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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized by Aoki [3]
for additive mappings and by Rassias [4] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruţa [5] by
replacing the unbounded Cauchy difference by a general control function in the spirit of
Rassias’ approach.

Rassias [6] during the 27th International Symposium on Functional Equations asked the
question whether such a theorem can also be proved for p ≥ 1. Gajda [7] following the same
approach as in Rassias [4] gave an affirmative solution to this question for p > 1. It was shown
by Gajda [7] as well as by Rassias and Šemrl [8] that one cannot prove Rassias’ theorem when
p = 1. The counterexamples of Gajda [7] as well as of Rassias and Šemrl [8] have stimulated
several mathematicians to create new definitions of approximately additive or approximately linear
mappings (cf. Găvruţa [5], Jung [9] who among others studied the Hyers-Ulam stability of
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functional equations). The paper of Rassias [4] had great influence on the development of a
generalization of the Hyers-Ulam stability concept. This new concept is known asHyers-Ulam-
Rassias stability of functional equations (cf. the books of Czerwik [10], Hyers et al. [11]). During
the last two decades, a number of papers and research monographs have been published on
various generalizations and applications of the Hyers-Ulam-Rassias stability to a number of
functional equations and mappings (see [12–17]).

Gilányi [18] showed that if f satisfies the functional inequality

∥
∥2f(x) + 2f(y) − f(x − y)∥∥ ≤ ∥

∥f(x + y)
∥
∥, (1.1)

then f satisfies the quadratic functional equation

2f(x) + 2f(y) = f(x + y) + f(x − y), (1.2)

see also [19]. Fechner [20] and Gilányi [21] proved the Hyers-Ulam-Rassias stability of the
functional inequality (1.1). Park et al. [22] investigated the Jordan-vonNeumann-type Cauchy-
Jensen additive mappings and prove their stability, and Cho and Kim [23] proved the Hyers-
Ulam-Rassias stability of the Jordan-von Neumann-type Cauchy-Jensen additive mappings.

The purpose of this paper is to investigate the generalized additive functional inequality
in Banach spaces and the Hyers-Ulam-Rassias stability of generalized additive functional
inequalities associated with linear mappings in Banach spaces.

Throughout this paper, we assume that X, Y are Banach spaces and that a, b, c, α, β, γ
are nonzero complex numbers.

2. Generalized additive functional inequalities

Consider a mapping f : X→Y satisfying the following functional inequality:

∥
∥af(x) + bf(y) + cf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ (2.1)

for all x, y, z ∈ X.
We investigate the generalized additive functional inequality in Banach spaces.
We will use that for an additive mapping f , we have f((m/n)x) = (m/n)f(x) for any

positive integers n, m and all x ∈ X and so f(rx) = rf(x) for any rational number r and all
x ∈ X.

Theorem 2.1. Let f : X→Y be a nonzero mapping satisfying f(0) = 0 and (2.1). Then the following
hold:

(a) f is additive;

(b) if α/β, β/γ are rational numbers, then a/α = b/β = c/γ ;

(c) if α is a rational number, then |a| ≤ |α|.

Proof. (a) Letting y = −(α/β)x, z = 0 in (2.1), we get af(x) + bf(−(α/β)x) = 0.
Letting y = 0, z = −(α/γ)x in (2.1), we get af(x) + cf(−(α/γ)x) = 0.
Letting x = 0, y = (α/β)x, z = −(α/γ)x in (2.1), we get bf((α/β)x) + cf(−(α/γ)x) = 0.
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Thus, we get f(−(α/β)x) = −f((α/β)x) and so f(−x) = −f(x), bf(x) = af((β/α)x), and

b

a
f

(
α

β
x

)

=
c

b
f

(
β

γ
x

)

=
a

c
f

(
γ

α
x

)

= f(x) (2.2)

for all x ∈ X.
On the other hand, letting z = −(αx + βy)/γ = −(α/γ)(x + (β/α)y) in (2.1), we get

af(x) + bf(y) + cf
(

− α

γ

(

x +
β

α
y

))

= 0. (2.3)

The facts that

cf

(

− α

γ

(

x +
β

α
y

))

= c
(

− a

c

)

f

(

x +
β

α
y

)

= −af
(

x +
β

α
y

)

(2.4)

and bf(y) = af((β/α)y) give that

f

(

x +
β

α
y

)

= f(x) + f
(
β

α
y

)

(2.5)

and so f(x + y) = f(x) + f(y) for all x, y ∈ X, which implies that f is additive.
(b) Since f is additive by (a) and since α/β and β/γ are rational numbers, the facts that

(b/a)f((α/β)x) = f(x) and (c/b)f((β/γ)x) = f(x) give that

b

a
·α
β
f(x) =

c

b
·β
γ
f(x) = f(x) (2.6)

for all x ∈ X. Since f is nonzero, we conclude that a/α = b/β = c/γ .
(c) Letting y = z = 0 in (2.1), since α is a rational number, we get

∥
∥af(x)

∥
∥ ≤ ∥

∥f(αx)
∥
∥ =

∥
∥αf(x)

∥
∥ (2.7)

for all x ∈ X. Since f is nonzero, we conclude that |a| ≤ |α|, as desired.

As an application of Theorem 2.1, if we consider a mapping f : X→Y satisfying

∥
∥f(x) + f(y) + f(z)

∥
∥ ≤ ∥

∥f(x + 2y + 3z)
∥
∥ (2.8)

for all x, y, z ∈ X, then we conclude that f ≡ 0.
Actually, for a mapping f : X→Y satisfying f(0) = 0 and

∥
∥af(x) + bf(y) + cf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ (2.9)

for all x, y, z ∈ X, when α/β, β/γ are rational numbers, the above theorem says that f ≡ 0
unless a/α = b/β = c/γ .

Here, we consider functional inequalities similar to (2.1).
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Remark 2.2. Let f : X→Y be a mapping with f(0) = 0. If f satisfies

∥
∥af(x) + bf(y) + cf(z)

∥
∥ ≤ ∥

∥f(αx + βy)
∥
∥ (2.10)

for all x, y, z ∈ X, then by letting x = y = 0, we get cf(z) = 0 for all z ∈ X and so f ≡ 0. And if
f satisfies

∥
∥af(x) + bf(y)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ (2.11)

for all x, y, z ∈ X, then by letting y = 0, z = −αx/γ , we get af(x) = 0 for all x ∈ X and so f ≡ 0.

In order to generalize the inequality (2.1), in the following corollaries, we assume that
ak’s and αk’s, k = 1, 2, . . . , n (n ≥ 3) are nonzero complex numbers.

Corollary 2.3. Let f : X→Y be a nonzero mapping satisfying f(0) = 0 and

∥
∥
∥
∥
∥

n∑

k=1

akf
(

xk
)

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
f

(
n∑

k=1

αkxk

)∥
∥
∥
∥
∥

(2.12)

for all xk ∈ X. Then the following hold:

(a) f is additive;

(b) if αj/αi is a rational number, then ai/αi = aj/αj ;

(c) if αi is a rational number, then |ai| ≤ |αi|.

Proof. (a) Let xk = 0 in (2.12) except for three xk’s. Then by the same reasoning as in the proof
of Theorem 2.1, it is proved and so we omit the details.

(b) Letting xi = x, xj = y, by the same reasoning as in the corresponding part of the
proof of Theorem 2.1, we can prove it.

(c) Letting xk = 0 for all k with k /= i, (2.12) gives that

∥
∥aif

(

xi
)∥
∥ ≤ ∥

∥f
(

αixi
)∥
∥ =

∥
∥αif

(

xi
)∥
∥. (2.13)

Since f is nonzero, we conclude that |ai| ≤ |αi|, as desired.
In the above corollary, similar to Remark 2.2, we notice that if a mapping f satisfies

f(0) = 0 and

∥
∥
∥
∥
∥

p
∑

k=1

akf
(

xk
)

∥
∥
∥
∥
∥
≤
∥
∥
∥
∥
∥
f

(
q
∑

k=1

αkxk

)∥
∥
∥
∥
∥

(2.14)

for some p, q ∈ {1, 2, . . . , n} with p /= q and all xk ∈ X, then f ≡ 0.

Corollary 2.4. For an invertible 3 × 3 matrix (aij) of complex numbers, let f : X→Y be a nonzero
mapping satisfying f(0) = 0 and

∥
∥af

(

a11x + a12y + a13z
)

+ bf
(

a21x + a22y + a23z
)

+ cf
(

a31x + a32y + a33z
)∥
∥

≤ ∥
∥f

((

αa11 + βa21 + γa31
)

x +
(

αa12 + βa22 + γa32
)

y +
(

αa13 + βa23 + γa33
)

z
)∥
∥

(2.15)
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for all x, y, z ∈ X. Then the following hold:

(a) f is additive;

(b) if α/β, β/γ are rational numbers, then a/α = b/β = c/γ ;

(c) if α is a rational number, then |a| = |α|.

Proof. If we let s = a11x + a12y + a13z, t = a21x + a22y + a23z, u = a31x + a32y + a33z, then since a
matrix (aij) is invertible and

(

αa11 + βa21 + γa31
)

x +
(

αa12 + βa22 + γa32
)

y +
(

αa13 + βa23 + γa33
)

z = αs + βt + γu, (2.16)

inequality (2.15) is equivalent to

∥
∥af(s) + bf(t) + cf(u)

∥
∥ ≤ ∥

∥f(αs + βt + γu)
∥
∥ (2.17)

for all s, t, u ∈ X. Thus by applying Theorem 2.1, our proofs are clear.

By the same reasoning as in Remark 2.2, we obtain the following result.

Remark 2.5. For an invertible 3 × 3 matrix (aij) of complex numbers, let f : X→Y be a mapping
with f(0) = 0. If f satisfies

∥
∥af

(

a11x + a12y + a13z
)

+ bf
(

a21x + a22y + a23z
)

+ cf
(

a31x + a32y + a33z
)∥
∥

≤ ∥
∥f

((

αa11 + βa21
)

x +
(

αa12 + βa22
)

y +
(

αa13 + βa23
)

z
)∥
∥

(2.18)

or

∥
∥af

(

a11x + a12y + a13z
)

+ bf
(

a21x + a22y + a23z
)∥
∥

≤ ∥
∥f

((

αa11 + βa21 + γa31
)

x +
(

αa12 + βa22 + γa32
)

y +
(

αa13 + βa23 + γa33)z
)∥
∥

(2.19)

for all x, y, z ∈ X, then f ≡ 0.

Nowwe investigate linearity of a mapping f : X→Y . The following is a well-known and
useful lemma.

Lemma 2.6. Let f : X→Y be an additive mapping satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X. Then
f is an R-linear mapping.

Theorem 2.7. Let f : X→Y be a nonzero mapping satisfying (2.1) and limt∈R, t→0f(tx) = 0 for all
x ∈ X. Then the following hold:

(a) f is R-linear;

(b) if α/β, β/γ are real numbers, then a/α = b/β = c/γ .
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Proof. (a) For a mapping f satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X, if we let x = 0, then we
get f(0) = 0. Since f satisfies (2.1), from (a) in Theorem 2.1 and Lemma 2.6 we conclude that f
is R-linear.

(b) Since f is R-linear by (a) and α/β, β/γ are real numbers, by the same reasoning as in
the proof of Theorem 2.1(b), we can prove it.

3. Stability of generalized additive functional inequalities

In this section, we study the Hyers-Ulam-Rassias stability of generalized additive functional
inequalities in Banach spaces.

First of all, we introduce α-additivity of a mapping and investigate its properties.

Definition 3.1. For a mapping f : X→Y , we say that f is α-additive if

f(x + αy) = f(x) + αf(y) (3.1)

for all x, y ∈ X.

Proposition 3.2. If a mapping f : X→Y is α-additive, then f is additive and 1/α-additive.

Proof. Let f : X→Y be an α-additive mapping. Letting x = y = 0 in (3.1), we get f(0) = 0.
Letting x = 0 in (3.1), we get f(αy) = αf(y) for all y ∈ X. Moreover, letting x = 0 and replacing
y by y/α in (3.1), we get f(y/α) = (1/α)f(y) for all y ∈ X. Hence we obtain

f(x + y) = f
(

x + α·y
α

)

= f(x) + αf
(
y

α

)

= f(x) + f(y) (3.2)

for all x, y ∈ X and so f is additive.
On the other hand, we have

f

(

x +
1
α
y

)

= f
(
1
α
(y + αx)

)

=
1
α
f(y + αx) = f(x) +

1
α
f(y) (3.3)

for all x, y ∈ X and so f is 1/α-additive.

Remark 3.3. If a mapping f : X→Y is α-additive and β-additive, then we have

f(x + αβy) = f(x) + αf(βy) = f(x) + αβf(y) (3.4)

for all x, y ∈ X, which implies that f is αβ-additive.

In the following lemma, we give conditions for a mapping f : X→Y to be C-linear.

Lemma 3.4. Let f : X→Y be an α-additive mapping satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X. If α
is not a real number, then f is a C-linear mapping.

Proof. Let f be an α-additive mapping satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X. Since f is
additive, by Lemma 2.6, f is R-linear. When α is not real, if we let α = a + bi for some real
numbers a, b (b /= 0), then since f is additive and R-linear, we have

(a + bi)f(x) = f
(

(a + bi)x
)

= f(ax) + f(bix) = af(x) + bf(ix) (3.5)

and so f(ix) = if(x) for all x ∈ X, which implies that f is C-linear.
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Now we are ready to investigate the Hyers-Ulam-Rassias stability of generalized
additive functional inequality associated with a linear mapping. Here, we give a lemma for
our main result.

Lemma 3.5. Let f : X→Y be a mapping. If there exists a function ψ : X→[0,∞) satisfying

∥
∥f(αx) − αf(x)∥∥ ≤ ψ(x), (3.6)

∞∑

j=0

ψ
(

αjx
)

|α|j <∞ (3.7)

for all x ∈ X, then there exists a unique mapping L : X→Y satisfying L(αx) = αL(x) and

∥
∥f(x) − L(x)∥∥ ≤ 1

|α|
∞∑

j=0

ψ
(

αjx
)

|α|j (3.8)

for all x ∈ X. If, in addition, f is additive, then L is α-additive.

Note that this lemma is a special case of the results of [24].

Proof. Replacing x by αjx in (3.6), we get ‖f(αj+1x) − αf(αjx)‖ ≤ ψ(αjx). Dividing by |α|j+1 in
the above inequality, we get

∥
∥
∥
∥

f
(

αj+1x
)

αj+1
− f

(

αjx
)

αj

∥
∥
∥
∥
≤ ψ

(

αjx
)

|α|j+1 (3.9)

for all x ∈ X. From the above inequality, we have

∥
∥
∥
∥

f
(

αn+1x
)

αn+1
− f

(

αqx
)

αq

∥
∥
∥
∥
≤

n∑

j=q

∥
∥
∥
∥

f
(

αj+1x
)

αj+1
− f

(

αjx
)

αj

∥
∥
∥
∥
≤

n∑

j=q

1
|α|

ψ
(

αjx
)

|α|j (3.10)

for all x ∈ X and all nonnegative integers q, n with q < n. Thus by (3.7), the sequence
{f(αnx)/αn} is Cauchy for all x ∈ X. Since Y is complete, the sequence {f(αnx)/αn} converges
for all x ∈ X. So we can define a mapping L : X→Y by

L(x) := lim
n→∞

f
(

αnx
)

αn
(3.11)

for all x ∈ X.
In order to prove that L satisfies (3.8), if we put q = 0 and let n→∞ in the above

inequality, then we obtain

∥
∥f(x) − L(x)∥∥ ≤

∞∑

j=0

1
|α|

ψ
(

αjx
)

|α|j (3.12)

for all x ∈ X.
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On the other hand,

L(αx) = lim
n→∞

f
(

αnαx
)

αn
= α lim

n→∞
f
(

αn+1x
)

αn+1
= αL(x) (3.13)

for all x ∈ X, as desired.
Now to prove the uniqueness of L, let L′ : X→Y be another mapping satisfying L′(αx) =

αL′(x) and (3.8). Then we have

∥
∥L(x) − L′(x)

∥
∥ =

1
|α|n

∥
∥L

(

αnx
) − L′(αnx

)∥
∥

≤ 1
|α|n

(∥
∥L

(

αnx
) − f(αnx)∥∥ +

∥
∥L′(αnx

) − f(αnx)∥∥)

≤ 2
|α|n ·

1
|α|

∞∑

j=0

ψ
(

αjαnx
)

|α|j

=
2
|α|

∞∑

j=n

ψ
(

αjx
)

|α|j

(3.14)

which goes to zero as n→∞ for all x ∈ X by (3.7). Consequently, L is a unique desiredmapping.
In addition, when f is additive, L is also additive and so the fact of L(αx) = αL(x) for all

x ∈ X gives that L is α-additive.

According to Theorem 2.1, the inequality (2.1) can be reduced as the following additive
functional inequality

∥
∥αf(x) + βf(y) + γf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ (3.15)

for all x, y, z ∈ X.
In the following theorem, we prove the Hyers-Ulam-Rassias stability of the above

additive functional inequality.

Theorem 3.6. Let ξ = −α/β and let f : X→Y be a mapping satisfying limt∈R, t→0f(tx) = 0 for all
x ∈ X. If there exists a function ϕ : X3→[0,∞) satisfying

∥
∥αf(x) + βf(y) + γf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ + ϕ(x, y, z), (3.16)

∞∑

j=0

ϕ
(

ξjx, ξjy, ξjz
)

|ξ|j <∞, (3.17)

lim
t∈R, t→0

∞∑

j=0

ϕ
(

ξjtx, ξj+1tx, 0
)

|ξ|j = 0 (3.18)

for all x, y, z ∈ X, then there exists a unique R-linear and ξ-additive mapping L : X→Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ 1

|α|
∞∑

j=0

ϕ
(

ξjx, ξj+1x, 0
)

|ξ|j (3.19)

for all x ∈ X. If, in addition, ξ is not a real number, then L is a C-linear mapping.
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Proof. Replacing y = −(α/β)x, z = 0 in (3.16), since

∥
∥
∥
∥
αf(x) + βf

(

− α

β
x

)∥
∥
∥
∥
≤ ϕ

(

x,−α
β
x, 0

)

, (3.20)

we get

∥
∥f(ξx) − ξf(x)∥∥ ≤ 1

|β|ϕ(x, ξx, 0) (3.21)

for all x ∈ X. If we replace ψ(x) in Lemma 3.5 by (1/|β|)ϕ(x, ξx, 0), then by (3.17) and
Lemma 3.5, there exists a unique mapping L : X→Y satisfying L(ξx) = ξL(x) for all x ∈ X
and (3.19). In fact, L(x) := limn→∞(f(ξnx)/ξn) for all x ∈ X. Moreover, by limt∈R, t→0f(tx) = 0
for all x ∈ X and (3.18), we get

lim
t∈R, t→0

∥
∥L(tx) − f(tx)∥∥ ≤ lim

t∈R, t→0

1
|α|

∞∑

j=0

ϕ
(

ξjtx, ξj+1tx, 0
)

|ξ|j = 0 (3.22)

and so limt∈R, t→0L(tx) = 0 for all x ∈ X. Since (3.16) and (3.17) give

∥
∥αL(x) + βL(y) + γL(z)

∥
∥ = lim

n→∞

∥
∥
∥
∥

αf
(

ξnx
)

+ βf
(

ξny
)

+ γf
(

ξnz
)

ξn

∥
∥
∥
∥

≤ lim
n→∞

∥
∥
∥
∥

f
(

ξn(αx + βy + γz)
)

ξn

∥
∥
∥
∥
+ lim
n→∞

ϕ
(

ξnx, ξny, ξnz
)

|ξ|n

=
∥
∥L(αx + βy + γz)

∥
∥ + 0

=
∥
∥L(αx + βy + γz)

∥
∥,

(3.23)

we conclude that by Theorem 2.1 and Lemma 2.6, a mapping L is R-linear and ξ-additive.
When ξ is not a real number, by Lemma 3.4, a mapping L is C-linear.

In the above theorem, we remark that when ξ is −γ/β or −α/γ , we obtain the same result
as in Theorem 3.6.

As an application of Theorem 3.6, we obtain the following stability.

Corollary 3.7. Let f : X→Y be a mapping satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X and ξ = −α/β.
When |α| > |β| and 0 < p < 1, or |α| < |β| and p > 1, if there exists a θ ≥ 0 satisfying

∥
∥αf(x) + βf(y) + γf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ + θ

(‖x‖p + ‖y‖p + ‖z‖p) (3.24)

for all x, y, z ∈ X, then there exists a unique R-linear and ξ-additive mapping L : X→Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ θ

(|α|p + |β|p)

|α||β|(|β|p−1 − |α|p−1)‖x‖
p (3.25)

for all x ∈ X.
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Proof. If we define ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p), then ϕ satisfies the conditions of (3.17)
and (3.18). Thanks to Theorem 3.6, it is proved.

Before closing this section, we establish another stability of generalized additive
functional inequalities.

Lemma 3.8. Let f : X→Y be a mapping. If there exists a function ψ : X→[0,∞) satisfying (3.6) and

∞∑

j=1

|α|jψ
(
x

αj

)

<∞ (3.26)

for all x ∈ X, then there exists a unique mapping L : X→Y satisfying L(αx) = αL(x) and

∥
∥f(x) − L(x)∥∥ ≤ 1

|α|
∞∑

j=1

|α|jψ
(
x

αj

)

(3.27)

for all x ∈ X. If, in addition, f is additive, then L is α-additive.

Note that this lemma is a special case of the results of [24].

Proof. Replacing x by x/αj in (3.6), we get ‖f(x/αj−1) − αf(x/αj)‖ ≤ ψ(x/αj). Multiplying by
|α|j−1 in the above inequality, we get

∥
∥
∥
∥
αj−1f

(
x

αj−1

)

− αjf
(
x

αj

)∥
∥
∥
∥
≤ |α|j−1ψ

(
x

αj

)

(3.28)

for all x ∈ X. From the above inequality, we have

∥
∥
∥
∥
αnf

(
x

αn

)

− αq−1f
(

x

αq−1

)∥
∥
∥
∥
≤

n∑

j=q

∥
∥
∥
∥
αjf

(
x

αj

)

− αj−1f
(

x

αj−1

)∥
∥
∥
∥
≤

n∑

j=q

1
|α| |α|

jψ

(
x

αj

)

(3.29)

for all x ∈ X and all nonnegative integers q, n with q < n. Thus by (3.26) the sequence
{αnf(x/αn)} is Cauchy for all x ∈ X. Since Y is complete, the sequence {αnf(x/αn)} converges
for all x ∈ X. So we can define a mapping L : X→Y by

L(x) := lim
n→∞

αnf

(
x

αn

)

(3.30)

for all x ∈ X. In order to prove that L satisfies (3.27), if we put q = 1 and let n→∞ in the above
inequality, then we obtain

∥
∥f(x) − L(x)∥∥ ≤ 1

|α|
∞∑

j=1

|α|jϕ
(
x

αj

)

=
1
|α|

∞∑

j=1

|α|jψ
(
x

αj

)

(3.31)

for all x ∈ X.
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On the other hand,

L(αx) = lim
n→∞

αnf

(
αx

αn

)

= α lim
n→∞

αn−1f
(

x

αn−1

)

= αL(x) (3.32)

for all x ∈ X, as desired.
Now to prove the uniqueness of L, let L′ : X→Y be another mapping satisfying L′(αx) =

αL′(x) and (3.27). Then we have
∥
∥L(x) − L′(x)

∥
∥ = |α|n

∥
∥
∥
∥
L

(
x

αn

)

− L′
(
x

αn

)∥
∥
∥
∥

≤ |α|n
(∥
∥
∥
∥
L

(
x

αn

)

− f
(
x

αn

)∥
∥
∥
∥
+
∥
∥
∥
∥
L′
(
x

αn

)

− f
(
x

αn

)∥
∥
∥
∥

)

≤ 2|α|n· 1|α|
∞∑

j=1

|α|jψ
(

x

αjαn

)

=
2
|α|

∞∑

j=1

|α|n+jψ
(

x

αn+j

)

=
2
|α|

∞∑

j=n+1

|α|jψ
(
x

αj

)

(3.33)

which goes to zero as n→∞ for all x ∈ X by (3.26). Consequently, L is a unique desired
mapping.

Theorem 3.9. Let ξ = −α/β and let f : X→Y be a mapping satisfying limt∈R, t→0f(tx) = 0 for all
x ∈ X. If there exists a function ϕ : X3→[0,∞) satisfying (3.16) and

∞∑

j=1

|ξ|jϕ
(
x

ξj
,
y

ξj
,
z

ξj

)

<∞, (3.34)

lim
t∈R, t→0

∞∑

j=1

|ξ|jϕ
(
tx

ξj
,
tx

ξj−1
, 0
)

= 0 (3.35)

for all x, y, z ∈ X, then there exists a unique R-linear and ξ-additive mapping L : X→Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ 1

|α|
∞∑

j=1

|ξ|jϕ
(
x

ξj
,
x

ξj−1
, 0
)

(3.36)

for all x ∈ X. If, in addition, ξ is not a real number, then L is a C-linear mapping.

Proof. Replacing y = −(α/β)x, z = 0 in (3.16), we get

∥
∥f(ξx) − ξf(x)∥∥ ≤ 1

|β|ϕ(x, ξx, 0) (3.37)

for all x ∈ X. Thus by (3.34) and Lemma 3.8, there exists a unique mapping L : X→Y satisfying
(3.36) and L(ξx) = ξL(x) for all x ∈ X. Since L(x) := limn→∞ξnf(x/ξn) for all x ∈ X, by
limt∈R, t→0f(tx) = 0 and (3.35), we get

lim
t∈R, t→0

∥
∥L(tx) − f(tx)∥∥ ≤ lim

t∈R, t→0

1
|α|

∞∑

j=1

|ξ|jϕ
(
tx

ξj
,
tx

ξj−1
, 0
)

= 0 (3.38)
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and so limt∈R, t→0L(tx) = 0 for all x ∈ X. It follows from (3.16) and (3.34) that

∥
∥αL(x) + βL(y) + γL(z)

∥
∥ = lim

n→∞

∥
∥
∥
∥
ξn
(

αf

(
x

ξn

)

+ βf
(
y

ξn

)

+ γf
(
z

ξn

))∥
∥
∥
∥

≤ lim
n→∞

∥
∥
∥
∥
ξnf

(
αx

ξn
+
βy

ξn
+
γz

ξn

)∥
∥
∥
∥
+ lim
n→∞

|ξ|nϕ
(
x

ξn
,
y

ξn
,
z

ξn

)

=
∥
∥L(αx + βy + γz)

∥
∥ + 0

=
∥
∥L(αx + βy + γz)

∥
∥

(3.39)

for all x, y, z ∈ X. The rest of the proof is the same as in the corresponding part of the proof of
Theorem 3.6.

Corollary 3.10. Let f : X→Y be a mapping satisfying limt∈R, t→0f(tx) = 0 for all x ∈ X. When
|α| > |β| and p > 1, or |α| < |β| and 0 < p < 1, if there exists a θ ≥ 0 satisfying

∥
∥αf(x) + βf(y) + γf(z)

∥
∥ ≤ ∥

∥f(αx + βy + γz)
∥
∥ + θ

(‖x‖p + ‖y‖p + ‖z‖p) (3.40)

for all x, y, z ∈ X, then there exists a unique R-linear and ξ-additive mapping L : X→Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ θ

(|α|p + |β|p)

|α||β|(|α|p−1 − |β|p−1)‖x‖
p (3.41)

for all x ∈ X.

Proof. If we define ϕ(x, y, z) := θ(‖x‖p + ‖y‖p + ‖z‖p), then ϕ satisfies the conditions of (3.34)
and (3.35). Thanks to Theorem 3.9, it is proved.
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