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1. Introduction

The famous Jensen inequality states that

f

(
1
Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi), (1.1)

where f : I → R is a convex function, I is interval in R, xi ∈ I, pi > 0, i = 1, . . . , n, and
Pn =

∑n
i=1pi. Recall that a function f : I → R is convex if

f((1 − t)x + ty) ≤ (1 − t)f(x) + tf(y) (1.2)

holds for every x, y ∈ I and every t ∈ [0, 1] (see [1, Chapter 2]).
The natural problem in this context is to deduce Jensen-type inequality weakening

some of the above assumptions. The classical case is the case of Jensen-convex (or mid-
convex) functions. A function f : I → R is Jensen-convex if

f

(
x + y

2

)
≤ f(x) + f(y)

2
(1.3)
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holds for every x, y ∈ I. It is clear that every convex function is Jensen-convex. To see that
the class of convex functions is a proper subclass of Jensen-convex functions, see [2, page 96].
Jensen’s inequality for Jensen-convex functions states that if f : I → R is a Jensen-convex
function, then

f

(
1
n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi), (1.4)

where xi ∈ I, i = 1, . . . , n. For the proof, see [2, page 71] or [1, page 53].
A class of functions which is between the class of convex functions and the class of

Jensen-convex functions is the class of Wright-convex functions. A function f : I → R is
Wright-convex if

f(x + h) − f(x) ≤ f(y + h) − f(y) (1.5)

holds for every x ≤ y, h ≥ 0, where x, y + h ∈ I (see [1, page 7]).
The following theorem was the main motivation for this paper (see [3] and [1, pages

55-56]).

Theorem 1.1. Let f : [a, b] → R be Wright-convex on [a, (a + b)/2] and f(x) = −f(a + b − x). If
xi ∈ [a, b] and (xi + xn−i+1)/2 ∈ [a, (a + b)/2] for i = 1, 2, . . . , n, then (1.4) is valid.

Another way of weakening the assumptions for (1.1) is relaxing the assumption of
positivity of weights pi, i = 1, . . . , n. The most important result in this direction is the Jensen-
Steffensen inequality (see, e.g., [1, page 57]) which states that (1.1) holds also if x1 ≤ x2 ≤
· · · ≤ xn and 0 ≤ Pk ≤ Pn, Pn > 0, where Pk =

∑k
i=1pi.

The main purpose of this paper is to prove the weighted version of Theorem 1.1. For
some related results, see [4, 5]. In Section 3, to illustrate the applicability of this result, we
give a generalization of the famous Ky-Fan inequality.

2. Main results

Theorem 2.1. Let f : (a, b) → R be a convex function on (a, (a+b)/2] and f(x) = −f(a+b−x) for
every x ∈ (a, b). If xi ∈ (a, b), pi > 0, (xi+xn−i+1)/2 ∈ (a, (a+b)/2], and (pixi+pn−i+1xn−i+1)/(pi+
pn−i+1) ∈ (a, (a + b)/2] for i = 1, 2, . . . , n, then (1.1) holds.

Proof. Without loss of generality, we can suppose that (a, b) = (−1, 1). So, f is an odd function.
First we consider the case n = 2. If x1, x2 ∈ (−1, 0], then we have the known case of Jensen
inequality for convex functions. Thus, we will assume that x1 ∈ (−1, 0) and x2 ∈ (0, 1). The
equation of the straight line through points (x1, f(x1)), (0, 0) is

y =
f(x1)
x1

x. (2.1)

Since f is convex on (−1, 0] and x1 < (p1x1 + p2x2)/(p1 + p2) ≤ 0, it follows that

f

(
p1x1 + p2x2

p1 + p2

)
≤ f(x1)

x1

p1x1 + p2x2

p1 + p2
. (2.2)
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It is enough to prove that

f(x1)
x1

p1x1 + p2x2

p1 + p2
≤ p1f(x1) + p2f(x2)

p1 + p2
(2.3)

which is obviously equivalent to the inequality

f(x1)
x1

≤ f(x2)
x2

=
f(−x2)
−x2

. (2.4)

Since the function f is convex on (−1, 0] and f(0) = 0, by Galvani’s theorem it follows that
the function x �→ (f(x) − f(0))/(x − 0) = f(x)/x is increasing on (−1, 0). Therefore, from
(x1 + x2)/2 ≤ 0 and x2 > 0 we have x1 ≤ −x2 < 0; so (2.4) holds.

Now, for an arbitrary n ∈ N, we have

n∑
i=1

pif(xi) =
1
2

n∑
i=1

[pif(xi) + pn−i+1f(pn−i+1)]

≥ 1
2

n∑
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(
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pi + pn−i+1

)

= Pn· 1
2Pn
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(
pixi + pn−i+1xn−i+1

pi + pn−i+1

)

≥ Pnf

(
1

2Pn
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(pi + pn−i+1)
pixi + pn−i+1xn−i+1

pi + pn−i+1

)

= Pnf

(
1
Pn

n∑
i=1

pixi

)
;

(2.5)

so the proof is complete.

Remark 2.2. In fact, we have proved that

1
Pn

n∑
i=1

pif(xi) ≥ 1
2Pn

n∑
i=1

(pi + pn−i+1)f
(
pixi + pn−i+1xn−i+1

pi + pn−i+1

)

≥ f

(
1
Pn

n∑
i=1

pixi

)
.

(2.6)

Remark 2.3. Neither condition (xi + xn−i+1)/2 ∈ (a, (a + b)/2], i = 1, . . . , n, nor condition
(pixi +pn−i+1)/(pi +pn−i+1) ∈ (a, (a+ b)/2], i = 1, . . . , n, can be removed from the assumptions
of Theorem 2.1. To see this, consider the function f(x) = −x3 on (−2, 2). That the first condition
cannot be removed can be seen by considering x1 = −1/2, x2 = 1, p1 = 7/8, and p2 = 1/8.
That the second condition cannot be removed can be seen by considering x1 = −1, x2 =
3/4, p1 = 1/8, and p2 = 7/8. In both cases, (1.1) does not hold.
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Remark 2.4. Using Jensen and Jensen-Steffensen inequalities, it is easy to prove the following
inequalities (see also [6, 7]):

2f
(
a + b

2

)
− 1
Pn

n∑
i=1

pif(xi) ≤ f

(
a + b − 1

Pn

n∑
i=1

pixi

)

≤ f(a) + f(b) − 1
Pn

n∑
i=1

pif(xi),

(2.7)

where f is a convex function on (a − ε, b + ε), ε > 0, xi ∈ (a, b), and pi > 0 for i = 1, . . . , n. If f
is concave, the reverse inequalities hold in (2.7).

Now, suppose the conditions in Theorem 2.1 are fulfilled except that the function f
satisfies f(x) + f(a + b − x) = 2f((a + b)/2). It is immediate (consider the function g(x) =
f(x)− f((a+ b)/2)) that inequality (1.1) still holds. Using f(x) = 2f((a+ b)/2)− f(a+ b −x),
the inequality (1.1) gives

2f
(
a + b

2

)
− 1
Pn

n∑
i=1

pif(xi) ≤ f

(
a + b − 1

Pn

n∑
i=1

pixi

)
; (2.8)

so the left-hand side of inequality (2.7) is valid also in this case. On the other hand, if f((a +
b)/2) = 0 (so f(a) + f(b) = 0), the previous inequality can be written as

f

(
a + b − 1

Pn

n∑
i=1

pixi

)
≥ f(a) + f(b) − 1

Pn

n∑
i=1

pixi (2.9)

which is the reverse of the right-hand side inequality of (2.7); so the concavity properties of
the function f are prevailing in this case.

3. Applications

In the following corollary, we give a simple proof of a known generalization of the Levinson
inequality (see [8] and [1, pages 71-72]).

Recall that a function f : I → R is 3-convex if [x0, x1, x2, x3]f ≥ 0 for xi /= xj , i /= j, and
xi ∈ I, where [x0, x1, x2, x3]f denotes third-order divided difference of f . It is easy to prove,
using properties of divided differences or using classical case of the Levinson inequality, that
if f : (0, 2a) → R is a 3-convex function, then the function g(x) = f(2a − x) − f(x) is convex
on (0, a] (see [1, pages 71-72]).

Corollary 3.1. Let f : (0, 2a) → R be a 3-convex function; pi > 0, xi ∈ (0, 2a), xi + xn+1−i ≤ 2a,
and

pixi + pn+1−ixn+1−i
pi + pn+1−i

≤ a (3.1)
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for i = 1, 2, . . . , n. Then,

1
Pn

n∑
i=1

pif(xi) − f

(
1
Pn

n∑
i=1

pixi

)
≤ 1

Pn
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1
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pi(2a − xi)

)
. (3.2)

Proof. It is a simple consequence of Theorem 2.1 and the above-mentioned fact that g(x) =
f(2a − x) − f(x) is convex on (0, a].

Remark 3.2. In fact, the following improvement of inequality (3.2) is valid:

1
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n∑
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pif(xi) ≥ 1
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)

− 1
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≥ f
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)
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(3.3)

A famous inequality due to Ky-Fan states that

Gn

G′
n

≤ An

A′
n
, (3.4)

where Gn, G′
n and An, A

′
n are the weighted geometric and arithmetic means, respectively,

defined by

Gn =
( n∏

i=1

x
pi
i

)1/Pn

, An =
1
Pn

n∑
i=1

pixi,

G′
n =

( n∏
i=1

(1 − xi)
pi

)1/Pn

, A′
n =

1
Pn

n∑
i=1

pi(1 − xi),

(3.5)

where xi ∈ (0, 1/2], i = 1, . . . , n (see [6, page 295]).
In the following corollary, we give an improvement of the Ky-Fan inequality.

Corollary 3.3. Let pi > 0, xi ∈ (0, 1), A2(xi, xn+1−i) = (pixi + pn+1−ixn+1−i)/(pi + pn+1−i), and
x′
i = 1 − xi, i = 1, . . . , n. If xi + xn+1−i ≤ 1 and A2(xi, xn+1−i) ≤ 1/2, i = 1, . . . , n, then

G′
n

Gn
≥
[

n∏
i=1

(
A2

(
x′
i, x

′
n+1−i

)
A2(xi, xn+1−i)

)pi+pn+1−i]1/2Pn

≥ A′
n

An
. (3.6)
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Proof. Set f(x) = logx and 2a = 1 in (3.3). It follows that

1
Pn

n∑
i=1

pi log(1 − xi) − 1
Pn

n∑
i=1

pi logxi ≥ 1
2Pn

n∑
i=1

(pi + pn+1−i) log
pi(1 − xi) + pn+1−i(1 − xn+1−i)

pi + pn+1−i

− 1
2Pn

n∑
i=1

(pi + pn+1−i) log
pixi + pn+1−ixn+1−i

pi + pn+1−i

≥ log

(
1 − 1

Pn

n∑
i=1

pixi

)
− log

1
Pn

n∑
i=1

pixi,

(3.7)

which by obvious rearrangement implies (3.6).
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The research of J. Pečarić and I. Perić was supported by the Croatian Ministry of Science,
Education and Sports, under the Research Grants 117-1170889-0888 (J. Pečarić) and 058-
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