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We introduce a new class of normalized norms onR2 which properly contains all absolute
normalized norms. We also give a criterion for deciding whether a given norm in this class
is uniformly nonsquare. Moreover, an estimate for the James constant is presented and
the exact value of some certain norms is computed. This gives a partial answer to the
question raised by Kato et al.
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1. Introduction and preliminaries

A norm ‖ · ‖ on C2 (resp., R2) is said to be absolute if ‖(z,w)‖ = ‖(|z|,|w|)‖ for all
z,w ∈ C (resp., R), and normalized if ‖(1,0)‖ = ‖(0,1)‖ = 1. The �p-norms ‖ · ‖p are
such examples:

∥
∥(z,w)

∥
∥
p =

⎧

⎨

⎩

(|z|p + |w|p)1/p
if 1≤ p <∞,

max
{|z|,|w|} if p =∞. (1.1)

Let AN2 be the family of all absolute normalized norms on C2 (resp., R2), and Ψ2

the family of all continuous convex functions ψ on [0,1] such that ψ(0)= ψ(1)= 1 and
max{1− t, t} ≤ ψ(t)≤ 1 (0≤ t ≤ 1). According to Bonsall and Duncan [1], AN2 and Ψ2

are in a one-to-one correspondence under the equation

ψ(t)= ∥∥(1− t, t)∥∥ (0≤ t ≤ 1). (1.2)

Indeed, for all ψ ∈Ψ2, let

∥
∥(z,w)

∥
∥
ψ =

⎧

⎪⎨

⎪⎩

(|z|+ |w|)ψ
( |w|
|z|+ |w|

)

if (z,w) �= (0,0),

0 if (z,w)= (0,0).
(1.3)
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2 The James constant of normalized norms on R2

Then ‖ · ‖ψ ∈ AN2, and ‖ · ‖ψ satisfies (1.2). From this result, we can consider many
non-�p-type norms easily. Now let

ψp(t)=
⎧

⎨

⎩

(

(1− t)p + tp
)1/p

if 1≤ p <∞,

max{1− t, t} if p =∞. (1.4)

Then ψp(t)∈Ψ2 and, as is easily seen, the �p-norm ‖ · ‖p is associated with ψp.
If X is a Banach space, then X is uniformly nonsquare if there exists δ ∈ (0,1) such that

for any x, y ∈ SX ,

either ‖x+ y‖ ≤ 2(1− δ) or ‖x− y‖ ≤ 2(1− δ), (1.5)

where SX = {x ∈ X : ‖x‖ = 1}. The James constant J(X) is defined by

J(X)= sup
{

min
{‖x+ y‖, ‖x− y‖} : x, y ∈ SX

}

. (1.6)

The modulus of convexity of X , δX : [0,2]→ [0,1] is defined by

δX(ε)= inf
{

1− 1
2
‖x+ y‖ : x, y ∈ SX , ‖x− y‖ ≥ ε

}

. (1.7)

The preceding parameters have been recently studied by several authors (cf. [4–6, 8,
9]). We collect together some known results.

Proposition 1.1. Let X be a nontrivial Banach space, then
(i)
√

2≤ J(X)≤ 2 (Gao and Lau [5]),
(ii) if X is a Hilbert space, then J(X)=√2; the converse is not true (Gao and Lau [5]),

(iii) X is uniformly nonsquare if and only if J(X) < 2 (Gao and Lau [5]),
(iv) 2J(X)− 2≤ J(X∗) ≤ J(X)/2 + 1, J(X∗∗) = J(X), and there exists a Banach space

X such that J(X∗) �= J(X) (Kato et al. [8]),
(v) if 2≤ p ≤∞, then δ�p(ε)= 1− (1− (ε/2)p)1/p (Hanner [6]),

(vi) J(X)= sup{ε ∈ (0,2) : δX(ε)≤ 1− ε/2} (Gao and Lau [5]).

The paper is organized as follows. In Section 2 we introduce a new class of normalized
norms on R2. This class properly contains all absolute normalized norms of Bonsall and
Duncan [1]. The so-called generalized Day-James space, �ψ-�ϕ, where ψ,ϕ∈Ψ2, is intro-
duced and studied. More precisely, we prove that (�ψ-�ϕ)∗ = �ψ∗-�ϕ∗ where ψ∗ and ϕ∗ are
the dual functions of ψ and ϕ, respectively. In Section 3, the upper bound of the James
constant of the generalized Day-James space is given. Furthermore, we compute J(�ψ-�∞)
and deduce that every generalized Day-James space except �1-�1 and �∞-�∞ is uniformly
nonsquare. This result strengthens Corollary 3 of Saito et al. [10].

2. Generalized Day-James spaces

In this section, we introduce a new class of normalized norms onR2 which properly con-
tains all absolute normalized norms of Bonsall and Duncan [1]. Moreover, we introduce
a two-dimensional normed space which is a generalization of Day-James �p-�q spaces.
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Lemma 2.1. Let ψ ∈Ψ2 and let ‖ · ‖ψ,ψ∞ be a function on R2 defined by, for all (z,w)∈R2,

∥
∥(z,w)

∥
∥
ψ,ψ∞ :=max

{∥
∥
(

z+,w+)
∥
∥
ψ ,
∥
∥
(

z−,w−
)∥
∥
ψ

}

,

=
⎧

⎨

⎩

∥
∥(z,w)

∥
∥
ψ if zw ≥ 0,

∥
∥(z,w)

∥
∥∞ if zw ≤ 0,

(2.1)

where x+ and x− are positive and negative parts of x ∈R, that is, x+ =max{x,0} and x− =
max{−x,0}. Then ‖ · ‖ψ,ψ∞ is a norm on R2.

For convenience, we put �ψ1,ψ2 := {(z,w)∈R2 : ‖(z,w)‖ψ1,ψ2 ≤ 1}.
Theorem 2.2. Let ψ,ϕ∈Ψ2 and

∥
∥(z,w)

∥
∥
ψ,ϕ :=

⎧

⎨

⎩

∥
∥(z,w)

∥
∥
ψ if zw ≥ 0,

∥
∥(z,w)

∥
∥
ϕ if zw ≤ 0

(2.2)

for all (z,w)∈R2. Then ‖ · ‖ψ,ϕ is a norm on R2. Denote by N2 the family of all such prece-
ding norms.

Proof. Let ψ,ϕ ∈ Ψ2, we only show ‖ · ‖ψ,ϕ satisfies the triangle inequality. To this end,
it suffices to prove that �ψ,ϕ is convex. By Lemma 2.1, we have that �ψ,ψ∞ and �ϕ,ψ∞ are
closed unit balls of ‖ · ‖ψ,ψ∞ and ‖ · ‖ϕ,ψ∞ , respectively, and so �ψ,ψ∞ and �ϕ,ψ∞ are convex
sets. We define T :R2 →R2 by

T
(

(z,w)
)= (−z,w) ∀(z,w)∈R2. (2.3)

Then T is a linear operator and T(�ϕ,ψ∞) =�ψ∞,ϕ, which implies that �ψ∞,ϕ is convex
and so �ψ,ϕ =�ψ∞,ϕ∩�ψ,ψ∞ is convex. �

Taking ψ = ψp and ϕ= ψq (1≤ p,q ≤∞) in Theorem 2.2, we obtain the following.

Corollary 2.3 (Day-James �p-�q spaces). For 1 ≤ p, q ≤ ∞, denote by �p-�q the Day-
James space, that is, R2 with the norm defined by, for all (z,w)∈R2,

∥
∥(z,w)

∥
∥
p,q =

⎧

⎨

⎩

∥
∥(z,w)

∥
∥
p if zw ≥ 0,

∥
∥(z,w)

∥
∥
q if zw ≤ 0.

(2.4)

James [7] considered the �p-�p′ space as an example of a Banach space which is isomet-
ric to its dual but which is not given by a Hilbert norm when p �= 2. Day [2] considered
even more general spaces, namely, if (X ,‖ · ‖) is a two-dimensional Banach space and
(X∗,‖ · ‖∗) its dual, then the X-X∗ space is the space X with the norm defined by, for all
(z,w)∈R2,

∥
∥(z,w)

∥
∥
X ,X∗ =

⎧

⎪⎨

⎪⎩

∥
∥(z,w)

∥
∥ if zw ≥ 0,

∥
∥(z,w)

∥
∥
∗

if zw ≤ 0.
(2.5)



4 The James constant of normalized norms on R2

For ψ,ϕ ∈ Ψ2, denote by �ψ-�ϕ the generalized Day-James space, that is, R2 with the
norm ‖ · ‖ψ,ϕ defined by (2.2). For ψp defined by (1.4), we write �ψ-�p for �ψ-�ψp . For
example, if 1≤ p,q ≤∞, �p-�q means �ψp-�ψq .

It is worthwhile to mention that there is a normalized norm which is not absolute.

Proposition 2.4. There is ψ ∈Ψ2 such that �ψ-�∞ is not isometrically isomorphic to �ϕ-�ϕ
for all ϕ∈Ψ2.

Proof. Let

ψ(t) :=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− t if 0≤ t ≤ 1
8

,

11− 4t
12

if
1
8
≤ t ≤ 1

2
,

1 + t
2

if
1
2
≤ t ≤ 1.

(2.6)

We observe that the sphere of �ψ-�∞ is the octagon whose right half consists of 4 segments
of different lengths. Suppose that there are ϕ ∈Ψ2 and an isometric isomorphism from
�ψ-�∞ onto �ϕ-�ϕ. Since the image of each segment in �ψ-�∞ is again a segment of the same
length in �ϕ-�ϕ, the sphere of �ϕ-�ϕ must be the octagon whose each corresponding side
has the same length (measured by ‖ · ‖ϕ). We show that this cannot happen. Consider
(1,0) ∈ S�ϕ-�ϕ . If (1,0) is an extreme point of B�ϕ-�ϕ , then S�ϕ-�ϕ contains 4 segments of
same lengths since ‖ · ‖ϕ is absolute. On the other hand, if (1,0) is an not extreme point
of B�ϕ-�ϕ , again S�ϕ-�ϕ contains 4 segments of same lengths. �

Next, we prove that the dual of a generalized Day-James space is again a generalized
Day-James space. Recall that, for ψ ∈Ψ2, the dual function ψ∗ of ψ is defined by

ψ∗(s)= max
0≤t≤1

(1− s)(1− t) + st
ψ(t)

(2.7)

for all s∈ [0,1]. It was proved that ψ∗ ∈Ψ2 and (�ψ-�ψ)∗ = �ψ∗-�ψ∗ (see [3, Proposition
1 and Theorem 2]). We generalize this result to our spaces as follows.

Theorem 2.5. For ψ,ϕ ∈ Ψ2, there is an isometric isomorphism that identifies (�ψ-�ϕ)∗

with �ψ∗-�ϕ∗ such that if f ∈ (�ψ-�ϕ)∗ is identified with the element (z,w)∈ �ψ∗-�ϕ∗ , then

f (u,v)= zu+wv (2.8)

for all (u,v)∈R2.

Proof. We can prove analogous to [3, Theorem 2]. �

3. The James constant and uniform nonsquareness

The next lemmas are crucial for proving the main theorems.

Lemma 3.1. Let ψ,ϕ∈Ψ2. Then
(i) ‖ · ‖∞ ≤ ‖ ·‖ψ,ϕ ≤ ‖·‖1,
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(ii) (1/Mψ,ϕ)‖ · ‖ψ ≤ ‖·‖ψ,ϕ ≤Mϕ,ψ‖ · ‖ψ ,
(iii) (1/Mϕ,ψ)‖ · ‖ϕ ≤ ‖·‖ψ,ϕ ≤Mψ,ϕ‖ · ‖ϕ,

where Mϕ,ψ =max0≤t≤1ϕ(t)/ψ(t) and Mψ,ϕ =max0≤t≤1ψ(t)/ϕ(t).

Lemma 3.2. Let ψ,ϕ∈Ψ2 and let Qi (i= 1, . . . ,4) denote the ith quadrant in R2. Suppose
that x, y ∈ S�ψ - �ϕ , then the following statements are true.

(i) If x, y ∈Q1, then x+ y ∈Q1 and x− y ∈Q2∪Q4.
(ii) If x, y ∈Q2, then x+ y ∈Q2 and x− y ∈Q1∪Q3.

(iii) If ψ(t) ≤ ϕ(t) for all t ∈ [0,1] and x − y ∈ Q◦2 ∪Q◦4 , where Q◦2 and Q◦4 are the
interiors of Q2 and Q4, respectively, then x+ y ∈Q1∪Q3.

We will estimate the James constant of �ψ-�ϕ.

Theorem 3.3. Let ψ,ϕ∈Ψ2 with ψ(t)≤ϕ(t) for all t∈[0,1], letMϕ,ψ=max0≤t≤1ϕ(t)/ψ(t),
and let δψ(·) be the modulus of convexity of �ψ-�ψ . Then for ε ∈ [0,2],

δψ,ϕ(ε)≥min
{

1−Mϕ,ψ
(

1− δψ(ε)
)

, δψ

(
ε

Mϕ,ψ

)}

, (3.1)

where δψ,ϕ(·) is the modulus of convexity of �ψ-�ϕ. Consequently,

J
(

�ψ-�ϕ
)≤ sup

{

ε ∈ (0,2) : ε ≤ 2Mϕ,ψ
(

1− δψ(ε)
)

or ε ≤ 2
(

1− δψ
(

ε

Mϕ,ψ

))}

. (3.2)

Proof. By Lemma 3.1(ii), we have

‖·‖ψ ≤ ‖·‖ψ,ϕ ≤Mϕ,ψ‖ · ‖ψ. (3.3)

We now evaluate the modulus of convexity δψ,ϕ for �ψ-�ϕ. We consider two cases.

Case 1. Take ‖x‖ψ,ϕ = ‖y‖ψ,ϕ = 1 with ‖x − y‖ψ,ϕ ≥ ε, where x − y ∈ Q1 ∪Q3. Thus
‖x‖ψ ≤ 1, ‖y‖ψ ≤ 1, and ‖x− y‖ψ ≥ ε, which implies that

1
2
‖x+ y‖ψ ≤ 1− δψ(ε). (3.4)

This in turn implies

1
2
‖x+ y‖ψ,ϕ ≤ 1

2
Mϕ,ψ‖x+ y‖ψ ≤Mϕ,ψ

(

1− δψ(ε)
)

, (3.5)

thus

1− 1
2
‖x+ y‖ψ,ϕ ≥ 1−Mϕ,ψ

(

1− δψ(ε)
)

. (3.6)

Case 2. Now take x, y as above, but with x− y ∈ Q◦2 ∪Q◦4. By Lemma 3.2(iii), x + y ∈
Q1∪Q3. Since ‖x− y‖ψ,ϕ ≥ ε,

‖x− y‖ψ ≥
‖x− y‖ψ,ϕ

Mϕ,ψ
≥ ε

Mϕ,ψ
. (3.7)
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Then

1
2
‖x+ y‖ψ,ϕ = 1

2
‖x+ y‖ψ ≤ 1− δψ

(
ε

Mϕ,ψ

)

, (3.8)

and so

1− 1
2
‖x+ y‖ψ,ϕ ≥ δψ

(
ε

Mϕ,ψ

)

. (3.9)

Hence we obtain (3.1). By Proposition 1.1(vi), (3.2) follows. �

The following corollary shows that we can have equality in (3.2).

Corollary 3.4 [4, 8]. If 1≤ q ≤ p <∞ and p ≥ 2, then

J
(

�p-�q
)≤ 2

(
2p/q

2p/q + 2

)1/p

. (3.10)

In particular, if p = 2 and q = 1, then J(�2-�1)=√8/3.

Proof. It follows that since

Mψq ,ψp = 21/q−1/p, δ�p-�p(ε)= 1−
(

1−
(
ε

2

)p
)1/p

. (3.11)

Moreover, if p = 2 and q = 1, then J(�2-�1)≤√8/3. Now we put

x0 =
(

2 +
√

2
2
√

3
,
2−√2

2
√

3

)

, y0 =
(

2−√2
2
√

3
,
2 +
√

2
2
√

3

)

. (3.12)

Then

∥
∥x0

∥
∥

2,1 =
∥
∥y0

∥
∥

2,1 = 1,
∥
∥x0± y0

∥
∥

2,1 =
√

8
3
. (3.13)

�

Theorem 3.5. Let ψ,ϕ∈Ψ2 with ψ(t)≤ϕ(t) for all t∈[0,1], letMϕ,ψ=max0≤t≤1ϕ(t)/ψ(t),
and let δϕ(·) be the modulus of convexity of �ϕ-�ϕ. Then for ε ∈ [0,2],

δψ,ϕ(ε)≥ 1−Mϕ,ψ

(

1− δϕ
(

ε

Mϕ,ψ

))

, (3.14)

where δψ,ϕ(·) is the modulus of convexity of �ψ-�ϕ. Consequently,

J
(

�ψ-�ϕ
)≤ sup

{

ε ∈ (0,2) : ε ≤ 2Mϕ,ψ

(

1− δϕ
(

ε

Mϕ,ψ

))}

. (3.15)

Proof. By Lemma 3.1(iii), we have

1
Mϕ,ψ

‖ · ‖ϕ ≤ ‖·‖ψ,ϕ ≤ ‖·‖ϕ. (3.16)
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We now evaluate the modulus of convexity δψ,ϕ for �ψ-�ϕ. Let

‖x‖ψ,ϕ = ‖y‖ψ,ϕ = 1 with ‖x− y‖ψ,ϕ ≥ ε. (3.17)

Then

1
Mϕ,ψ

‖x‖ϕ ≤ 1,
1

Mϕ,ψ
‖y‖ϕ ≤ 1,

1
Mϕ,ψ

‖x− y‖ϕ ≥ 1
Mϕ,ψ

‖x− y‖ψ,ϕ ≥ ε

Mϕ,ψ
,

(3.18)

which implies that

1
2Mϕ,ψ

‖x+ y‖ϕ ≤ 1− δϕ
(

ε

Mϕ,ψ

)

. (3.19)

This in turn implies that

1
2Mϕ,ψ

‖x+ y‖ψ,ϕ ≤ 1
2Mϕ,ψ

‖x+ y‖ϕ ≤ 1− δϕ
(

ε

Mϕ,ψ

)

, (3.20)

thus

1− 1
2
‖x+ y‖ψ,ϕ ≥ 1−Mϕ,ψ

(

1− δϕ
(

ε

Mϕ,ψ

))

. (3.21)

Hence we obtain (3.14). By Proposition 1.1(vi), (3.15) follows. �

Corollary 3.6. If 2≤ q ≤ p <∞, then

J
(

�p-�q
)≤ 21−1/p. (3.22)

It is easy to see that the estimate (3.22) is better than one obtained in [4, Example
2.4(3)].

For some generalized Day-James spaces, [8, Corollary 4] of Kato et al. gives only rough
result for the estimate of the James constant, that is, for ψ ∈Ψ2,

2
M
≤ J(�ψ-�∞

)≤ 2M, (3.23)

where M =max0≤t≤1ψ∞(t)/ψ(t).
However, the following theorem gives the exact value of the James constant of these

spaces.

Theorem 3.7. Let ψ ∈Ψ2. Then

J
(

�ψ-�∞
)= 1 +

1/2
ψ(1/2)

. (3.24)
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Proof. For our convenience, we write ‖ · ‖ instead of ‖ · ‖ψ,ψ∞ . Let x, y ∈ S�ψ -�∞ . We prove
that

either ‖x+ y‖ ≤ 1 +
1/2

ψ(1/2)
or ‖x− y‖ ≤ 1 +

1/2
ψ(1/2)

. (3.25)

Let us consider the following cases.

Case 1. x, y ∈ Q1. Let x = (a,b) and y = (c,d) where a,b,c,d ∈ [0,1]. By Lemma 3.2(i),
we have x− y ∈Q2∪Q4. Then

‖x− y‖ =max
{|a− c|, |b−d|}≤ 1≤ 1 +

1/2
ψ(1/2)

. (3.26)

Case 2. x, y ∈ Q2. If x, y lies in the same segment, then ‖x− y‖ ≤ 1. We now suppose
that x = (−1,a) and y = (−c,1) where a,c ∈ [0,1].

Subcase 2.1. a≤ (1/2)/ψ(1/2) and c ≤ (1/2)/ψ(1/2). Then

‖x+ y‖ = ∥∥(−1− c,1 + a)
∥
∥∞ =max{1 + c, 1 + a} ≤ 1 +

1/2
ψ(1/2)

. (3.27)

Subcase 2.2. a≥ (1/2)/ψ(1/2) or c ≥ (1/2)/ψ(1/2). Put z = (−1,1), then

‖x− y‖ ≤ ‖x− z‖+‖z− y‖ = 1− a+ 1− c ≤ 1 + 1− 1/2
ψ(1/2)

≤ 1 +
1/2

ψ(1/2)
. (3.28)

From now on, we may assume without loss of generality that there is β ∈ [1/2,1] such
that ψ(β)≤ ψ(t) for all t ∈ [0,1]. Indeed, J(�ψ-�∞)= J(�ψ̃-�∞) where ψ̃(t)= ψ(1− t) for
all t ∈ [0,1].

Case 3. x ∈ Q1 and y ∈ Q2. Let x = (a,b), y = (−c,1) where a,b,c ∈ [0,1]. We consider
three subcases.

Subcase 3.1. a≤ (1/2)/ψ(1/2) or c ≤ (1/2)/ψ(1/2). Then

‖x− y‖ = ∥∥(a+ c,b− 1)
∥
∥∞ =max{a+ c, 1− b} ≤ 1 +

1/2
ψ(1/2)

. (3.29)

Subcase 3.2. (1/2)/ψ(1/2)≤ a≤ c. Then b ≤ (1/2)/ψ(1/2) and

‖x+ y‖ = ∥∥(a− c,b+ 1)
∥
∥∞ =max{c− a, 1 + b} ≤ 1 +

1/2
ψ(1/2)

. (3.30)

Subcase 3.3. (1/2)/ψ(1/2) < c ≤ a. We write a = (1− t0)/ψ(t0), b = t0/ψ(t0) where t0 =
b/(a+ b) and 0 ≤ t0 ≤ 1/2. By the convexity of ψ and ψ(t) ≥ ψ(β) for all 0 ≤ t ≤ 1, we
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have ψ(t0)≥ ψ(1/2) and so 1/ψ(t0)≤ 1/ψ(1/2). By Lemma 3.1(i),

‖x+ y‖ = ∥∥(a,b) + (−c,1)
∥
∥≤ ∥∥(a− c,b+ 1)

∥
∥

1

= a− c+ b+ 1= 1
ψ
(

t0
) + 1− c

≤ 1
ψ(1/2)

+ 1− 1/2
ψ(1/2)

= 1 +
1/2

ψ(1/2)
.

(3.31)

Case 4. x ∈ Q1 and y ∈ Q2. Let x = (a,b), y = (−1,c) where a,b,c ∈ [0,1]. We consider
three subcases.

Subcase 4.1. b ≤ (1/2)/ψ(1/2) or c ≤ (1/2)/ψ(1/2). Then

‖x+ y‖ = ∥∥(a− 1,b+ c)
∥
∥∞ =max{1− a, b+ c} ≤ 1 +

1/2
ψ(1/2)

. (3.32)

Subcase 4.2. (1/2)/ψ(1/2) < b ≤ c. Then a≤ (1/2)/ψ(1/2) and

‖x− y‖ = ∥∥(1 + a,b− c)∥∥∞ =max{1 + a,c− b} ≤ 1 +
1/2

ψ(1/2)
. (3.33)

Subcase 4.3. (1/2)/ψ(1/2) < c ≤ b. We write a = (1− t0)/ψ(t0), b = t0/ψ(t0), where t0 =
b/(a+ b) and 1/2≤ t0 ≤ 1. We choose α= b/(a+ 2b− 1), then

1
2
≤ α≤ 1, a= 1− 2α

α
b+ 1. (3.34)

Since b− c ≤ 1 + a and b ≤ 1,

b− c
1 + a+ b− c ≤

1
2
≤ t0 ≤ α. (3.35)

Let

ψα(t)=
⎧

⎪⎨

⎪⎩

α− 1
α

t+ 1 if 0≤ t ≤ α,

t if α≤ t ≤ 1.
(3.36)

We see that ψα(t0)= ψ(t0). By the convexity of ψ, we have

ψ(t)≤ ψα(t) ∀t ≤ t0. (3.37)
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Therefore,

‖x− y‖ = ∥∥(a+ 1,b− c)∥∥ψ = (1 + a+ b− c)ψ
(

b− c
1 + a+ b− c

)

≤ (1 + a+ b− c)ψα
(

b− c
1 + a+ b− c

)

= α− 1
α

(b− c) + 1 + a+ b− c

= 1 + a+
2α− 1
α

b− 2α− 1
α

c = 1 + 1− 2α− 1
α

c

< 1 + 1− 2α− 1
α

1/2
ψ(1/2)

= 1 +
1/2

ψ(1/2)
+ 1− 3α− 1

2α
1

ψ(1/2)

= 1 +
1/2

ψ(1/2)
+ 1− ψα(1/2)

ψ(1/2)
≤ 1 +

1/2
ψ(1/2)

.

(3.38)

Finally, we conclude that

J
(

�ψ-�∞
)≤ 1 +

1/2
ψ(1/2)

. (3.39)

Now, we put x0 = ((1/2)/ψ(1/2),(1/2)/ψ(1/2)) and y0 = (−1,1), then

∥
∥x0

∥
∥= ∥∥y0

∥
∥= 1,

∥
∥x0± y0

∥
∥= 1 +

1/2
ψ(1/2)

. (3.40)

Thus,

J
(

�ψ-�∞
)≥min

{∥
∥x0− y0

∥
∥,
∥
∥x0 + y0

∥
∥
}= 1 +

1/2
ψ(1/2)

. (3.41)

This together with (3.39) completes the proof. �

Corollary 3.8 [4, Example 2.4(2)]. Let 1≤ p ≤∞, then

J
(

�p-�∞
)= 1 +

(
1
2

)1/p

. (3.42)

Indeed, ψp(1/2)= 21/p−1.
We now obtain the bounds for J(�ψ-�1).

Corollary 3.9. Let ψ ∈Ψ2. Then

2 min
0≤t≤1

ψ(t)≤ J(�ψ-�1
)≤ 3

2
+

1
2

min
0≤t≤1

ψ(t). (3.43)

Proof. Note that ψ∗(1/2)=max0≤t≤1(1/2)/ψ(t)= 1/2min0≤t≤1ψ(t). By Theorem 3.7, we
have J(�ψ∗-�∞) = 1 + min0≤t≤1ψ(t). Applying Proposition 1.1(iv), the assertion is ob-
tained. �

We now improve the upper bound for J(�p-�1) (see also Corollary 3.4).
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Corollary 3.10. Let 1≤ p <∞. Then

J
(

�p-�1
)≤ 3

2
+
(

1
2

)2−1/p

. (3.44)

In particular, if p ≥ 2, then

J
(

�p-�1
)≤min

{

4
(

2p + 2
)1/p ,

3
2

+
(

1
2

)2−1/p
}

. (3.45)

The following corollary follows by Theorem 3.7 and Corollary 3.9.

Corollary 3.11. Let ψ ∈Ψ2. Then
(i) �ψ-�∞ is uniformly nonsquare if and only if ψ �= ψ∞,

(ii) �ψ-�1 is uniformly nonsquare if and only if ψ �= ψ1.

We can say more about the uniform nonsquareness of �ψ-�ϕ.

Theorem 3.12. Let ψ,ϕ ∈Ψ2. Then all �ψ-�ϕ except �1-�1 and �∞-�∞ are uniformly non-
square.

Proof. If ψ = ϕ, we are done by [10, Corollary 3]. Assume that ψ �= ϕ. We prove that �ψ-�ϕ
is uniformly nonsquare. Suppose not, that is, there are x, y ∈ S�ψ -�ϕ such that ‖x± y‖ψ,ϕ =
2. We consider three cases.

Case 1. x, y ∈Q1. Then

‖x‖ψ,1 = ‖x‖ψ = ‖x‖ψ,ϕ = 1,

‖y‖ψ,1 = ‖y‖ψ = ‖y‖ψ,ϕ = 1.
(3.46)

It follows by Lemma 3.2(i) that x+ y ∈Q1 and x− y ∈Q2∪Q4. Therefore

‖x+ y‖ψ,1 = ‖x+ y‖ψ,ϕ = 2,

2= ‖x− y‖ψ,ϕ ≤ ‖x− y‖1 = ‖x− y‖ψ,1 ≤ 2.
(3.47)

Hence ‖x± y‖ψ,1 = 2 and this implies that �ψ-�1 is not uniformly nonsquare. By Corollary
3.11(ii), we have ψ = ψ1. Again, since �ψ-�ϕ = �1-�ϕ is not uniformly nonsquare, ϕ= ψ1 =
ψ; a contradiction.

Case 2. x, y ∈Q2. It is similar to Case 1, so we omit the proof.

Case 3. x :=(a,b)∈Q1 and y :=(−c,d)∈Q2 where a,b,c,d∈[0,1]. Since ‖x+ y‖ψ,ϕ = 2,
the line segment joining x and y must lie in the sphere. In particular, there is α ∈ [0,1]
such that

(0,1)= αx+ (1−α)y. (3.48)

It follows that b = 1 since b,d ≤ 1. Similarly consider x and −y instead of x and y, we can
also conclude that a = 1. Hence ‖(1,1)‖ψ = ‖(1,1)‖ψ,ϕ = 1, that is, ψ(1/2) = 1/2. Then
ψ = ψ∞ and so �ψ-�ϕ = �∞-�ϕ is not uniformly nonsquare. By Corollary 3.11(i), we have
ϕ= ψ∞ = ψ; a contradiction. �
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