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1. Introduction and preliminaries

Ideal points and efficient elements play an important role in the investigation of multiobjec-
tive optimization problems (see, e.g., [1–9] and references therein). Recently, some relations
between ideal points and efficient elements have been studied by many authors (see [3, 4]). In
[3], the authors derived some sufficient conditions for the existence of ideal points in normed
vector spaces. The algebra closure and vector closure were investigated in [1, 2], which are
weaker than topological closure.

In this paper, we present some relations between (proper) ideal points and (weakly,
positive proper, general positive) efficient points in real linear spaces. We also derive some
sufficient conditions for the existence of proper ideal points and positive proper efficient points.

Let X be a real linear space and A a nonempty subset of X. A is said to be a cone if
λA ⊂ A for all λ > 0. A is called a convex cone if A is a cone and A + A ⊂ A. A is called a
pointed cone if A is a cone and A ∩ (−A) = {0}.

The algebraic interior and relative algebraic interior ofA ⊂ X are defined by, respectively,

cor(A) =
{
x ∈ A : ∀h ∈ X, ∃λ′ > 0 : ∀λ ∈ [0, λ′], x + λh ∈ A

}
,

icr(A) =
{
x ∈ A : ∀h ∈ span(A −A), ∃λ′ > 0 : ∀λ ∈ [0, λ′], x + λh ∈ A

}
.

(1.1)
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It is clear that cor(A) ⊂ icr(A). The set A is called solid (resp., relatively solid) if cor(A)/=∅

(resp., icr(A)/=∅). If A ⊂ X is a convex cone, then icr(A)/=∅, icr(A) ∪ {0} is a convex cone,
icr(A) +A = icr(A), and icr(icr(A)) = icr(icr(A) ∪ {0}) = icr(A). If A is a convex pointed cone,
then 0/∈ icr(A).

Denote by X∗ the algebraic dual of X. The positive dual and positive proper dual cone
of K ⊂ X are defined by, respectively,

K+ =
{
l ∈ X∗ : 〈l, x〉 ≥ 0, ∀x ∈ K

}
,

K+i =
{
l ∈ X∗ : 〈l, x〉 > 0, ∀x ∈ K \ {0}}.

(1.2)

It is obvious that K+i ⊂ K+.

Definition 1.1. Let A be a nonempty subset of X.

(1) The vector closure of A is defined by

vcl(A) =
{
b ∈ X : ∃x ∈ X : ∀λ′ > 0, ∃λ ∈ (0, λ′], b + λx ∈ A

}

=
{
b ∈ X : ∃x ∈ X : ∃{λn

}
n∈N ⊂ R+ : λn −→ 0, b + λnx ∈ A, ∀n ∈ N

}
.

(1.3)

(2) A is called (vectorially) closed if A = vcl(A).

It is clear that A ⊂ vcl(A); if A is closed, then A − x0 is also closed; if A is a cone, then
vcl(A) is also a cone.

Throughout this paper, we always suppose that K is a closed, convex, and pointed cone
of X.

Definition 1.2. (1) A point x0 ∈ X is called an ideal point of A if there exists a closed, convex
and pointed cone P ⊂ X such that K ⊂ P and A ⊂ x0 + P .

(2) If x0 ∈ X is an ideal point of A and x0 ∈ A, then one says that x0 is a proper ideal
point of A.

Definition 1.3. (1) A point x0 ∈ A is said to be an efficient point of A if (A − x0) ∩ (−K) = {0}.
Furthermore, a point x0 ∈ A is said to be a weakly efficient point ofA if (A−x0)∩ (−icrK) = ∅,
where icrK/=∅.

(2) A point x0 ∈ A is said to be a positive proper efficient point of A if there is l ∈ K+i

such that 〈l, x0〉 ≤ 〈l, x〉 for all x ∈ A. If there exists l ∈ K+ \ {0} such that 〈l, x0〉 ≤ 〈l, x〉 for all
x ∈ A, then the point x0 is called general positive efficient point of A.

We denote by I(A) and PI(A) the set of all ideal points ofA and the set of all proper ideal
points of A, and we denote by min(A), Wmin(A), Pos(A), and GPos(A) the set of all efficient
points, the set of all weakly efficient points, the set of all positive proper efficient points, and
the set of all general positive efficient points of A, respectively.
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Lemma 1.4 (see [1]). Let A be a convex subset of X and K ⊂ X a closed, convex, and pointed cone.
Then

(1) cone(vcl(A)) ⊂ vcl(cone(A)).
Furthermore, if A is relatively solid, then
(2) vcl (A) is closed and convex;
(3) icr (A) = icr (vcl (A));
(4) for any a ∈ icr (A) and b ∈ vcl (A), one has [a, b) ⊂ icr (A).

Lemma 1.5 (see [2]). Let S and T be cones of a real line space X with icr (S)/=∅ and icr (T)/=∅. If
T ∩ icr (S) = ∅, then there exists l ∈ X∗ \ {0} such that 〈l, s〉 ≤ 0 ≤ 〈l, t〉 for all s ∈ S and t ∈ T .
Furthermore, one has 〈l, s〉 < 0 for all s ∈ icr (S) or 〈l, t〉 > 0 for all t ∈ icr (T).

2. Main results

In this section, we prove several relations between the proper ideal points and efficient points
and derive some existence theorems of the proper ideal points.

We first consider the following proposition.

Proposition 2.1. Let A be a convex subset of X and K a closed, convex, and pointed cone of X. Then
the following assertions hold:

(1) PI(A) ⊂ min(A) ∩ I(A);

(2) for every x0 ∈ I(A), there exist l0 ∈ K+ \ {0} such that 〈l0, x0〉 ≤ 〈l0, x〉 for all x ∈ A;

(3) pos(A) ∪min(A) ∪ pI(A) ⊂ Gpos(A).

Proof 1. (1) Let x0 ∈ PI(A). Then x0 ∈ A and there exists a closed convex and pointed cone
P ⊂ X such that K ⊂ P and A ⊂ x0 + P . If x0 /∈min(A), then there exists x1 ∈ A\{x0}, c1 ∈
K \ {0} ⊂ P \ {0}, k1 ∈ P \ {0}, such that x1 = x0 + k1 and x0 = x1 + c1. Consequently, c1 + k1 = 0,
which is impossible since P is a pointed cone. Thus x0 ∈ min(A) and so PI(A) ⊂ min(A). It is
clear that PI(A) ⊂ I(P) always holds. Therefore, PI(A) ⊂ min(A) ∩ I(A).

(2) Let x0 ∈ I(A). Then there exists a closed convex and pointed cone P ⊂ X such that
K ⊂ P andA ⊂ x0 +P , that is,A−x0 ⊂ P . If x0 /∈A, then (A−x0)∩ (−P) = ∅ since P is a pointed
cone. It follows from −K ⊂ −P that (A − x0) ∩ (−K) = ∅. If x0 ∈ A, then x0 ∈ PI(A) and, from
(1), we have x0 ∈ min(A), that is, (A − x0) ∩ (−K) = {0}. SinceA is convex, so is A − x0. Hence,
from the separation theorem, it follows that there is l0 ∈ X∗ \ {0} such that

〈
l0, x − x0

〉 ≥ 0 ≥ 〈
l0,−k

〉
, ∀x ∈ A, k ∈ K. (2.1)

It follows that

〈
l0, x

〉 ≥ 〈
l0, x0

〉
, ∀x ∈ A,

〈
l0, k

〉 ≥ 0, ∀k ∈ K. (2.2)

Therefore, we have l0 ∈ K+ \ {0}, which implies the desired conclusion.
(3) From definitions, one has pos(A) ⊂ Gpos(A). Then, from (1), it suffices to prove

min(A) ⊂ Gpos(A). Let x0 ∈ min(A). Then x0 ∈ A and (A − x0) ∩ (−K) = {0}. Since A is
convex, so is A − x0. The rest of the proof is similar to that in (2). This completes the proof.
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Proposition 2.2. Let A ⊂ X and l ∈ X∗ \ {0}. Then the following assertions hold:

(1) if 〈l, a〉 ≥ α for all a ∈ A, where α ∈ R, then 〈l, a〉 ≥ α for all a ∈ vclA;

(2) assumeA is convex and icrA/=∅. If 〈l, a〉 ≥ α for all a ∈ icrA, where α ∈ R, then 〈l, a〉 ≥ α
for all a ∈ vclA.

Proof 2. (1) Suppose that 〈l, a〉 ≥ α for all a ∈ A. Let b ∈ vclA. Then there exist x ∈ X and
{λn}n∈N ⊂ R+ with λn → 0 such that b + λnx ∈ A for each n ∈ N. Consequently, we obtain

〈l, b〉 + λn〈l, x〉 =
〈
l, b + λnx

〉 ≥ α, (2.3)

which yields 〈l, b〉 ≥ α as n → +∞.
(2) Assume that 〈l, a〉 ≥ α for all a ∈ icrA. Let b ∈ vclA and a ∈ icrA. For λ ∈ (0, 1],

Lemma 1.4(4) implies that λa + (1 − λ)b ∈ icrA. It follows that

λ〈l, a〉 + (1 − λ)〈l, b〉 =
〈
l, λa + (1 − λ)b

〉 ≥ α (2.4)

and so 〈l, b〉 ≥ α by taking λ → 0. This completes the proof.

By using Proposition 2.2, we establish the relation between weakly efficient points and
general positive efficient points.

Proposition 2.3. Let A be a convex subset of X. ThenWmin(A) ⊂ Gpos(A).

Proof 3. Note that icrK/=∅. Let x0 ∈ Wmin(A). Then x0 ∈ A and (A − x0) ∩ (−icrK) = ∅. By
assumption, A − x0 is convex. From separation theorems, there exists l ∈ X∗ \ {0} such that

〈
l, x − x0

〉 ≥ 0 ≥ 〈l,−k〉, ∀x ∈ A, k ∈ icrK. (2.5)

Therefore, 〈l, k〉 ≥ 0 for all k ∈ icrK. Now, Proposition 2.2 yields 〈l, k〉 ≥ 0 for all k ∈ vclK, and
thus 〈l, k〉 ≥ 0 for all k ∈ K sinceK ⊂ vclK. This establishes l ∈ K+ \ {0} and 〈l, x〉 ≥ 〈l, x0〉 for
all x ∈ A, that is, x0 ∈ Gpos(A). This completes the proof.

We say that A ⊂ X satisfies the property P if, for any x ∈ A and λ ∈ [0, 1], one has
λx ∈ A.

Remark that if A ⊂ X is a cone, then it satisfies the property P.

Proposition 2.4. LetA be a nonempty subset ofX. IfA satisfies the property P, then cone(vcl (A)) =
vcl (cone(A)).

Proof 4. Suppose that A satisfies the property P. The inclusion cone(vcl (A)) ⊂ vcl (cone(A))
follows immediately from Lemma 1.4(1). Thus we only need to prove cone(vcl (A)) ⊃
vcl (cone(A))). For this, let b ∈ vcl(cone(A)). Then there exists x ∈ X such that, for any λ′ > 0,
there exists λ ∈ (0, λ′] such that b+λx ∈ coneA. Consequently, there are bλ ∈ A and tλ > 0 such
that b + λx = tλbλ. It follows that

1
αλ

b +
λ

αλ
x =

tλ
αλ

bλ, (2.6)
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where αλ ≥ max(1, tλ). SinceA satisfies the propertyP, then (tλ/αλ)bλ ∈ A. Since λ/αλ ∈ (0, λ′],
it follows that (1/αλ)b = −(λ/αλ)x + (tλ/αλ)bλ ∈ vcl (A) and so b ∈ cone(vcl(A)), which yields
cone(vcl(A)) ⊃ vcl (cone(A)). This completes the proof.

Corollary 2.5. Let A be a cone of X. Then cone(vcl (A)) = vcl(A).

Proposition 2.6. Suppose that D is a cone of X and B is a closed subset of X such that B satisfies the
property P and B +D is closed. Then coneB +D = vcl (coneB +D).

Proof 5. It is obvious that coneB +D ⊂ vcl (coneB +D) holds. We next prove that the converse
inclusion is also true. Since B is closed, from Proposition 2.4, one has coneB = vcl (coneB)
and as a consequence, we only need to show vcl (coneB + D) ⊂ vcl (coneB) + D. For this, let
b ∈ vcl(coneB + D). Then there exists x ∈ X such that, for any λ′ > 0, there is λ ∈ (0, λ′] such
that b + λx ∈ coneB +D. Thus there are tλ > 0, bλ ∈ B, and dλ ∈ D such that b + λx = tλbλ + dλ.
As the proof in Proposition 2.4, we can prove

1
αλ

b = − λ

αλ
x +

tλ
αλ

bλ +
1
αλ

dλ ∈ vcl (B +D) = B +D (2.7)

and so

b = −λx + tλbλ + dλ

= αλ

(
− λ

αλ
x +

tλ
αλ

bλ +
1
αλ

dλ

)

∈ cone(B +D)

⊂ cone(B) + cone(D)

= cone(B) +D

⊂ vcl
(
cone(B)

)
+D,

(2.8)

where αλ ≥ max(1, tλ). This implies that vcl (coneB +D) ⊂ vcl (coneB) +D. This completes the
proof.

Under certain assumptions, we prove that an efficient point is also a proper ideal point.

Theorem 2.7. Let A be a convex subset of X and K a closed convex and pointed cone of X. Let x0 ∈
min(A). Then K+(x0, A) = {l ∈ K+ : 〈l, x〉 ≥ 〈l, x0〉, for allx ∈ A} is nonempty. Moreover, if
K+(x0, A) separates points of X (i.e., if 〈l, p〉 = 0 for all l ∈ K+(x0, A), then p = 0), then x0 ∈ PI(A).

Proof 6. As the proof of Proposition 2.1(3), we can show K+(x0, A)/=∅. Let

P =
{
x ∈ X : 〈l, x〉 ≥ 0, ∀l ∈ K+(x0, A

)}
. (2.9)

Then it is easy to prove that P is a cone, K ⊂ P, and A ⊂ x0 + P .
We next prove that P is closed convex and pointed cone. Suppose that K+(x0, A) sepa-

rates points of X. Obviously, P is convex. Let p ∈ vcl(P). For any b ∈ P , it follows from the
definition of P that

〈l, b〉 ≥ 0, ∀l ∈ K+(x0, A
)
, (2.10)
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and, from Proposition 2.2(1), we have

〈l, p〉 ≥ 0, ∀l ∈ K+(x0, A
)
, (2.11)

which yields p ∈ P and so P = vcl (P), that is, P is closed.
Now, we show that P is a pointed cone. For this, let p ∈ P ∩ {−P}. Then

〈l, p〉 = 0, ∀l ∈ K+(x0, A
)
. (2.12)

Since K+(x0, A) separates points of X, one has p = 0. Thus P is a pointed cone. Since P is a
closed, convex, and pointed cone such that

K ⊂ P, A ⊂ x0 + P, (2.13)

we get x0 ∈ PI(A). This completes the proof.

Theorem 2.8. Let A be a closed convex subset of X, K a closed, convex, and pointed cone of X. Let
x0 ∈ min(A). If B + K is closed, coneB is a pointed cone, and B satisfies the property P, then x0 ∈
PI(A), where B = A − x0.

Proof 7. Since A is closed and convex, so is B. Then cone(B) is also convex. In fact, for any
x1, x2 ∈ cone(B), there exist t1, t2 > 0, b1, b2 ∈ B such that x1 = t1b1 and x2 = t2b2. Then, for any
t ∈ (0, 1),

tx1 + (1 − t)x2 = tt1b1 + (1 − t)t2b2

=
(
tt1 + (1 − t)t2

)
(

tt1
tt1 + (1 − t)t2

b1 +
(1 − t)t2

tt1 + (1 − t)t2
b2

)

∈ (
tt1 + (1 − t)t2

)
B

⊂ coneB,

(2.14)

which implies the convexity of coneB.
Let P = coneB + K. Since 0 ∈ coneB ∩ K, we obtain K ⊂ P and B ⊂ P . Since B + K is

closed and B satisfies the property P, it follows from Proposition 2.6 that one has P = vcl(P),
that is, P is closed. It is clear that P is convex since coneB and K are convex.

Now, we will show that P is a pointed cone. Let b ∈ P ∩ (−P). Then there exist k1, k2 ∈ K,
x1, x2 ∈ A, and α1, α2 > 0 such that b = α1(x1 − x0) + k1 = −(α2(x2 − x0) + k2). It follows that

α1x1 + α2x2 −
(
α1 + α2

)
x0 = α1

(
x1 − x0

)
+ α2

(
x2 − x0

)
= −k1 − k2 (2.15)

and so

−K � −k1 + k2
α1 + α2

=
α1x1

α1 + α2
+

α2x2

α1 + α2
− x0 ∈ A − x0. (2.16)

Since x0 ∈ min(A), it follows that k1 = k2 = 0 and thus b = α1(x1 − x0) = −α2(x2 − x0) ∈
cone(B) ∩ (−cone(B)). Since cone(B) is a pointed cone, one has b = 0 and hence P is a pointed
cone. This yields x0 ∈ PI(A). This completes the proof.
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Corollary 2.9. LetA be a closed convex subset ofX,K a closed, convex, and pointed cone ofX. If B+K
is closed, coneB is a pointed cone, and B satisfies the property P, then min(A) = PI(A).

Proof 8. The conclusion follows immediately from Proposition 2.1(1) and Theorem 2.8.

From Proposition 2.1(1), we know that a proper ideal point must be an efficient point.
But a proper ideal point is not a positive efficient point.

Next, we give a sufficient condition for proper ideal points being positive efficient points.

Theorem 2.10. Let x0 ∈ A. If the closed, convex, and pointed conesK and P satisfyK ⊂ icr (P)∪ {0}
and A ⊂ x0 + P , then x0 ∈ pos(A).

Proof 9. SinceK is a closed, convex, and pointed cone, so does −K. It is easy to check that icr(P)
is a convex pointed cone. Since −K ⊂ −icr(P) ∪ {0} and 0/∈ icr(P), one has

(−K) ∩ icr(P) = ∅. (2.17)

From Lemma 1.5, it follows that there exists l ∈ X∗ \ {0} such that

〈l, x〉 > 0, ∀x ∈ icr(P), 〈l, x〉 ≥ 0, ∀x ∈ P. (2.18)

Since K \ {0} ⊂ icr(P), it follows that 〈l, k〉 > 0 for all k ∈ K \ {0}, which implies l ∈ K+i. Since
A − x0 ⊂ P , one has 〈l, x〉 ≥ 〈l, x0〉 for all x ∈ A, which yields x0 ∈ pos(A). This completes the
proof.

Let x0 ∈ Gpos(A). Then there exists l0 ∈ K+ \ {0} such that 〈l0, x〉 ≥ 〈l0, x0〉 for all x ∈ A.
Since l0 /= 0, there exists x1 such that −∞ < 〈l0, x1〉 < 0. For any given λ > 0, let

xλ = x0 + λx1. (2.19)

Theorem 2.11. Let x0 ∈ Gpos(A). Let A ⊂ X and K a closed, convex, and pointed cone of X. If
K+(xλ,A) = {l ∈ K+ : 〈l, x〉 ≥ 〈l, xλ〉, for allx ∈ A}/=∅ separates points of X, where xλ is given as
above, and supx∈A|〈l, x〉| < +∞ for each l ∈ K+, then x0 ∈ vcl (I(A)).

Proof. Set

α = −〈l0, x1〉 > 0. (2.20)

Then it follows that

〈
l0, xλ

〉
+ λα =

〈
l0, xλ

〉 − λ
〈
l0, x1

〉
=
〈
l0, x0

〉 ≤ 〈
l0, x

〉
, ∀x ∈ A. (2.21)

Note that supx∈A|〈l, x〉| < +∞ for each l ∈ K+. Then there exists l ∈ K+ \ {0} such that

∣∣〈l − l0, x
〉∣∣ ≤ λα

2
, ∀x ∈ A,

∣∣〈l − l0, xλ

〉∣∣ ≤ λα

2
. (2.22)

Therefore, we have

〈l, x〉 ≥ 〈
l0, x

〉 − λα

2
≥ 〈

l0, xλ

〉
+
λα

2
≥ 〈

l, xλ

〉
, ∀x ∈ A. (2.23)
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Then it follows that

K+(xλ,A
)
=
{
l ∈ K+ : 〈l, x〉 ≥ 〈

l, xλ

〉
, ∀x ∈ A

}
/=∅. (2.24)

Let

P =
{
x ∈ X : 〈l, x〉 ≥ 0, ∀l ∈ K+(xλ,A

)}
. (2.25)

Then it is easy to prove that P is a cone,K ⊂ P, and A ⊂ xλ + P . As in the proof of Theorem 2.7,
we can show that P is a closed, convex, and pointed cone. Consequently, xλ = x0 + λx1 ∈ I(A)
for each λ > 0, which implies that x0 ∈ vcl(I(A)). This completes the proof.
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