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ABSTRACT

The importance of topological connectedness properties in processing dig-

ital pictures is well known. A natural way to begin a theory for this is to give

a definition of connectedness for subsets of a digital plane which allows one

to prove a Jordan curve theorem. The generally accepted approach to this

has been a non-topological Jordan curve theorem which requires two differ-

ent definitions, 4-connectedness, and 8-connectedness, one for the curve and

the other for its complement.

In [KKM] we introduced a purely topological context for digital plane

and proved a Jordan curve theorem. The present paper gives a topological

proof of the non-topological Jordan curve theorem mentioned above and

extends our previous work by considering some questions associated with

image processing:

How do more complicated curves separate the digital plane into connected

sets? Conversely given a partition of the digital plane into connected sets,
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what are the boundaries like and how can we recover them? Our construction

gives a unified answer to these questions.

The crucial step in making our approach topological is to utilize a natural

connected topology on a finite, totally ordered set; the topologies on the

digital spaces are then just the associated product topologies. Furthermore,

this permits us to define path, arc, and curve as certain continuous functions

on such a parameter interval.

Keywords Jordan curve, linearly ordered topological space, connected

ordered topological space, digital plane, computer graphics, finite topological

spaces, specialization order, scene, cartoon, screen, separator.
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1 INTRODUCTION.

The Jordan curve theorem states that a Jordan curve (simple closed curve)
separates the plane into two connected subsets: its inside I(J), and outside

O(J). A digital version of this theorem is of central importance in image

processing; computer memory space can be conserved by saving only the

Jordan curves which outline regions, and a color for each region, rather

than the color of each pixel. Since connectedness can be defined in terms

of general topology, one way to study this notion is to use a topology on a

digital plane. Such a topological approach is used in [KKM], a paper largely

based on earlier work by Khalimsky; see [Khl], [Kh2], and [Kh3].
The present paper extends this topologicM approach to two-dimensional

questions closely related to the Jordan curve theorem and image processing.

For example, into how many connected components do more complicated

curves carve the plane? In Section 3 we show (Theorem 4) that whenever

the plane is partitioned into connected sets, the union of their boundaries

has fewer connected components than does its complement.

Secondly, if we are given a partition of the plane into connected sets, when

are their boundaries Jordan curves or arcs? Clearly the Jordan curve theorem

is useful only to the extent that connected components of the plane can be

separated by Jordan curves. In Sections 4 and 5 we show that many pairs

of connected components can be so separated, and characterize the curves

which separate them.

Our main result in this area relates the following objects (formally intro-

duced in Definition 11): a robust scene is partition of the plane into sets

with connected interiors, each of which is contained in the closure of its in-

terior; a cartoon is a nowhere dense set which is a union of topologically

closed separators (a separator is a Jordan curve or an arc which separates

the plane into two connected components see Section 4 for precise defini-

tion). Theorem 13 states that for each cartoon C there is a robust scene II
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such that C is the union of the bundaries of the sets in H; conversely, given a

robust scene H the union of the boundaries of its sets is the unique cartoon

C for which the connected components of its complement are the interiors

of the sets in II.

Graph-theoretic definitions of connectedness which yield a Jordan curve

theorem can be found in, among others, [Rf]. Definitions of two kinds of

connectedness are required: 4-connectedness and 8-connectedness (for com-
pleteness, we restate these definitions in 16). Either can be applied to the

curve; the other must then be applied to the bckground. In Section 5 we

discuss the graph-theoretic aproach and give a purely topological proof of

the original graph-theoretic Jordan curve theorem (our Theorem 20).
The last Section (5) of this paper also considers how digital planes should

be displayed on a computer. In our "open screen" only the topologically open

points correspond to pixels (other points are not displayed). This matches

the reality in which one does not "see" bounding curves between adjacent

regions, but rather deduces them as interfaces of (open) regions. It has

the further advantage that the resulting set is topologically homogeneous.

Clearly, each robust scene induces a partition of the open screen into 4-

connected sets. More interesting is the converse (Theorem 19)" each such

partition of the open screen arises as the trace of a robust scene.

Although this paper looks only at the two-dimensional case, both the topo-

logical and graph-theoretic approaches can be extended to three dimensions.

For example, [RR], [Re], [KRf], [KR1], [KR2] treat related three-dimensional

questions from a graph-theoretic point of view (some methods of topology

re used in the last two). In [KMW] topological three-dimensionM Jordan

surface theorem is shown.

2 BACKGROUND FROM [KKM].

A COTS (connected ordered topological space) is a connected topological
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space such that among any three points there is one whose deletion leaves

the other two in separate components of the remnant. It is shown (Theorem
7) that a COTS topology induces a total order < such that for each non-

endpoint x, the components of X {x} are U(x) = {y’y > x} and L(x) =
{y y < x}. This order is unique up to inversion. We now describe the

topology on a finite COTS (with at least three points) by specifying the

minimal open neighborhood N(p) of each point p. There are two types of

points, and they alternate. If p is of one type, N(p) = {p-,p,p+}, where

p-, p+ denote, respectively, the predecessor and successor of p with respect

to <. By this alternation, {p+} = g(p)Y(p++), is open, so N(p+) = {p+ },
further p g(q) if q # p, thus X {p} is open, so {p) is closed. This shows

that points alternate between being closed and open. This topology satisfies

the To but not the T1 separation property.

If Y is a topological space, a path (respectively arc ) in Y is a continuous

(homeomorphic) image of a COTS in Y; Y is pathwise (arcwise) connected

if any two points in Y are the endpoints of a path (an arc) in Y. A minimal

connected set containing two given points is always an arc which has them as

endpoints, thus for finite spaces, connectedness, arcwise connectedness, and

pathwise connectedness are equivalent notions. We define the adjacency set

A(x) of a point x Y by A(x) = {y x" {x, y} is connected}. If Y is finite,

A(x) {x} -- Cl(x) U N(x), where for any Z C_ Y, CI(Z) denotes the closure

of Z, and CI(x) = CI({x}). Note that x e CI(A) : Y(x) A ;D, thus

y e A(x)iff y e Y(x)or x e Y(y).

A Jordan curve is a connected space J containing at least 4 elements such

that for each j J, J- {j} is an arc. This is equivalent to the statement

that for each j J, A(j) J is a two-point discrete set, and J is a non-

empty, connected set. A space X x Y with the product topology, where X

and Y are finite COTS with at least 3 elements, is called a digital plane.

From now on we restrict our attention to such spaces. A point (x, y) is called
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pure if {x}, {y} are both open or both closed, mixed otherwise. The border

BD(X x Y) of Z x Y is {(z,y) z or y is an endpoint}. The adjusted

border, AD(X x Y) is BD(X x Y) with any mixed corner points deleted;

corner points re points, both of whose coordinates are endpoints. The

adjusted border, unlike the border, is always a Jordan curve.

The following diagrams show the adjacency sets for non-border points in

a digital plane. For border (and corner) points the adjacency sets are simply

those portions of the sets in the diagrams which are contained in the digital

plane.

Adjacency sets for pure and mixed points

pure point mixed point

0 = pure point

mixed point

A sequence < ai 1 _< i < n > in any topologicM space is a path iff

{ai, ai+ } is connected for each i from 1 to n- 1. The above diagram enables

us to interpret this in a digital plane: ai and ai+l can never be distinct mixed
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points. For an arc in a digital plane, in addition, here can be no "extra

connecedness"; hus an arc cannot urn a a mixed poin (since he pure

points before and after he mixed poin would hen be connected o each

other).
These spaces have a propery which will be useful in he sequel: Each

poin is in he closure of an open point. We will prove his by showing

in a finite To space each N(p) contains an open point. (Noe also tha in any

opological space, p is in the closure of each poin in N(p).)

The proof uses he specialization order (discussed, for example, in [3]): (1)
For any opological space, z < V iff z CI(v) defines a reflexive, transitive

relation. (2) This relation is a partial order (i.e., anisymmeric) iff he space

is To (and hen it is called he specialization order). (3) If he space is finite,

z_< viffv N(z) hais, N(z) = {V z < V}. Thus, {V) is openiffyis

maximal wih respec o _<. (4) If he space is finite and To, hen for each

poin p we can find a q >_ p which is maximal wih respec o _<; for such q

by (1)-(3), N(q)= {q} and q N(p).

As a resul of he above, the following are equivalen if A is a subse of

finite T0-space:

(i) A is nowhere dense,

(ii) In(A)=
(iii) A contains no open points.

Here (i)=(ii), (ii)=(iii) are clear for arbitrary spaces.

To see ha (iii)=v(i) here, by way of contradiction, if z In(CI(A)), hen

N(z) C_ CI(A), so an open poin p N(z) mus be in CI(A). But then

p A, contradicting (iii).

3 PARTITIONS INTO CONNECTED SETS.

1 Definition: A scene H in a digital plane is a partition of that plane, all

of whose elements are connected.
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For any subset A of the digital plane X x Y, let Int(A) denote is interior,

A its complement, OA (= CI(A)- Int(A))its boundary, and n(A)its

(finite) number of elements. If C is an arc, x,y e C, then by [x,y] (or
[x, y]c) we denote the unique subarc of C with endpoints x and y.

2 Lemma: Let A B = . Then x cgA f’l cgB iff N(x) meets both A and

B. Thus if x (OA OB) f’l (A U B) then for some y A(x), {x, y} meets

both A and B. As a partial converse, if y A(x) and {x, y} meets both A

and B, then {x, y} meets cgA gl cgB.

The first equivalence is clear and the other assertions follow. V1

3 Lemma: If J is a Jordan curve containing exactly four points, then

J = A(m) for some mixed point m.

Proof." Every Jordan curve J has an interior I(J); let m I(J). Since

J has four elements and if y 6 J each projection of J- {y} is connected,

J is contained in a subspace which is the product of 3-point spaces, so

{m} = I(J). Thus A(m) C_ J (otherwise m would be connected to O(J)).
But A(m) contains 4 points for mixed m, 8 for pure m, and this shows

A(m) = J, m mixed. 1"-1

The material in Sections 4 and 5 is independent of the rest of this Section.

4 Theorem: Let Ii be a scene in X x Y. Then the number of components

of U{OB B II) is (sricly) less than the number oz elements o II.

The following family of examples shows that the number of components

of C = U{OB B H} can be any positive number less than the number

of elements of II. For m > j > 0 we give an example of a scene II with

m elements such thag 6’ has j componengs, as follows: If 6’ onsisgs of ghe

boundaries of m-1 concentric squares nog touching he border, ghen IIII = m
and 6’ has m- 1 componengs. If j < m- 1, the example can be modified by



Boundaries in Digital Planes: Khalimsky, Kopperman, and Meyer 35

connecting m- j components of C by a vertical line; notice that this does

not change [II I.
Before giving the proof of theorem 4, we give a significant special ease.

5 Corollary: If A is any connected subset of a digital plane, then OA has

at most as many components as does its complement A. In particular, if A

and A are connected then so is OA.

Proof of 5: Notice that OA = OA, thus it will do to show that OA =

UOAi. This results from the more general assertion that if B is the disjoint

union B tO... U B. with Bi closed in B, then OB = UOBi. To see the

later, notice that OB = CI(B)91Cl(B
CI(BC)] C_ U[CI(Bi)71CI(B)] = UOBi.
But if x e Cl(B) then x CI(B) or x e CI(B/) for some j i. Also if

x CI(Bi)91CI(Bj) then x B, contradicting the fact that each B1 is closed in B. Since CI(B) C_ CI(B),
x OB, completing the proof.

Proof of 4: We proceed by induction, first noting that the result is clear if

n(H) = 1. Otherwise suppose for the moment that there are A, B H such

that (OA gl OB) (A U B) consists of one non-empty component. Notice that

in this situation, A B is connected, for if # F C_ (OA OB) (A U B),
then A C_ A O F C_ CI(A), B C_ B 0 F C_ CI(B), so the sandwiched sets

are connected, and since they meet, their union, A U B is connected. Also,

O(A U B) U (OA gl OB) = OA U OB, for:

x O(A U B) iff N(x) meets A U B and another member of H,
x E OA OB iff N(x) meets A and B,

the disjunction of these two is equivalent to the condition"

N(x) meets A and another element of II or B and another element of
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i.e., that z 0A LI 0B. Also note that if z (0A tD oqB)--(A U B), then

for some O e H {A,B), x D d N(x) meets D, so x e U{OD" D e
H- {A,B)). Thus, letting H" = (H {A B})- {A,B),OD" D e H) =
OA U OB U {OD D e H {A,B}} = (OA OB) U ({OD D e H’} =

[(OA OB) (A B)] ({OD" D e H* )), so its number of components is

less than 1 + n(H*) = n(H).
Thus to complete the proof, it will do to show 7 (b) below; 7 (a) is used

in its proof.

6 Definition: A joining pair for A, B is pair of arcs C C_ A with endpoints

x, y, C’C_ B with endpoints y’, x’ such that {x, z’) and {y, y’} are connected

sets meeting distinct components of OA fq OB. The endpoints of C, C are

called the endpoints of the joining pair. A joining Jordan curve for A, B is

a Jordan curve which is the union of joining pair for A, B.

Lemma:

(a) If A,B are disjoint sets, and C, C’ is joining pair for A, B whose

endpoints meet distinct components of OAf3OB, then there is a joining

3ordan curve J for A, B such that J C_ C LI C.
(b) If H is a scene in X Y containing more than one element, then

for some A, B II, (0A fq OB) f’l (A U B) consists of one non-empty

component.

Proof: (a) From among connected {v, v’}, {w, w’} which meet (OAoOB)O
(A O B) at distinct components, choose such that 67* = Iv, w] is as short as

possible, and given that, such that C* = [w, v] is as short as possible. To

show that their union J is a Jordan curve, it will do to show that if z J,

A(z) f J contains exactly two elements. First, note that if z C" {v, w},
then A(z) fq C* C_ g(z) J; further, {v’} U (A(v) fq C*) C_ A(v) fq J, so

A(v) f J contains at least two elements, and similarly so does A(w)fq J.
This shows that if z C* then A(z)Cl J has at least two elements, and a
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similar argumen shows he same if z C*’. Thus if J were no a Jordan

curve, there would be an element z of C* or no element of C* but a z 5 C*

such that A(z) J contained at least 3 elements. In the first case, since C*

is an arc, A(z)fq C* has at most two elements, so A(z)n C*’ , and a

similar argument shows the second case to be impossible. Thus let z C*,

z’ e C*’f’l A(z) (and note that if z e {v, w} then z’ {v’, w’}). Since {z,z’}
meets both A and B and z’ A(z), { z, z’} must meet (0A fl OB) fq (A t.J B),
and the component at which it meets (OA f’l OB) (A U B) must be distinct

from either the component meeting {v, v’} or that meeting {w, w’}. If it is

distinct from that meeting {v, v’}, then the segments [v, z] of C* from v to z

and [z, v] of C* are arcs in A, B respectively, joining connected pairs which

intersect distinct omponengs of (OA n OB)Cl (A t.J B), and [v, ] is shorter

than C* or [’, v’] shorter ghan 6"*’, ongradicting minimality. (A similar

argument holds if it is distinc from thag meeting {w, w}.) Since

are clearly a joining pair for A, B, this completes the proof of (a).

If (b) fails then for each A, B H, there are distinct components of (cgA

OB) f’l (AU B). By 2 and (a) we may find a joining Jordan curve for A, B, J

C U C with endpoints x, y A, x, y B; we also require that I(J) contain

as few elements as possible for a joining Jordan curve for any A, B II.

In the following paragraph, we show the existence of 6’- {x, } (or in

6"- {y’, x’}) for which A()Cl I(J) meegs some D . II- {A,B}).
First note that if z e C {x, y}, then A(z) I(J) does not meet B"

Otherwise find z’ e A(z)gl I(J), {z,z’} intersecting A and B, thus (OA
OB) f’l (A U B) at a component distinct from that meeting {x,x’} or that

meeting {y, y}. In the first case let D be an arc in B connecting z

D meets C at a first place, w, and let D be an arc in the connected set

[’, w’] U [w’, x] joining ’_.to z. But then [x, ], D’ are a joining pair for A, t?,

so, by (a), find a joining Jordan curve for .4, B, J’ = 6" U 6’*’ C_ [z,
noe that J’ C_ J U I(J), thus I(J’) is a connected se which meegs I(
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but not J thus I(J’) C_ I(J), and since z’
_
I(J)- I(J’), I(J’) is properly

smaller, contradicting minimMity. A similar argument holds in the second

case. Next note that for z e C- {z, y}, z, I(J)f’l A(z) A, since otherwise

(C {z}) U (I(J) A(z)) is a connected subset of A containing x and y

so there is an arc C* from z to y in (C- {z})U (I(J) fq A(z)), and since

x, y are in distinct components of C- {z}, C* must meet I(J)gl A(z), say

at s. We apply (a) to obtain J* C_ C* U C’ C_ J U I(J) a joining Jordan

curve for A, B. I(J*) c_ I(J)- {s}, contradicting the minimality of I(J).
Finally, J # {x, y, y’, x’ }, for otherwise by 3, J = A(m) for some mixed point

m. But then its two closed points, say {z, y} meet distinct components of

(OA fq cOB) fq (A U B). But m Cl(y) fq Cl(x’) C_ CI(A) fq CI(B), so m D for

y’} is a connectedsome D H {A B}, in which case we’re done, or {x, m,
subset of (cgA fq cOB) fq (A U B), contradicting the fact that x, y’ are in distinct

components of (OA cgB ) gl (A U B).
Let J,z, C,A,D be as in the previous paragraph, z’ D gl A(z)gl I(J).

We show that (cgA fq cgD) Iq (A U D) consists of one non-empty component,

completing the proof of (b)" It is non--empty since z e A and A(z) meets D.

But if it had two components, we could find arcs E C_ A, from v to w, E C_ D,
from w’ to v’, with {v, v’}, {w, w’} connected. Since D meets I(J) but not

J and D is connected, D C_ I(J), thus Z’ C_ I(J). Further note that we may

require that E C_ J fq i(J), for otherwise replace E by an arc connecting v to

w in the connected Iv, S]E U [s, tic U It, W]E, where s and t are respectively

the first and last points in E which are in C (if E doesn’t meet C then E

doesn’t meet J but does meet CI(I(J)) and is connected, thus is contained

in I(J)). Using (a) obtain joining Jordan curve g C_ (Et3 Z’)f’l (JU I(J)),
thus I(g) C_ I(J). But g fq D C_ I(J)- I(K), contradicting the

minimality of I(J). (A similar proof shows (OD OB) (D t3 B) consists of

one non-empty component if z C.) !’-1

8 Example ("Comb space"): We exhibit a connected open set A with
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connected complement, whose boundary isn’t an arc or Jordan curve. Let

Z = Y = { 1, 2, 3, 4} with minimal neighborhoods { 1 }, { 1, 2, 3}, {3}, {3, 4}.
In X x Y let A = ({1} x Y)U ({1,2,3} x {1,3}); A is a union of products

of open sets, thus is open. By splitting {1,3} we see A a union of three

connected sets, one of which meets the other two, thus connected, and a

similar look shows Ae to be connected. Finally, A is dense since CI(A)

_
CI((3, 3)) = {2, 3, 4} x {2, 3, 4} so {(4, I)} = A CI((3, 3)), and (4, I) e
CI((3, 1)) c_ CI(A) as well. Thus 0A = CI(A) Int(A) = X x Y A = A,
and (4, 2) e Ae, A((4, 2)) gl Ac = {(4, 1), (4, 3), (3, 2)} contains over two

points.

9 Computer application: Suppose a scene, II, is entered into computer

memory (ie., each point of X Y is assigned the index of the member of H

containing it). To find the boundaries of members of H, first recall that z is a

boundary point iff N(z) meets distinct elements of H (thus there are no open

boundary points). Let xi Ai, and let Bi.i be a connected set containing

xi and x1 (for example, Bii could be the union of a horizontal line segment

containg xi with a vertical line segment containing xI which meets it). For

each i,j"

(i) Follow Bij until Bii crosses from one partition element to another at

a boundary point not yet found. Beginning with that point z:

(ii) Check all the non-open points of A(z) (there are 2 of these for mixed

z, 4 for closed z) which have not yet been checked, to see whether they

are boundary points. Let one of these boundary points be the next z

and store the rest for furture use. If no new boundary points are found

at a particular z, go back to the most recently stored unused boundary

point and use it as the next z. When there are no more unused points,

you have found a component of the union of the boundaries. Then

go back to (i), continuing to follow the same Bi.i which was being

followed until it is exhausted; then go on to the next.
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I may help o keep coun of the number of boundary components found,

since here are a most n by heorem 4. Bu the examples given after he

saemen of heorem 4 show ha here can be any positive number smaller

han n. (The scene wih one elemen has empty boundary.)

4 CARTOONS AND ROBUST SCENES.

In he previous Section, particularly Example 8, we lef open he question

of wha sorts of pictures can be "drawn" by making outlines and coloring

in the regions so described; note tha only connected such regions need be

considered, xe find it convenient o le J be either Jordan curve no
meeting BD(X Y) or an arc with al; least three points which meets BD(X
Y) a precisely is endpoins. In [KKM] we showed ha if J is of either of

hese ypes, hen X Y-J falls into wo connected components. We cll such

sepertor, and generalize he notation I(J), O(J) for he components

s follows: (using naur orders on X, Y)order BD(X x Y), nd cll he

componen containing he firs poin in BD(X Y)- J O(J) he oher I(J).
A bi of consideration shows that not every separator J is he boundary of

I(J), but our nex result shows just when his does happen.

10 Proposition: The following are equivalen for J separator:

J =

(b) J contains no open points,

(c) J is closed,

(d) J is nowhere dense,

(e) I(J) O(J) are open,

(f) I(J) tA O(J) is dense.

Proof: (a)=(c) holds since boundaries are closed.

(c)=(b)" if p 6 J, then (by [KKM 17(a)]) A(p) J contains at most two

points (exactly two for non-border p). But ifp is open, J closed, A(p)U{p} =

Cl(p) C_ CI(J) = J, and A(p) contains more than two elements.
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For (b)=,.(a) we first show that if x J is closed or mixed, then N(x)
meets I(J), thus J C_ CI(I(J)); since J doesn’t meet Z(J) it doesn’t meet

Int(I(J)) so J C_ O(I(J)).
But A(x) = AD(X’ x Y’) where X’, Y’ are the projections of A(x) and

usually contain three points (though if x is an endpoint, that projection will

contain two points). In [KKM] it was shown that A(x)-J = AD(X’Y’)-J
meets each component of X Y- J. But if x is closed, N(x) D_ A(x) and

thus meets I(J), and if x is mixed then g(x) D_ A(X)- CI(x) _D A(x)- J,

so again Y(x) meets I(J).
Next note that since X Y- J contains only two components, I(J)

and O(J), each of these is relatively open in X Y- J. If J is closed

then X x Y- J is open in X x Y, thus I(J), O(J) are open in X x Y,
so I(J)U J = X x Y- O(J), a closed set and I(J) = Int(I(J)). Thus

O(I(J)) = CI(I(J)) Int(I(J)) c_ (J U I(J)) I(J) = J, completing the

proof.

(c)=,,(e) was shown in the previous paragraph; (e)=,,(c) since J is the

complement of I(J) t.J O(J).
Since J is the complement of I(J) U O(J), (b) == (d) (f) holds by

the last paragraph of Section 2.

11 Definition: A set A is regular if CI(A) = Cl(Int(A)) and Int(A) =

Int(Cl(A)). A robust scene is a scene H, each of whose elements has con-

nected interior and is contained in the closure of its interior. A cartoon is a

finite union of closed separators.

Note that as a finite union of closed, nowhere dense sets, each cartoon is

closed and nowhere dense. Here are some easy equivalences, given without

proof:

A is regular

Ac is regular

OA = 0 Int(A)
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Int(Cl(A)) C_ A and A C_ Cl(Int(A)).

In general, B is regular if and only if for some A, Int(Cl(A)) C_ B C

CI(Int(A)).
Note that each partition of the plane into sets with connected interior,

each of which is contained in the closure of that interior, is a robust scene,

since any subset of the closure of a connected set is connected. Also note

that robust scenes are collections of regular sets. In fact, if II is any (finite)
partition of X x Y, and A C Cl(Int(A)) for each A E II, then II is a set of

regular sets, for Int(Cl(A)) = (Cl(Int(AC)))e = Z x Y U{Cl(Int(B)) B e

II-{A}} GXxY-U(II-{A})-A.

12 Theorem: The following are equivalent"

(i) A fD, X x Y, A is regular and Int(A), Int(A) are connected,

(ii) OA is a closed separator J for which I(J) C_ A G I(J) tO J or O(J) G
A G O(J) U J.

Proof: (i)=(ii) We have shown that OA is connected, thus it will

suffice to show that for e ch non-border point x of cOA, n(A(x) A) = 2. If

x OA then Cl(x) c_ CI(A), CI(x) C_ X x Y- Int(A) so Cl(x) c_ OA. If x

is mixed then Cl(x) consists of x and the two closed points in A(x), so these

are in OA, and by previous comments, the other two points of A(x), being

open, cannot belong to OA. Thus A(x) OA is just the two closed points.

For any x e OA, x CI(A) = Cl(Int(A)) so for some open y e A, x e Cl(y).

For closed x we now show A(z)Iq Int(A) to be connected. If not, let

C be an arc of minimal length connecting distinct components of this set

through the connected Int(A). By this minimMity, C meets Int(A) A(x)
precisely at its endpoints, say v, w. Thus K = C U {x} is a :Jordan curve

(A(x)f’IK = {v, w}, A(v)V1K = {x}U(A(v)C), A(w)K = {x}U(A(w)fqC),

emd for t e C {v,w}, t A(x) so A(t) f3 If = A(t) C, a set with two

elements). But then CI(Ac) fq A(x) meets I(g) and O(K), since otherwise

there would be an arc in A(x)int(A) connecting v to w. But this contradicts
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that Int(A) is connected, thus so is CI(A) = Cl(Int(A)): no arc could join

I(g) to O(K) without meeting g C_ Int(A)t.J {x} C_ CI(A).

We now use the connectedness of A(z) f’l int(A) to show that exactly two

points of A(x) are in cgA: Since A(x) is a Jordan curve, its only connected

subsets (other than A(x) = g(x), , which are ruled out since x cgA)
are arcs; thus A(x) Int(A), A(x) Int(Ae) are such, and are open, disjoint

subsets of the connected set A(x) whose union contains all four open points

of A(x). Assume n(A(x) gl Int(Ae)) < n(A(x)fq Int(Ae)) (interchanging A

and A if necessary). Since A is regular, OA = Cl(Int(A))- Int(Cl(A)) =
Cl(Int(A)) Cl(Int(A)), so a mixed point w e A(x)is in OA iff g(w) meets

both Int(A) and Int(A); ie., iff the corners of the side of the square A(z)
containing w are in opposites of A,A. If n(A(x) Int(A)) = 1 then for this

reason, A(x)f"l OA contains exactly the two mixed points adjacent to that

corner. If n(A(x) Int(A))= 2 then since this set is an arc, the two open

corner points so described can’t be opposite, so are ends of one side of the

square; clearly the mixed point between them is not in 0A nor is the mixed

point on the opposite side, but the two other mixed points have one corner

from A and one from A on their sides, and are in cOA.

Thus let J = cOA; since D #- A C_ Cl(Int(A)), Int(A) D, so since

CI(I(J)) t.J CI(O(J)) = X x Y, Int(A) must meet I(J) or O(J); assume the

first. Then since Int(A)is connected and Int(A)f’l J = D, Int(A) C_ I(J);
since I(J) is connected and I(J)fq J = , Int(A) _3 I(J). Since A is regular,

I(J) C_ A C_ CI(A) = Cl(Int(A)) = CI(I(J)) = I(J)O J.

For the converse, assume with no loss of generality that I(J) C_ A C_

I(J) U J. Notice that by 10, J = OI(j), (and since J is non-empty and

X x Y is connected, # I(J) C_ A) so CI(I(J)) = I(J)O J and I(J) is open,

so I(J)= Int(I(J)) C_ Int(A)C_ Int(Cl(A)). Also Cl(Int(A)) _D CI(I(J))=
I(J) t.3 J

_
A nd I(J) = (j U O(J)) = (CI(O(J)))c = Int(I(J) O J) _D

Int(Cl(A)). Thus Int(Cl(A))= I(j) C_ A and A is regular, so further OA =
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0 Int(A) = OI(J) = J (by 10 (a)). It was shown in [KKM] that I(J) = Int(A)
and O(J)= Int(Ac) are connected.

13 Theorem Let C be a cartoon. Then there is a robust scene II such

hat C = U{OA A II}. Further, ifII is any oher such robus scene, then

{Int(A)" A e H} = {int(A)" A e II’}.
Conversely, if II is a robust scene hen C = U{OA "e H} is a cartoon.

In Example 8 we showed a scene which does not give rise to a cartoon. We

need the following lemma to prove Theorem 13:

14 Lemma: Let II be a robust scene.

(a) if A, B II then A t.J B is regular.

(b) For A, B 5 II the following are equivalent"
(i) Int(A U B) is connected.

(ii) (II {A, B}) U ({A U B}) is a robust scene.

(iii) There is a mixed point in OA cJB.

(c) If A is regular and c OA- BD(X x Y)is closed, then A(c) cJA
contains at least two points, consists completly of mixed points, and

is not contained in BD(X x Y).
(d) If m OA is mixed and c A(m) is closed then c OA is contained

in every closed arc or Jordan curve C such that m C C_ i)A.

Proofi (a) Since A, B are regular, A U B C_ Cl(Int(A))U Cl(Int(B)) =

Cl(Int(A) U Int(B)) C_ Cl(Int(A U B)). Also if x e int(Cl(A U B)) then

g(x) C_ CI(A U B) = CI(A) tO CI(B), so each open point of N(x) is in CI(A)
or CI(B), thus in A or B (if an open y CI(C) then the open {y} meets C

so y C). By the regularity of the other C II, since Int(C) N(x) = ,
z Cl(Int(C)) _D C so x A U B.

(b) (i) = (ii) since by (a) (II {A,B})U {A U B} is a partition of

X x Y into regular sets.
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(iii)= (i)- Let m 0A f30B be mixed. Then by the regularity of

A, B, m CI(In(A)), CI(In(B)), so one each of the open points in N(m)
mus be in A, B. By regularity of he remaining elements of H, m A t3 B

(as in he proof of (a)). Thus N(m) C_ A U B so N(m) C_ In(A U B). If

z In(A U B) hen N(z) C_ A U B so le p N(z) be open; hen p A or

p B so p In(A) or p In(B). In he firs case, since In(A) is connected

and mees he connected N(m), N(z) we have m, x N(z)UInt(A)UN(m) C_

In(A U B), in he second we similarly have m,

In(A U B). Thus in either case, is in he same componen of Int(A U B)
as m, so In(A U B) is he componen of rn in i, hus connecged.

(i)=(iii): Le z in(A), y In(B). Then by (i) there is an arc C C_

In(A t_J B) wih endpoins z A, y B, so (by 2 applied o he ls

poin of CfqA and is successor in C), Cfq(0AI30B) . Thus le

z CV(OAVOB). Then z C C_ Int(AUB) so N(z) C_ AUB and

N(z) g Int(A) ;D g(z) g Int(B). If z is mixed, we’re done and by 10, z

can’t be open, so z is closed, and N(z) must be a 3 3 "square", and one of

its sides must meet both Int(A) and Int(B), so the mixed point on that side

must be in OA OB.

(c) Since A is regular, so is A

Cl(Int(A)). Among the four open "corner points" of the "square" g(c) are

some in A and some in A, so at least two "sides" of N(c) meet both A and

Ac. The mixed points on those sides are in CI(A)g CI(A) = OA.

(d) if m OA = CI(A) CI(Ae), then Cl(m) C_ CI(A) V CI(Ae), so

Cl(m)- {m} C_ A(m) OA. Since the remaining points of A(m) are open,

they can’t be in OA, so Cl(m)- {m} = A(m)

Proof of 13." Given C, let P be an enumeration of the set of connected

components of X Y C, P = {Q,..., Q}. Then P is a set of connected

sets which are open (as in the discussion of I(J), O(J) in the proof of 10,

(b)=(a)). Also, CI(UP) = X Y Int(C) = X Y, so UP is dense. For



46 Journal of Applied Mathematics and Stochastic Analysis: Volume 3, Number 1, 1990

1 _< j < n let Aj = CI(Qj) Uk<j CI(Qk), II = {A,..., An }. We first check

that H is a robust scene:

H partitions X x Y since each x e X x Y is in Cl(UP) = Cl(Q1)u..-u

CI(Q,,), x e Ai for the first j such that x e CI(Q/); further, since each

Q1 is connected and Qi c_ Aj C_ CI(Q/), each Ai is connected, so H is a

scene. Further, since Qj c_ Aj is open, Q1 C_ Int(Ai) so Ai C_ Cl(Int(Ai)).
If we show that Q1 = Int(Ai) for each j, then for each j, Int(A) must be

connected and Int(Cl(Ai)) C_ Aj, so II would be a robust scene. For this

it would do to show that if N(x) C_ Qj u C(:3 Aj), then x e Qj. This is

certainly true if {x} is open, since C is nowhere dense. Otherwise the same

argument shows that all the (> 1) open points of g(x) are in Qj, and if

x were not then for some closed separator, x J C_ C. But then I(J),
O(J) both meet the open points of N(z), contradicting the fact that Qj is

connected.

Next we show that C = U{cgD D H}. Clearly for each j, since Aj is

regular with interior Qj, OAj = CI(Q.i)-Qj c_ (X Y-u.:jQt,)-Qj = C;
for the reverse set inclusion, if x C then for some separator J, x J C_ C,

thus the set T of open points in g(x) meets I(J) and O(J). T C_ UP and

since each element of P is connected, T must meet more than one element

of P, say Qj, Qk. But then N(x) meets Qj, Q, so x e OQj = OAj.

For the converse, first note that C is closed and nowhere dense. It remains

to be shown that if x C then for some closed separator J, x J C_ C,

a fact which is clear if n(II) = 1 and which holds by 12 if n(II) = 2. Thus

if this fails, it fails for a II with fewest elements, and for this II, n(II) > 2.

Note that it will do to show the result for m mixed, since if c is closed, find

(by 14 (c)) m e A(c) f30A; if m J C_ C, J a closed separator then (by 14

(d)) c J C_ C. Thus let m OA, A II; then one of the open points of

g(m) is in A, the only other is in A = U(H- {A}), so let m OB. Notice

that if n OE is mixed, E H-{A, B} ( since n(II) > 2), then n e OD
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as well, D 6 n, and D # A or D #. B. Let n" = (n- {E, D})U {E t9 D}.
Then II" is robust scene with one fewer element than n (by 14 (a), (b)).
Also m 6 U{OF" F 6 II’}, since the two elements of g(m)- {m} are in

distinct elements of II. Thus by the minimMity f II, m 6 J C___ U{OA A 6

II*} C_ U{cgA" A 6 H} = C. ["1

15 Proposition: Suppose I(J), O(J) are regular with connected interiors,

and let J* denote 0(I(J)). Then"

(a) J* is a closed separator.

(b) I(J’) = Int(I(J)) C_ I(J).
= j..

(d) J* C_ CI(J), and J* meets CI(x) for each z 6 J.

Proof: (a)We show {I(J),O(J)U J} a robust scene; then :nt(I(J)) =

Int(O(J) t.J J)is connected, thus (a) holds by applying 12 to A = I(J). I(J)
is regular, thus so is its complement, O(J)U J; they clearly partition X x Y,
and int(I(J))is connected, thus we need only show that Int(O(J)13 J)is
connected.

If z 6 Int(O(J)U J) it will do to show that z is in the same component

as Int(O(J)). Let y 6 A(x)gl O(J) (nonempty by [gEM]); then z 6 A(y) C_

O(J) U J, and since y 60(J) C_ Cl(Int(O(J)), Int(O(J)) U {y} is connected.

Thus z 6 N(y) or y 6 N(z); in the first case, let z = y, in the second, z = x.

In both cases, notice that N(z) is a connected open subset of O(J)U J,
thus of Int(O(J)U J), and z, y 6 g(z). Thus z 6 N(z) U Int(O(J)) =
g(z) U ({y} U Int(O(J))), again an open, connected subset of O(J)U J.

(b) By regularity, J" = O Int(I(J)) = i:gInt(O(J)U J), and by 10 since J*

is closed, J" = OI(J’) = O0(J’). All four of the above sets are open and

the first two are complements in X x Y- J as are the last two, thus both

{Int(I(J)),Int(O(J) U J)} and {I(J*), O(J’)}, are the set of components of

X x Y- J’, thus these sets are equal; in particular, Int(I(J)) = I(J*) or
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= O(J*). Suppose x is the first element of BD(X x Y) not in J*. If x 6 J

then by definition of I, O, x O(J); thus in general, x JUO(J) so X I(J)
thus x 6 Int(i(J)). But then, again by definition of I, O, Int(I(J))= I(J*).

(c) By 10 and (a), J* = O(i(J*))= J**.

(d) We first show that J* C_ CI(J) by proving that if x e J* = O(I(J))
then g(x) meets J: for such x, g(x)fq I(J) # , g(x)

_
I(J), thus

Y(x)fq(O(j)t.JJ) . If g(z)fqO(J) f then since Y(x) is connected and

meets both components of X Y- J, Y(x)fqJ , otherwise N(x)fqJ f

anyway.

To see that J* meets CI(z) for each z e J, note that for such x, A(x)f
I(J) . Let y e A(x)fq I(J); thus the connected {x, y} meets both i(J)
and I(J), so it meets OI(J) = J*. If x e J* we’re done; if y J* CI(x)
we’re done, and if y J*, y CI(z) then, since {x, y} is connected, x

Cl(y) C_ J* (since J* is closed), and in this last case we’re done. [:3

5 SOME SUBSPACES FOR COMPUTER GRAPHICS.

In this Section we consider the question of how our digital plane can be

used to display graphics on a computer screen. For several reasons it is

better to display only the subspce consisting of the topologically open points

(which we call the "open screen" in Definition 17 below)"

(i) In it, as in reality, one does not see bounding curves between adjacent

regions.

(ii) It is topologically homogeneous, as the setting for a picture be.

The trace of a robust scene on the pure screen is called its display (Def-
inition 17); Propositions 18 and 19 show that the important properties of a

robust scene can be recovered from its display. Also in this Section we show

how the Rosenfeld theory mentioned in the introduction can be considered
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within our theory, so that we can prove his Jordan curve theorem (Theorem
20).

16 Definition: By a Rosenfeld plane we mean a Cartesian product H

{0,..., m} {0,... ,n} (with no topology). For (x, y) e H, the -neighbors

of (x, y) are the four points (x =i: 1, y), (x, y:t= 1) of i; the 8-neighbors are the

4-neighbours and the four additional points of the form (x =t= 1, y 5= 1) (the
four additional points are the proper 8-neighbors of (x, y)). If k is 4 or 8, a

k-path from (a, b) to (c, d) is a sequence (x0, Y0),..., (xr, Yr) in I such that

(x0, y0) = (a, b), (x, y) = (c, d) and for each i = 0,..., r 1, (xi+, yi+) is

a k-neighbor of (xi, yi); (a, b) and (c, d) are its endpoints. A subset S C_ H

is k-connected if for each (a, b), (c, d) e S there is a k-path from (a, b) to

(c, d) contained in S.

A k-arc from (a, b) to (c, d) is a minimal k-path from (a, b) to (c, d). A

Jordan k-curve is a k-connected set which contains exactly two k-neighbors

of each of its elements.

Notice that for k = 4 or 8, a Jordan k-curve is precisely a k-path whose

endpoints are identical and which contains exactly 2 k-neghbors of each of

its points. Also, e k-path is a k-arc iff it contains exactly 2 k- neighbors of

each of its nonendpoints and exactly 1 k-neighbor of each of its endpoints.

We shall relate two theories by imbedding Rosenfeld planes in certain

subspaces of our digital planes:

17 Definition: The open screen is the subspace P {(z, y)" x, y open }
C_ X Y; the pure screen is the subspace U = {(x, y)’x, y both closed or

both open} C_ X Y (each with the subspace topology).

Given a robust scene H, its associated cartoon is Cn = X Y-U{Int(A)
A H}, and its display is Dr = {A fq P" A II}.

Clearly, a Rosenfeld plane can be regarded as the open screen of a digital

1=; i t, (, U) - (e, eU) ta rto1 {0,...,,}
{0,..., n} onto the open screen of {0,..., 2m} {0,..., 2n}, each given the
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COTS topology with even points open. It is natural in this open screen

to consider that the 4- neighbors of (z, y) are (x :i= 2, y) and (x, y :t: 2), and

make other similar slight notational changes. (Addresses must be kept for all

points even though only (open,open) points will appear on screen.) Notice

that, unlike the full plane, P is homogeneous.

We next show (Proposition 18) that displays and cartoons of robust scenes

uniquely determine each other.

18 Proposition: Robust scenes have the same associated cartoons iff they

have the same displays.

Proof: Open points are in the interiors of any sets that contain them.

Thus if Cy = CI,, then since the interiors of elements of robust scenes are

the components of the complements of their cartoons, {Int(A) A e H} =

{Int(A)" A e H’}, so On On,.

Now suppose H nd II have the same displays. Thus if A H there is

an A II such that AfqP = A’fqP. Since A,A are regular, Int(A)
Int(Cl(A)) = Int(Cl(A P)) = Int(Cl(A’ f3 P)) = Int(A’) (with the second

equality arising from the fact that each p is in the closure of an open point

of N(p)). Thus {Int(A)" A e II} = {Int(A’)" A’ e II’}, so Cr = Ca,. [3

The following result shows that essentially any collection of apparently

connected regions can be separated by (invisible) boundaries.

19 Theorem: Each partition of P into 4-connected sets is he display of a

robust scene.

Proof: Let F = {C0,...,C} be a partition of P into 4-cormected sets.

For i = 0,...,p, let Ai CI(Ci)- Uj<i CI(Cj) (here closures are taken with

respect to the entire digital plane), and let II = {Ai 0 <_ i < p}. Since

in X Y each point is in the closure of some open points, each point must

be in CI(Ci) for some first i, and thus in Ai; therefore H is a partition of

X Y. Further, for each i, Ci C_ Int(Ai), thus Ai C_ CI(Ci) C_ Cl(Int(Ai)).
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Thus to show II a robust scene, it remains only to show that each Int(Ai) is

connected:

Toward this end, let (a, b), (c, d) e Ci, choose a 4-path (x0, y0),...,

(xr, yr), from (a,b) to (c,d) and for k < r let (x,y) = ((xk + x+)/2,
(y + yk+l)/2), the unique mixed point m with the property that N(m) =

{(z,y), m, (z+,y+)}. Thus, g(m) meets only the region Ci of F,
so m e Int(Ai), and (x,yk), (x+,y,+) . A(m), so (xo,yo),(Xo,Yo),...,

_,y_), (x,y)is a path from (a, b) to (c,d)in Int(Ai). This shows

that Ci is contained in a single component of Int(Ai), which we call Q. Fi-

nally, if s is any point of Int(Ai), then N(s) C_ Ai, so N(s)fq P C_ Ci; thus

g(s) Q and this shows that N(s) U Q is a connected open subset of

Ai, thus of Int(Ai), so our arbitrary s is in the same component of Int(Ai)
as is Ci.[-]

Given a Rosenfeld plane, we can also imbed it in the pure screen of the

digital plane X xX where X is the COTS {0,..., 2m+2n}, with even points

closed, via the slant map S(z, y) = (x + y, y x + c), where c = m + n if

this is even, m + n + 1 if m + n is odd. In this digital plane, (r, s) is pure

if[ r + s is even, and since (x + y) + (y x + c) = 2y + c, an even number,

S(z, y) is always pure; also z + y, y z + c {0,..., 2m+2n}. Geometrically,

S inserts the Rosenfeld plane at a 45 angle in our pure screen, with (0, 0)
about halfway up the left side. Also, (x’,y’) is a 4-neighbor of (x,y) iff

S(x’, y’) e A(S(x, y)), an 8-neighbor of (x, y) iff there is a mixed point (u, v)
such that S(x, y), S(z’, y’) . A(u, v). For proper 8-neighbors, (u, v) is the

unique point between S(x, y) and S(x’, y’) on the horizontal or vertical line

joining these two.

Let J = {(xo,yo),...,(z,y)}, k = 4 or 8. If J is a k-path, let J*

be the image S[J] of J under S together with the mixed points between

S(zi,Yi),S(Xi+l,Yi+l) for each i such that (Xi,Yi), (Xi+l,Yi+l) are not 4-

neighbors. Notice that if J is a k-path then J* is a path (in our theory);
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further, if J is a k-are then J* is an arc if J is a Jordan k-curve (with more

than three points if k = 8), then J" is one of our Jordan curves.

It also follows from the above definition of J’, that J" S[J] contains only

mixed points, and is thus empty if k = 4. Therefore if H is a g-path and J

is an 8-path, and H fl J = (R), then H" 13 J" = (R).

If/3 denotes the border of R, then B is a Jordan 4-curve, and I(B’)UB" =
StRlu{(=,U) (=,U) mixed and A(z,y) C_ SIR]}. Finally, if C c___ I(B*)UB*
is a path, then S-] [C] is a k-path (k = 4 if C contains only pure points, 8

otherwise).
These considerations enable us to produce a topological proof of the Rosen-

feld version of the 3ordan curve theorem (see [Rf]) mentioned in our intro-

duction:

20 Theorem: Let {k,k’} = {4,8}. If J is Jordan k-curve with at least 5

points which does not meet the border, then its complement in the Rosenfeld

plane falls into two k’-connected components.

Proofi Imbed the given Rosenfeld plane in the pure screen U of a digital

plane X x Y via S as above. Since J* is Jordan curve, X x Y- J* has

two components, I(J’) and O(J’). We show that S-’[I(J’)], S-’[O(J’)]
e the two k-connected components of R J.

They are k’-connected. If, for example, (a,b),(c,d) S-][O(J’)] then

S(a,b),S(c,d) are connected by an arc C in O(J’). If C I(B*)U B*,

then let f, e denote the first and lt points of C O(B), f- end e+ the

predecessor and successor of f and e in C. Let D = [(a, b), f-]cOil-, e+]. O
[e+, (c, d)]c, a path in I(B) O B* joining (a, b) to (c,d). D can thus be

shortened to an arc E from (a, b) to (c, d); replace C by E. Until the end of

this paragraph, the proofs of the cases k = 4 and k = 8 must be distinguished:

If k = 4, let E = H for some 8-path, and we’re done. If k = 8 note that for

any mixed poing m on E, at least one of he two pure points of A(m) E

cannot be on J*, since otherwise m is on J* as well, contradicting the fact



Boundaries in Digital Planes: Khalimsky, Kopperman, and Meyer 53

that E C_ O(J*). Replace each such m by such a pure point, obtaining

another path, F C SIR] joining (a, b) to (c, d) and not meeting J*. But then

r = H* = S[H] for some 4-connected H, and H does not meet J C S-[J*].
(The proof for (a, b), (c,d) e S-I[I(J*)], is similar. )
There is no k-arc from one of these sets to the other, for if H were such,

then H* must meet J*, but since J is a Jordan k-curve, disjoint from H,
this cannot occur.

S-[O(J*)] is nonempty because it contains S-l(p) for any p B*, so

it remains only to show that S-[I(J*)] f,?J. Notice that our restrictions

assure us that J* contains more than four points, thus by Lemma 3, J*

A(m) for some mixed point m. I(J*) contains a pure point" this is immediate

from the previous sentence if I(J*) contains only one element, but if m, n

I(J*) are distinct, there is an arc from rn to n in I(J*), and any nontrivial

arc contains pure points.[]
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