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For the solution u(x, t) u(f)(x, t) of the equations

u’(x,t) zXu(x,t), x ft, > 0 ]
u(x, O) f (x), x ft

u(x, t) O, x e Oft, > O,

where ft C ]r, 2 < r < 3 is a bounded domain with Cg-boundary and for an appropriate
subboundary F of ft we prove a Lipschitz estimate of IlfllL2(a) For/z (1, 45-) and for a
positive constant C

The norm IlB.(r(0,oo)) is involved and strong, but it is a natural one in our situation relating
to a typical and simple norm for analytic functions. Furthermore, it is acceptable in the sense

that
B.(r(0,o -< ClIflIH(a holds.

*Dedicated to Professor Kyuya Masuda on the occasion of his 60th birthday.

73



74 S. SAITOH and M. YAMAMOTO

Keywords: Heat equation; observation problem; theory of control; stability of Lipschitz type;
transform by Reznitskaya; real inversion formula for the Laplace transform.

AMS 1991 Subject Classification: Primary: 35K05, Secondary: 93B05

1 INTRODUCTION AND THE MAIN RESULT

We consider an initial value problem for the heat equation:

u’(x, t) zXu(x, t),
u (x, O) f(x),
u(x,t) =0, xEO t>O,

(1.1)

where C ]r, 2 < r < 3 is a bounded domain with C2-boundary
gt Ou, A the Laplacian, is a trace operator (e.g. Adams 1]), that is, if
u E CI(), then

OuOg(X) 1)i(X)-xi(X), X 0’2,
01)

i=1

I)(X) (Pl (X) Pr(X)) being the outward unit normal to 3fl at x.
For f L2(fl), there exists a unique (strong) solution

u u(f) . C([0, 0); L2()) fq el((0, x:)); L2())

such that Au 6 C((0, oc); L2()) and u(.,t)lO 0, > 0 (e.g.
Pazy 15]).

In this situation, we have the following problems when we consider the
heat flux vf) (x, t) on a subboundary F of f2 as measurements for > 0.

(I) (Uniqueness) What kind of a set F C 0, does

Ou(f)
(x, t), xEF, t>0

determine f(x), x e $2 uniquely?
(II) (Construction) We wish to represent the initial heat distribution f(x)

on 2 in terms ofvf) (x, t), x e F, > 0.

(III) (Stability) Can we estimate IlfllL() by v)(x, t), x F, > O?
Moreover what norm of Ou(f) (x t), x e F > 0 should we chooseOv
for the estimation of fll?
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The determination of initial heat distribution is called an observation
problem. The observation problem is important also in the theory of control,
because it is a dual problem to the controllability problem (e.g. Dolecki
and Russell [6]). For the observation problem in the heat equation, we can
refer to Cannon [2]. For similar types of problems, the reader can consult
Dolecki [5], Mizel and Seidman 13], and Sakawa 17]. In this paper, (I) and
(III) are treated, while (II) will be discussed in a succeeding paper.

For the uniqueness, the answer is known under a comfortable assumption:

PROPOSITION 1
u cr. If

Let F C 8 satisfy F 8f2 N U 5 O for an open set

Ou(f)
(x,t) =0, x E F, > 0,

then f(x) O, x

This is proved by the eigenfunction expansion of the solution and the

unique continuation theorem for the elliptic operator (e.g. Mizohata [14]),
and we can further refer to Georg Schmidt and Weck [8] for the proof.
Now we proceed to the stability. It is easily expected that the stability is

very delicate, because the map f advances the regularity by the
"smoothing" property of the parabolic equation (e.g. Friedman [7]). We have
to take a strong norm II, for vf) (x, t), x F, > 0 in order to get an

upper estimate of fll. More precisely, there are two ways.

(a) We search for a norm II, of functions on F x (0, x) so that

Ou(f)
Ov

(b) Taking a usual norm for O(vf,) such as

Ov

we search for a stability modulus co C[0, o) which is monotone

increasing and co(0) 0 so that

L(F x (O, cx)))
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In (a) we insist on the stability of Lipschitz type, while we have to admit
the choice of a strong norm I1,. In (b), we insist on a usual norm for
measurements Ou(f) at the cost ofa worse stability modulus 09. The latter way
(b) seems more pursued in existing papers (e.g. Exercise 11.4 (pp. 144-145)
in Cannon [2]), and the estimate of the type

fllL=() O ([log IIDatall-1]),
for some constant a > 0, is typical (e.g. see p. 147 in [2]).
The purpose of this paper is to pursue the way (a). Our choice of the norm

I1" II, is, of course, stronger than the L2(F (0, c))-norm, but is not extreme
in the sense that

We shall use the following analytic extension formula

PROPOSiTiON 2([16]) Forthe right halfplane R+ {Z; Z p+iq, p > 0}
and Ix > 1/2, we have the identity, for the Bergman-Selberg space H(R+)
comprising all analyticfunctions f(Z) on R+ withfinite norm

IlfllH,R+ F(2/z- 1)7r +
If(Z)12(2p)2Z-2dpdq < cxz,

ilfll2
1 c

n
t(R+) E nF(n + 2/x + 1)

IOP(Pf’(P))I2p2n+2g-ldp"
n’--O

Conversely, any C function f(p) on the realpositive line with a convergent
sum in the right hand side can be extended analytically onto R+ and the
analytic extension f(Z) satisfying limp__. f(p) 0 belongs to Hu(R+)
and the identity holds.
We shall define

dS,B,(r’x(0,)) p- g x, pp n,(,+)

the right hand side being convergent. Then we obtain

THEOREM For an arbitrarilyfixed xo ]Rr, we set

F {x Of2; (x -xo). v(x) > 0} (1.2)
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and take

We assume

r (= the spatial dimension) < 3

and

f 1t2 ("2) CI I--I( ().
Then, there exists a constant C C (f2, F, tx) > 0 such that

(1.4)

(1.5)

C-1 Ilfll=(a) < CIIfllH(a>. (1.6)
Ol) B.(F x (0,cx))

In Theorem, if r 1, then 1-’ is taken as one boundary point of the interval. Here for simplicity, we assume (1.4), that is, the spatial dimension is less
than or equal to 3. This is not essential and the condition (1.5) should be
replaced by f e 79(Ac) where ot [] + 1, (Au)(x) --Au(x) with

79(A) {u He(); Ul0a 0}, [fl] denotes the greatest integer among
ones not exceeding

2 PROOF OF THEOREM The proof will be divided into three steps.

2.1 First Step
We shall discuss the regularity of solutions to the wave equation corre-

sponding to (1.1). First by (1.5) we see that u(f) CI([0, cx) x ) and
Au(f) C([0, cx) x ) (e.g. Theorems 4.3.5 and 4.3.6 in Pazy [15]
and the Sobolev embedding theorem (e.g. Adams 1])). We shall consider a

corresponding wave equation:

{w"(x,t)=Aw(x,t), /2, t>O }w(x, O) O, w’(x, O) f (x), x
_

(2.1)
w(x, t) O, x e Of2, > O.

Again applying the regularity assumption (1.5), by the eigenfunction
expansion of the solution w and the Sobolev embedding theorem, we see

that there exists a unique solution

w w(f) e C([0, oo); H3(Q) f) H( (f2)) f) cl([0, CX)); H2(f2) f’)

C2([0, oo); H (f2)), (2.2)
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and

IIw(f)(’,t)llH(a), IIw(f)’(’,t)lln(a) IlfllH(a), > 0

(e.g. Theorem 1.1.1 in Komornik [10]). The inequalities in (2.3) follow from
conservation of energy. We set

2

W(t) Ijr ( Ow(f) (x, t) dS =- Ow(f)(, t)ll
2

Ov

By (2.3) and the trace theorem (e.g. Adams [1]), we have

t>0.

W E cl[0, O), IWZ(t)], W(t) < Clllf Iln2(),2 > O, (2.4)

where C1 C1 () > 0 is a constant independent of > 0.
In fact, W E C[0, cx) and W(t) < C111fll2n( is straightforward from

(2.3) and the trace theorem. Next, by (2.3),

Ow(f))’ cO([o, o); L2(F))
Ov

and

(x t) dS < C f 2Iln2(, t>O,
Ov

so that

Wt(t) 2 fr Ow(f)(x’t)( O
Ov

(x,t)dS, t>O.

Hence W 6 C[0, ) and by Schwarz’s inequality

Iw(t)l-<2110w(f)
_< 2111fll

(.,t)
L2(r) Ov

H,/C IIflIH=, > O,

L2(I")

which proves (2.4).
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It follows from (2.4) and w(f)(., 0) 0 that W(0) 0. Furthermore, we
have, using (2.4) and the mean value theorem

W(t) W(t)- W(O) < sup IW’(s)l
0<s<t

< Cltllfll2(a), > 0. (2.5)

By (2.5) and (1.3) we have

W(t)t3-4dt W(t)t3-4Zdt + W(t)t3-4Zdt

< Clllfl[2H2(f) t4-4Zdt + t3-4Zdt

c f, (a 5 4/z
+

4/x 4

IIH().
That is,

( )2fofr Ow(f)(x’t)Ov t3-41XdSdt < C211fllm(). (2.6)

2.2 Second Step

By the transform formula by Reznitskaya, we get

u(f)(x, t)
l fo ( rl2 )2"- r/exp --- w(f)(x,o)do, x f2, > 0

(2.7)

(e.g. Section 5 in Chapter VII in Lavrentiev, Romanov and Shishat.skii 11]).
By (2.2), (2.3) and the Sobolev embedding theorem, we have

Ow(f) (x, t)
Oxi

_< C1 IlfllH(a), x6,t>O,

that is,

Ow(f)
(x,t)

Ov C IlfllH(a), xeF, t>O.
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Therefore in (2.7), we can exchange f0 ...dr/and , so that

2nt30u(f) (x, t) r/exp (x,

xF,t>0.

Setting and changing independent variables by s r/2, we have

x, exp(-sp)
2 p 8v

Ow(f)
(x, /-)ds,

Ov

x 6 F, p > 0. (2.8)

We define the Laplace transform of g Loc (0, ) by (12g)(p)"

(g)(p) e-spg(s)ds, p > O,

the integral existing for p > 0. Therefore we can rewrite (2.8) as

q/-ff 10u(f)(1)2 p Ov X,pp =fi’(x,p)=(/2N)(x,p), x6F, p>0,

(2.9)

where

)(x, s) Ow(f) (x, V), x I’, s > O.
Ov

Then, by using an isometrical identity for the Laplace transform in Byun-
Saitoh [3], we obtain

t))2tl-2tZdt II’(x .) 2IIH.(R+), X 1-’,

provided that either of the both hand sides is convergent.
Since

(2.10)

((x, t))2tl-2dt 2 -Or (x, s)

it follows from (2.6) and the Fubini theorem that

s3-41Zds

t))2tl-2dt < o
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for almost all x 1-’. Consequently application of (2.10) yields

\ Ov (+)’ aoeo xF,

and hence

(frfo+ Ow(f)(x t) t3-4UdtdS -ff p- x,

8 B.(r" x(0,))

2

dS

(2.11)

2.3 Third Step

In this step, we apply the stability estimate for the wave equation (2.1):

PROPOSITION 3 (Observability inequality)
and let

Let r C Of2 be defined by (1.2)

T > 2 sup Ix x01 (2.12)
xE2

where xo ]i{ is a point which is arbitrarily chosen for specifying
the observation subboundary F. Then there exists a constant C3
C3 (fl, T, F) > 0 such that

Ou(f)
Ilfllr(a C3 (2.13)

0P L2(F x (0,T))

The estimate (2.13) is proved in Ho [9] and Lions [12]. See also
Komomik 10].
Now, by combining (2.6) with (2.11), we have the second inequality in

(1.6). Next, we fix T > 0 satisfying (2.12). Then, by Proposition 3, since

(fFfo
r

Ow(f)(x’t)Ov
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we obtain

t3-4ZdtdS

by (2.11), which is the first inequality in (1.6). Thus we complete the proof
of Theorem.

3 CONCLUDING REMARKS

(1) For the inversion of the Laplace transform/2g h, the complex one
is well-known (e.g. Chapter 31 in Doetsch [4]). The complex form is,
however, not adequate in our problem, because the observation data h is

real-valued and we have to extend the data analytically, which makes the
stability unclear. For an analytical real inversion formula for the Laplace
transform, see Byun-Saitoh [3].

(2) One of our keys is the transform formula between a heat equation and
a wave equation, through which we reduce the stability in the heat
problem to the one in the wave problem. A similar technique is used
also in Yamamoto 19]. Thus we do not use the eigenfunction expansion
of the solution to the heat equation, which is used in Exercise 11.4 in
Cannon [2], Dolecki [5], Mizel and Seidman [13] and Sakawa [17].
The norm [10u(f)1[ for observations is taken over the whole(3) av B.(rx(O, oo))
time interval (0, oo). So far, we do not know whether or not we can

reduce the observation time interval to a finite one with keeping the
estimate of type (1.6).

(4) In Vu Kim Tuan and Yamamoto 18], for a similar observation problem,
the transform formula is considered in terms of a Mellin convolution
transform and another stability of Lipschitz type is obtained.
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