·g·ρ·z2 − p·z

}
r·dr,

z(r1) = z1(r1), z(r0) = z1(r0) = 0.

(2.22)

Proof. Since (2.1) is the Euler equation for (2.22), it is sufficient to prove that the Legendre
and Jacobi conditions are satisfied in this case.

Denote by F(r, z, z ′), the function defined as

F(r, z, z ′) = r·
{

1
2
·ρ·g·z2 − p·z + γ ·

[
1 + (z ′)2]1/2

}
. (2.23)

It is easy to verify that we have

∂2F

∂z ′2
=

r·γ

[1 + (z ′)2]
3/2

> 0. (2.24)

Hence, the Legendre condition is satisfied.
The Jacobi equation

[
∂2F

∂z2
− d

dr

(
∂2F

∂z∂z ′

)]
·η − d

dr

[
∂2F

∂z ′2
·η ′

]
= 0 (2.25)

in this case is given by

d

dr

(
r·γ

[1 + (z ′)2]
3/2
·η ′

)
− g·ρ·r·η = 0. (2.26)

For (2.26), the following inequalities hold

r·γ

[1 + (z ′)2]
3/2
≥ r1·γ ·cos3αc, −ρ·g·r ≤ 0. (2.27)

Hence,

(η ′·r1·γ ·cos3αc)
′
= 0 (2.28)

is a Sturm-type upper bound for (2.26) [7].
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Since every nonzero solution of (2.28) vanishes at most once on the interval [r1, r0], the
solution η(r) of the initial value problem,

d

dr

(
r·γ

[1 + (z ′)2]
3/2
·η ′

)
− g·ρ·r·η ′ = 0,

η(r1) = 0, η ′(r1) = 1,

(2.29)

has only one zero on the interval [r1, r0] [7]. Hence, the Jacobi condition is satisfied.

Theorem 2.8. If the solution z(r) of the IVP (2.10) is convex (i.e., z ′′(r) > 0) on the interval [r1, r0],
then it is not a solution of the NLBVP (2.1).

Proof. z ′′(r) > 0 on [r1, r0] implies that z ′(r) is strictly increasing on [r1, r0]. Hence, z ′(r1) <
z ′(r0) < − tanαc < − tan(π/2 − αg).

Theorem 2.9. The solution z(r) of the IVP (2.10) is convex at r0 (i.e., z ′′(r0) > 0) if and only if

p <
γ

r0
· sinαc. (2.30)

Moreover, if (2.30) holds, then the solution z(r) of the IVP (2.10) is convex on I ∩ (0, r0).

Proof. That is because the change of convexity implies the existence of r ′ ∈ I ∩ [0, r0] such that
α(r ′) > αc, z(r ′) > 0, and p = g·ρ·z(r ′) + (γ/r ′)· sinα(r ′) > (γ/r0)· sinαc which is impossible.

Theorem 2.10. If p > (γ/r0)· sinαc and z(r) is a nonconcave solution of the NLBVP (2.1), then for
p, the following inequality holds

γ

r0
· sinαc < p < g·ρ·r0· tanαc +

γ

r1
· sinαc. (2.31)

Proof. Denote by z(r) the solution of the NLBVP (2.1) which is assumed to be nonconcave.
Let α(r) = − arctan z ′(r) for r ∈ [r, r0]. There exists r ′ ∈ (r1, r0) such that α ′(r ′) = 0. Hence,
p = g·ρ·z(r ′) + (γ/r ′)· sinα(r ′). Since α ′(r ′) < αc and r ′ > r1, the following inequalities hold
(γ/r ′)· sinα(r ′) ≤ (γ/r1)· sinαc and z(r ′) ≤ r0· tanαc. Using these inequalities, we obtain
(2.31).

3. Numerical illustration

Numerical computations were performed for InSb rod for the following numerical data [8]:

r0 = 7·10−4 [m], r1 = 3.5·10−4 [m],

αc = 63.8o = 1.1135 [rad], αg = 28.90 = 0.5044 [rad],

ρ = 6582 [kg/m3], γ = 4.2·10−1 [N/m],

g = 9.81 [m/s2], n = 2, n ′ = 1.02.

(3.1)
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Figure 2: z versus r for p = 555, 664.3, 700, 900, 1000 [Pa].

The objective was to verify if the necessary conditions are also sufficient or if the
sufficient conditions are also necessary. Moreover, the above data are realistic, and the
computed results can be tested against the experiments in order to evaluate the accuracy
of the theoretical predictions. This test is not the subject of this paper.

Inequality (2.2) is a necessary condition for the existence of a concave solution of
the NLBVP (2.1) on the closed interval [r0/n, r0] (n > 1). Is this condition also sufficient?
Computation shows that for the considered numerical data, the inequality (2.2) becomes
550.24 [Pa] ≤ p ≤ 1149.96 [Pa].

Numerical integration of the IVP (2.10) shows that for p = 664.3, 700, 900, 1000, [Pa],
there exists r ′ ∈ (3.5 × 10−4; 7 × 10−4) [m] such that the NLBVP has a concave solution
on [r ′, r0], but for p = 555 [Pa], there is no r ′ ∈ (3.5 × 10−4; 7 × 10−4) [m] such that the
NLBVP has a concave solution on [r ′, r0] (Figures 2 and 3). Moreover, there is no p in
the ranges [550.24, 1149.96] [Pa]for which α = π/2 − αg = 1.06639 [rad] is reached at
r ′ = 3.5 × 10−4 m.

Consequently, the inequality (2.2) is not a sufficient condition.
Inequality (2.8) is a sufficient condition for the inexistence of a point r ′ ∈ [0, r0]

such that the NLBVP (2.1) has a concave solution on the interval [r ′, r0]. Is it this condition
also necessary? Computation made for the same numerical data shows that inequality (2.8)
becomes p < 537.76 [Pa]. We have already obtained by numerical integration that for p =
555 [Pa], there exists no r ′ ∈ (0; 7 × 10−4) [m] such that the NLBVP has a concave solution on
the interval [r ′, 7 × 10−4] [m] (see Figures 2 and 3). Consequently, the inequality (2.7) is not a
necessary condition.

Inequality (2.9) is a sufficient condition for the existence of a point r’ in the interval
(0, r0] such that the NLBVP (2.1) has a concave the solution on the interval [r ′, r0]. Is this
condition also necessary?

Computation made for the same numerical data shows that inequality (2.9) becomes
p > 1149.96 [Pa]. Numerical integration of the IVP (2.10) shows that for p = 1000 [Pa], there
exists r ′ ∈ (0, 7× 10−4] [m] such that the IVP (2.10) has a concave solution on [r ′, 7× 10−4] [m]
(Figures 2 and 3). Consequently, the inequality (2.9) is not a necessary condition.
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Figure 3: α versus r for p = 555, 664.3, 700, 900, 1000 [Pa].
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Figure 4: z versus r for p = 1000, 11500, 1160, 1250 [Pa].

Inequality (2.21) is a sufficient condition for the existence of a point r ′ in the interval
[r0/n, r0/n

′] such that the NLBVP (2.1) on the interval [r ′, r0] has a concave solution.
Computation made for the same numerical data shows that [r0/n, r0/n

′] = [3.5× 10−4, 6.86×
10−4] [m] and inequality (2.21) becomes 1149.966 < p < 1161.92 [Pa]. Numerical integration
of the IVP (2.10) illustrates the above phenomenon for p = 1150, 1160 [Pa] and also the fact
that the condition is not necessary (see p = 1000, 1250 [Pa]) (Figures 4 and 5).

Inequality (2.30) is a necessary and sufficient condition for the convexity of the
solution of the IVP (2.10). For the considered numerical data, the inequality (2.30) becomes
p < 538.35 [Pa]. Figures 6 and 7 illustrate this phenomenon for p = 538, 250 [Pa].

Inequality (2.31) is a necessary condition for a concave-convex solution of the NLBVP
(2.1). Is this condition also sufficient?

For the considered numerical data, computation shows that inequality (2.31) becomes
538.35 [Pa] < p < 1168.65 [Pa]. Numerical integration of the IVP (2.10) for p = 664.3, 700 [Pa]
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shows that the solution is a concave-convex solution of the NLBVP (2.1), but for p = 555 [Pa],
it is not anymore solution of the NLBVP (2.1) (Figures 2 and 3).

Consequently, condition (2.31) is not necessary.

4. Conclusion

(1) Theorems localize the pressure difference axis values for which the considered
NLBVP (2.1) possesses solution and values for which it has no solution. In
particular, theoretical results reveal that for the growth of a single crystal rod of
radius r1 in the range [r0/n, r0/n

′] (n > n ′ > 1), it is sufficient to choose the pressure
difference p such that the inequality (2.21) holds.

(2) By computation, these values are found in a real case, and the accuracy of the
computed results is discussed theoretically.
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