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We investigate a Markov, regime-switching, marked point process for the short-term interest rate
in a market. The intensity of the marked point process is a bounded, predictable process and is
modulated by two observable factors. One is an economic factor described by a diffusion process,
and another one is described by a Markov chain. The states of the chain are interpreted as different
rating categories of corporate credit ratings issued by rating agencies. We consider a general
pricing kernel which can explicitly price economic, market, and credit risks. It is shown that the
price of a pure discount bond satisfies a system of coupled partial differential-integral equations
under a risk-adjusted measure.

1. Introduction

Modeling the dynamics of short-term interest rates, or short rates, has long been a central
issue in the theory and practice of banking and finance. In the past three decades or so,
numerous quantitative models have been proposed to model short rates. Some classic models
for short rates include Merton [1], Vasicek [2], Cox et al. [3], Hull and White [4], Duffie and
Kan [5], and others. The common feature of these models is that short rates are modeled
by continuous-time diffusion processes, where information flows described by Brownian
motions frequently influence stochastic movements of short rates in small amounts. In
practice, some information items, such as surprise information and extraordinary market
events, may have large economic impact on short rates and cause jumps in short rates.
Short rate models based on Brownian information flows may not be appropriate to describe
such large movements, or jumps, in short rates. Several authors considered jump-diffusion
processes, or related processes, to incorporate large jumps in short rates and developed the
corresponding theoretical bond pricing models. Some examples include Ahn and Thompson
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[6], Babbs and Webber [7], Backus et al. [8], Chacko [9, 10], Das [11], Das and Foresi [12],
and others.

Babbs andWebber [7] and Elliott et al. [13] considered a stochastic interest rate model,
where the short rate was modeled by a pure jump process with the jump intensity parameter
depending on a diffusion state variable. They formulated their model in a pure exchange
economy in a finite-time horizon and incorporated the impact of an observed economic factor
on the jump frequency of the short-rate process. The key advantage of their model is to
model jumps in short rates attributed to changes in macroeconomic factors such as inflation
and economic growth. There is a strong empirical evidence for the relationships between
macroeconomic factors and the term structure of interest rates, (see, e.g., Ang and Piazzesi
[14], Rudebusch and Wu [15], Dewachtera and Lyrioa [16], and Hördahl et al. [17]). The
2010 European sovereign debt crisis centered on Greek government bonds has appeared in
the highlights in many financial news. One of the major causes of this debt crisis is attributed
to the fast economic growth in Greece since the new millennium of year 2000. The economy
in Greece grew at an annual rate of 4.2% from 2000 to 2007. A strong and rapidly growing
economy allowed the government of Greece to run large structural deficits, which, in turn,
significantly increased the yields of Greek government bonds.

Bond ratings issued by rating agencies, such as Standard & Poor’s and Moody’s, are
important indicators of the ability and willingness of rated entities, for example , sovereigns
and corporations, to fulfill their financial obligations. It is well known that bond ratings
have a direct impact on the term structure of interest rates and yield spreads. A downgrade
(upgrade) in bond ratings may result in widening (narrowing) of yield spreads. Indeed,
the significant impacts of credit ratings on bond yields have been discussed in Chapter 6
of the revised edition of the classic text “The Intelligent Investor” by Graham and Zweig
[18], which is known as the stock market Bible. There has been a considerable amount of
literature on studying the impact of bond ratings on the term structure of interest rates and the
pricing of corporate bonds. Rating-based term structuremodels represent a popular approach
to incorporate rating-related risk in modeling term structure of interest rates and pricing
corporate bonds. These models are an extension to the reduced-form, or intensity-based,
credit risk models pioneered by Jarrow and Turnbull [19] andMadan and Unal [20] andwere
studied extensively by Lando [21, 22]. The key idea of the rating-based term structure models
was to incorporate the impact of transitions in bond ratings on evaluating the probability
of default of a corporate bond in an intensity-based credit risk model. However, it seems
that the risk due to ratings migrations was not priced explicitly in the rating-based term
structure models. The pricing probability measure was supposed to be given exogenously,
and it was not discussed in detail how different sources of risk, for example , market risk
due to fluctuations of short rates and credit risk attributed to transitions of credit ratings, are
priced explicitly in the specification of a pricing kernel. Further, a simplifying assumption for
the independence between the short rate and the default event, or transitions of ratings, was
imposed in the rating-basedmodels under both the pricing and physical measures. However,
in practice, the short rate and the bond ratings may not be independent of each other.
Lastly, the rating-based term structure models do not seem to model explicitly the impact
of macroeconomic conditions on the short rate. It seems more realistic to develop a model
which can incorporate the impacts of both bond ratings and macroeconomic conditions in
modeling the term structure of interest rates and pricing bonds. It is also of scientific interest
to develop a finer structure of a pricing kernel with a view to pricing economic risk, interest-
rate risk, and rating-related risk explicitly.
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In this paper, we investigate a Markov, regime-switching, marked point process for
the short-term interest rate, or the short rate, in a market. The intensity of the market point
process is a bounded, predictable process and is modulated by two observable factors,
one described by a diffusion process and another one described by a Markov chain. The
factor described by the diffusion process is interpreted as proxies for some observed macro-
economic factors. The states of the Markov chain are interpreted as different rating categories
of corporate credit ratings issued by rating agencies. The proposed model has three major
sources of risks, namely, economic, market, and credit risks. The economic risk is attributed
to the uncertainty of the economic factor described by the diffusion process. The market risk
is due to random fluctuations of the short rate. The credit risk is attributed to transitions
of corporate credit ratings or qualities. We consider a general pricing kernel which can
price explicitly the three sources of risk. We show that in the regime-switching environment
attributed to transitions of credit ratings, the transformed intensity of the marked point
process vanishes when the short rate leaves a predetermined bounded interval. It is also
shown that the price of a corporate zero-coupon bond satisfies a system of coupled partial
differential-integral equations (PDIEs) under a risk-adjusted measure.

The rest of this paper is organized as follows. The next section presents the proposed
short-rate model. Section 3 describes the general pricing kernel and analyzes its properties.
In Section 4, we derive the system of coupled PDIEs for the discount bond prices for different
rating categories. The final section summarizes the paper.

2. A Short-Rate Model with Credit Risk

We consider a continuous-time economy, where economic activities take place continuously
over time in a finite-time horizon T := [0, T], where T ∈ (0,∞). To model uncertainty, we
consider a complete probability space (Ω,F, P), where P is a real-world probability measure.
We assume that probability space is rich enough to model economic, market, and credit risks.

Firstly, we describe transitions of sovereign credit ratings over time by a continuous-
time, finite-state, observable Markov chain X := {X(t) | t ∈ T} on (Ω,F, P) with state
space S := {s1, s2, . . . , sN} ⊂ �N . The states of the chain represent different rating categories
of a corporate, or bond, credit rating system. Corporate credit ratings are issued by some
international rating agencies such as Standard & Poor’s and Moody’s. These ratings are
publicly accessible and may be used as forward-looking estimates of default probabilities
of corporations and similar jurisdictions. Different rating agencies may adopt different rating
scales. For example, the rating scales adopted by the Standard & Poor’s are, from excellent
to poor, “AAA”, “AA+”, “AA”, “AA−”, “A+”, “A”, “A−”, “BBB+”, “BBB”, “BBB−”, “BB+”,
“BB”, “BB−”, “B+”, “B”, “B−”, “CCC+”, “CCC”, “CCC−”, “CC”, “C”, and “D”. Ratings lower
than “BBB” are regarded as speculative. The rating scales used by the Moody’s are, from
excellent to poor, “Aaa”, “Aa1”, “Aa2”, “Aa3”, “A1”, “A2”, “A3”, “Baa1”, “Baa2”, “Baa3”,
“Ba1”, “Ba2”, “Ba3”, “B1”, “B2”, “B3”, “Caa1”, “Caa2”, “Caa3”, “Ca”, and “C”. Modeling
these rating systems involves the use of a high dimensional Markov chain. One possible way
to reduce the dimensionality of the chain is to group those rating scales which have frequent
intertransition into single rating scales.

Now, following the convention in Elliott et al. [23], we identify, without loss of
generality, the state space of the chain X with a finite set of standard unit vectors I :=
{e1, e2, . . . , eN} ∈ �N , where the jth component of ei is the Kronecker delta δij , for each
i, j = 1, 2, . . . ,N. To describe the probability law of the chain X under P , we define an intensity
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matrix A := [aij]i,j=1,2,...,N of the chain X. For each i, j = 1, 2, . . . ,N with i /= j, aji is the
constant transition intensity of the chain from state ei to state ej . The transition intensities
aji, i, j = 1, 2, . . . ,N, must satisfy the following properties:

(1) aji ≥ 0;

(2)
∑N

j=1 aji = 0, so aii ≤ 0.

From now on, we suppose that aij > 0, for i /= j, so aii < 0. We further assume that
A1 < |aji| < A2, ∀i, j = 1, 2, . . . ,N, for some positive constants A1 and A2 with A1 < A2.

Write FX := {FX(t) | t ∈ T} for the P -completed, right-continuous filtration generated
by the chain X. With the canonical state space I of the chain X, Elliott et al. [23] gave the
following semimartingale dynamics for the chain X under P :

X(t) = X(0) +
∫ t

0
AX(u)du +M(t). (2.1)

Here,M := {M(t) | t ∈ T} is an�N-valued (FX, P)-martingale. The semimartingale dynamics
of the chain Xwill be used in later developments in this paper.

For each t ∈ T, let r(t) be the instantaneous spot interest rate, or the short rate, at time t.
Then we suppose that the evolution of the short rate r := {r(t) | t ∈ T} over time is governed
by a marked point process as

r(t) = r(0) +
∫ t

0

∫

Z
zγ(du, dz). (2.2)

Here γ(·, ·) is a counting measure corresponding to the marked point process {(Tn, Zn) | n =
1, 2, . . .} with a finite state space Z := {z1, z2, . . . , zJ}, where Tn is the nth jump time of the
short rate and Zn is the jump size at the nth time epoch Tn. We suppose that the counting
measure γ(·, ·) and the chain X do not have common jumps.

Indeed, the counting measure γ(·, ·) is a special case of a random measure. So, if
δ(Tn, Zn)(dt, dz) is the delta function at the random point (Tn, Zn) and IE is the indicator
function of an event E, then

γ(dt, dz) =
∑

n≥1
δ(Tn, Zn)(dt, dz)I{Tn<∞, Zn∈Z}. (2.3)

Note that

∫ t

0

∫

Z
zγ(du, dz) =

∑

n≥1
ZnI{Tn≤t}. (2.4)

Further, for any K ⊆ Z,

γ(t,K) := γ((0, t] ×K) =
∑

n≥1
I{Zn∈K}I{Tn≤t}. (2.5)
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The probability law of the marked point process is specified by the intensity kernel,
(compensator or dual predictable projection), λt(dz) of γ(dt, dz). We suppose that the
intensity kernel λt(dz) has the following form:

λt(dz) := λ(t)Φt(ω, dz). (2.6)

Here, Φt(ω, dz) is a probability transition kernel from (Ω × T,F ⊗ B(T)) into (Z, 2Z), where
B(T) is the Borel σ-field generated by open subsets of T and 2Z is the power set of Z; λ(t) is
the stochastic intensity of jump times of the short rate at time t. To simplify the notation, we
suppress “ω” and write Φt(dz) for Φt(ω, dz) unless otherwise stated. (We can also consider
the case where the jump size distribution of short rateΦt(dz) at time t depends on the credit
rating X(t) and the observed state of the economy Y(t) at time t. The results derived in this
paper can be easily extended to this case.) Note that the pair (λ(t),Φt(dz)) is called the local
characteristics of γ(dt, dz) under P with respect to a filtration to be defined later.

We suppose that this stochastic intensity depends on the level of the short rate r(t−),
the corporate credit rating X(t−) just prior to time t, and the observed state of the economy
Y(t) at time t. For example ,

λ(t) := λ(r(t−),X(t−), Y(t)) = 〈λ(r(t−), Y(t)),X(t−)〉. (2.7)

Here, λ(r(t−), Y(t)):= (λ(r(t−),e1, Y(t)),λ(r(t−),e2, Y(t)), . . . , λ(r(t−),eN ,Y(t)))′ ∈ �
N with

λ(r(t−), ei, Y(t)) > 0, for each i = 1, 2, . . . ,N; λ(r(t−), ei, Y(t)) is the stochastic intensity of
jump times of the short rate when the corporate credit rating is in the ith category; the scalar
product 〈·, ·〉 selects the component of the vector λ(r(t−), Y(t)) of stochastic intensities for
different rating classes that is in force at time t according to the credit rating X(t−). When
the number of states N of the chain is equal to one, the short-rate model considered here is
identical to that in [13].

Let W := {W(t) | t ∈ T} be the standard Brownian motion on (Ω,F, P) with respect
to its P -completed, right-continuous, filtration FW := {FW (t) | t ∈ T}. Then we model the
evolution of the economic state process Y := {Y(t) | t ∈ T} over time by the following
diffusion process:

dY(t) = μ(t, r(t−), Y(t))dt + σ(t, r(t−), Y(t))dW(t). (2.8)

Note that Y(t) may be interpreted as the logarithm of the GDP at time t. In general, we can
consider a multidimensional diffusion process to incorporate several economic factors for
modeling the short rate. However, to keep the notation and analysis simple, we consider a
univariate diffusion process.

3. A General Pricing Kernel and Its Properties

In this section, we introduce a general pricing kernel with a view to providing a flexible way
to price explicitly the economic, market, and credit risks in the short-rate model presented
in the last section. The general pricing kernel is specified by the product of two density
processes, one for a measure change for a jump-diffusion process and the other one for a
measure change of the Markov chain. A Girsanov transform for the Markov chain is used for
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the measure change of the Markov chain. We also analyze some theoretical properties of the
general pricing kernel.

Firstly, we specify the information structure of the short-rate model. Recall that FX

is the P -completed, right-continuous natural filtration generated by the chain X. Write
Fr := {Fr(t) | t ∈ T} and FY := {FY (t) | t ∈ T} for the P -completed, right-continuous
natural filtrations generated by the short-rate process r and the economic state process Y ,
respectively. For each t ∈ T, let G(t) := FX(t) ∨ Fr(t) ∨ FY (t), the minimal σ-field generated
by FX(t), Fr(t), and FY (t). Write G := {G(t) | t ∈ T}. The enlarged filtration G represents the
flow of observable information.

We suppose that the stochastic intensity process λ := {λ(t) | t ∈ T} is G-predictable
and satisfies

λ(t) ∈ [K1, K2], ∀ t ∈ T, P -a.s., (3.1)

for some positive constants K1 andK2 with K1 < K2.
Suppose θ0 := {θ0(t) | t ∈ T} and θ1 := {θ1(t) | t ∈ T} be two real-valued,G-predictable

stochastic processes on (Ω,F, P) such that for all t ∈ T,

(1) |θ0(t)| < K, P -a.s., for some positive constant K;

(2) |θ1(t)| < 1, P -a.s.

Note that γ(·, ·) is the counting measure having the (G, P)-local characteristics given
by the pair (λ(t),Φt(dz)). So the compensated version γ(·, ·) of the counting measure γ(·, ·) is
given by

γ(dt, dz) := γ(dt, dz) − λ(t)Φt(dz). (3.2)

We suppose further thatW , γ , and X are orthogonal to each other under P .
Consider a (G, P)-exponential semimartingale Λ1 := {Λ1(t) | t ∈ T} defined by

Λ1(t) := E
{

−
∫ ·

0
θ0(u)dW(u) −

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

}

(t), (3.3)

where E{·} is the stochastic exponential, (see [24], Theorem 13.5 and Remark 13.6 therein).
The following lemma is a slight modification of Lemma 3.2 in [13].

Lemma 3.1. Λ1 is a strictly positive supermartingale.

Proof. SinceW is an (FW, P)-standard Brownian motion andW is stochastically independent
with the chain X and the short-rate process r under P , W is a (G, P)-standard Brownian
motion. Using Theorem 13.5 in [24], Λ1 satisfies

Λ1(t) = 1 −
∫ t

0
Λ1(u)θ0(u)dW(u) −

∫ t

0

∫

Z
Λ1(u)θ1(u)γ(du, dz). (3.4)

Consequently, Λ1 is a (G, P)-local martingale.
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Write Δγ(u,Z) := γ(u,Z) − γ(u−,Z). Again, by Theorem 13.5 in [24],

Λ1(t) = exp

(

−
∫ t

0
θ0(u)dW(u) −

∫ t

0

∫

Z
θ1(u)γ(du, dz) −

1
2

∫ t

0
θ20(u)du

)

×
∏

0≤u≤t

(
1 − θ1(u)Δγ(u,Z)

)
eθ1(u)Δγ(u,Z).

(3.5)

This, together with the assumption on θ1 and γ(·, ·), imply that Λ1(t) is strictly positive, P -
a.s., for all t ∈ T. Since Λ1 is a (G, P)-local martingale which is bounded below by zero, it is a
strictly positive (G, P)-supermartingale.

The following lemma follows from Lemma 3.3 in Elliott et al. [13]. We give the results
without proof.

Lemma 3.2. Let Lp(Ω,F, P) be the space of p-integrable random variables on (Ω,F, P). Then, for
each t ∈ [0, T) and p ∈ [0,∞),

Λ1(t) ∈ Lp(Ω,F, P), (3.6)

so Λ1 := {Λ1(t) | t ∈ T} is a positive martingale.

Suppose that C := {cij}i,j=1, 2,..., N is a second intensity matrix of the chain X. Then, cij
must satisfy the following conditions:

(1) cij ≥ 0, for i /= j;

(2)
∑N

j=1 cji = 0, so cii ≤ 0.

Again, we assume that cji > 0, i /= j, so cii < 0. We suppose further that |cji| ≤ C, ∀i, j =
1, 2, . . . ,N, for some positive constant C.

We wish to introduce a new probability measure under which the chain X has the
intensity matrix C via a Girsanov transform of Markov chains.

Define the following matrix:

D :=

[
cij

aij

]

i,j=1, 2,..., N

=
[
dij

]
say. (3.7)

Note that aij > 0, soD is well defined.
Let d := (d11, d22, . . . , dNN)′ ∈ �N . Then, we define

D0 := D − diag(d). (3.8)

Here, diag(y) is a diagonal matrix with diagonal elements given by the vector y.
Similarly, A0 and C0 are defined, respectively, as

A0 := A − diag(a), C0 := C − diag(c), (3.9)

where a := (a11, a22, . . . , aNN)′ ∈ �N and c := (a11, a22, . . . , aNN)′ ∈ �N .
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Suppose that N := {N(t) | t ∈ T} is a vector-valued counting process defined on
(Ω,F,P), where for each t ∈ T, N(t) := (N1(t),N2(t), . . . ,NN(t))′ ∈ �N andNj(t) represents
the number of jumps of the chain X to state ej up to time t, for each j = 1, 2, . . . ,N. Then,

N(t) =
∫ t

0
(I − diag(X(u−)))dX(u), (3.10)

where I is the (N × N)-identity matrix. The integral is defined pathwisely in ω ∈ Ω in the
Stieltjes sense.

The following lemma is due to Remark 2.1 in Dufour and Elliott [25].

Lemma 3.3. The process Ñ := {Ñ(t) | t ∈ T} defined by

Ñ(t) := N(t) −
∫ t

0
A0(u)X(u−)du, t ∈ T, (3.11)

is an�N-valued (FX, P)-martingale.

Define a scalar-valued process L := {L(t) | t ∈ T} by

L(t) :=
∫ t

0
(D0X(u−) − 1)′dÑ(u), (3.12)

where 1 := (1, 1, . . . , 1)′ ∈ �N . Again, the integral is defined pathwisely in ω ∈ Ω in the
Stieltjes sense.

Then, we have the following lemma.

Lemma 3.4. For each t ∈ T,

ΔL(t) := L(t) − L(t−) > −1, P -a.s. (3.13)

Proof. First, we note that

ΔÑ(t) = ΔN(t) := N(t) −N(t−) = (I − diag(X(t−)))ΔX(t). (3.14)

Then,

ΔL(t) = (D0X(t−) − 1)′ΔÑ(t)

= (D0X(t−) − 1)′(I − diag(X(t−)))ΔX(t)

= (D0X(t−) − 1)′(I − diag(X(t−)))(X(t) − X(t−)).

(3.15)
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If X(t)/=X(t−), then

ΔL(t) =
N∑

i=1

(
dji − 1

)〈
X(t), ej

〉
〈X(t−), ei〉 = dj∗i∗ − 1, P -a.s., (3.16)

for a unique pair (i∗, j∗) ∈ {1, 2, . . . ,N} with i∗ /= j∗.
Since dji > 0, for i, j = 1, 2, . . . ,N with i /= j, we must have

ΔL(t) = dj∗i∗ − 1 > −1, P -a.s. (3.17)

If X(t) = X(t−), ΔL(t) = 0 > −1, P -a.s.

Consider an (FX, P)-exponential semimartingale Λ2 := {Λ2(t) | t ∈ T} defined by

Λ2(t) := E{L}(t). (3.18)

Then, by Remark 13.6 in [24],

Λ2(t) = 1 +
∫ t

0
Λ2(u−)dL(u) = 1 +

∫ t

0
Λ2(u−)(D0X(u−) − 1)′dÑ(u). (3.19)

The following lemma is due to Dufour and Elliott [25] it follows from the Doléan-Dade
stochastic exponential formula, (see [24], Theorem 13.5 therein).

Lemma 3.5. Λ2 := {Λ2(t) | t ∈ T} satisfies

Λ2(t) = exp

(

−
∫ t

0
1′(C0 −A0)X(u)du

)
∏

0<u≤t

(
1 + (D0X(u−) − 1)′ΔN(u)

)
. (3.20)

Then, we have the following result.

Lemma 3.6. There exists a δ > 0 such that

E{L}(T) ∈ L2+δ(Ω,F, P). (3.21)
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Proof. Applying Itô’s differentiation rule on Λ2+δ
2 (T) (see [24], Theorem 12.13 therein) gives

Λ2+δ
2 (T) = 1 +

∫T

0
(2 + δ)Λ1+δ

2 (t−)Λ2(t−)(D0X(t−) − 1)′(dN(t) −A0X(t−)dt)

+
∑

0<t≤T

[
Λ2+δ(t−)

(
1 + (D0X(t−) − 1)′ΔN(t)

)2+δ −Λ2+δ(t−)

−(2 + δ)Λ2+δ(t−)(D0X(t−) − 1)′ΔN(t)
]

= 1 −
∫T

0
(2 + δ)Λ2+δ

2 (t−)1′(C0 −A0)X(t)dt

+
∑

0<t≤T
Λ2+δ(t−)

[(
1 + (D0X(t−) − 1)′ΔN(t)

)2+δ − 1
]

= exp

[

(2 + δ)

(∫T

0
1′(A0 − C0)X(t)dt +

∑

0<t≤T
ln
(
1 + (D0X(t−) − 1)′ΔN(t)

)
)]

.

(3.22)

Note that

∑

0<t≤T
ln
(
1 + (D0X(t−) − 1)′ΔN(t)

)
≤ max

{
ln
(
dj∗i∗

)
, 0
}
≤ max

{

ln
(

C

A1

)

, 0
}

:= M1 < ∞.

(3.23)

Further,

∫T

0
1′(A0 −C0)X(t)dt =

N∑

i=1

∫T

0
1′(A0 −C0)ei〈X(t), ei〉dt

=
N∑

i=1

∫T

0
(cii − aii)〈X(t), ei〉dt ≤ (C −A1)T = M2T,

(3.24)

where M2 := C −A1 < ∞.
Consequently,

Λ2+δ
2 (T) ≤ exp[(2 + δ)(M1 +M2T)]. (3.25)

Hence, the result follows.

Consider a G-adapted process Λ := {Λ(t) | t ∈ T} defined by putting

Λ(t) := Λ1(t) ·Λ2(t). (3.26)

Then, we have the following lemma.
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Lemma 3.7. The process Λ can be written as

Λ(t) = E
{

L −
∫ ·

0
θ0(u)dW(u) −

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

}

(t). (3.27)

Further, the quadratic covariation process

[Λ1, Λ2](t) = 0. (3.28)

Proof. From Corollary 13.8 in [24],

Λ(t) := Λ1(t) ·Λ2(t)

= E
{

−
∫ ·

0
θ0(u)dW(u) −

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

}

(t)E{L}(t)

= E
{

L −
∫ ·

0
θ0(u)dW(u) −

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

−
[

L,

∫ ·

0
θ0(u)dW(u) +

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

]}

(t).

(3.29)

Since the continuous martingale part of L is identical to zero,

[

L,

∫ ·

0
θ0(u)dW(u)

]

(t) =
〈

Lc,

∫ ·

0
θ0(u)dW(u)

〉

(t) = 0, (3.30)

where [X1, X2] is the quadratic covariation process of the two processes X1 and X2.
Since L and γ(·, ·) do not have common jumps and the continuous martingale parts of

both L and
∫ ·
0

∫
Z θ1(u)γ(du, dz) are identical to zero,

[

L,

∫ ·

0

∫

Z
θ1(u)γ(du, dz)

]

(t) = 0. (3.31)

Therefore, the results follow.

The following theorem is crucial in defining a risk-adjusted probability measure, or a
pricing kernel, for bond valuation.

Theorem 3.8. Λ is a strictly positive, square integrable (G, P)-martingale.

Proof. The strict positivity of Λ follows from Lemmas 3.1 and 3.4. Lemmas 3.2 and 3.6 give
the square integrability of Λ. It is not difficult to check that Λ2 is an (FX, P)-martingale (see
[25]) andΛ1 is a (G, P)-martingale by Lemma 3.2. Consequently,Λ is a (G, P)-martingale.
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We now define the risk-adjusted probability measure P † by putting

dP †

dP

∣
∣
∣
∣
∣
G(T)

:= Λ(T). (3.32)

From Lemma 3.7, Λ is represented as the stochastic exponential generated by the martingales
L,

∫ ·
0 θ0(u)dW(u) and

∫ ·
0

∫
Z θ1(u)γ(du, dz), which model the random shocks attributed

to transitions of corporate credit ratings, changes in the observed economic factor, and
fluctuations of the short rate, respectively. So, if the risk-adjusted probability measure P † is
used to specify a pricing kernel, the pricing kernel can take into account the three sources of
risk, namely, the credit, economic, and market risks, in bond valuation.

By Theorem 3.8, P † is equivalent to P on G(T). Suppose that there is a money market
account B whose balance evolves over time as

B(t) = exp

(∫ t

0
r(u)du

)

, (3.33)

so B(t) > 0, P -a.s. The account B is then used as a numéraire, or a unit of account, for bond
valuation.

Again, by Theorem 3.8, the random variable

1
B(T)

dP †

dP
∈ L2(Ω,F, P), (3.34)

so the market model for bond valuation considered here is viable.
Consequently, the price of any asset V ∈ L2(Ω,G(T), P) at time t, denoted by V (t), is

evaluated as

V (t) = B(t)E†
[

V

B(T)
| G(t)

]

. (3.35)

Here, E†[ · | G(t)] is the conditional expectation given G(t) under P †.
Indeed, Babbs and Selby [26] (see Proposition 3.2 on Page 167 therein) pointed out that

to be consistent with general equilibrium, the pricing operator in the pure exchange economy
must take the form Ψ : L2(Ω,G(T), P) → �

+, given by

Ψ(V ) = E†
[

V

B(T)

]

, V ∈ L2(Ω,G(T), P). (3.36)

4. A System of Coupled PDEs for Bond Pricing

In this section, we first give the probability laws of the short-rate process, the economic factor,
and the Markov chain under the risk-adjusted probability measure P †. Then, we derive a
system of coupled partial differential equations governing the price of a pure discount bond
under P †.

Firstly, the following theorem is a modification of Proposition 4.1 in [13].
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Theorem 4.1. The processW† := {W†(t) | t ∈ T} defined by

W†(t) := W(t) +
∫ t

0
θ0(u)dW(u), (4.1)

is a (G, P †)-standard Brownian motion.

Proof. The proof resembles that of Proposition 4.1 in [13]. It invokes the use of Theorem 13.19
in [13], the orthogonality assumption of L,

∫ ·
0 θ0(u)dW(u) and

∫ ·
0

∫
Z θ1(u)γ(du, dz), and Lévy’s

characterization theorem of Brownian motions.

The following theorem is an extension of Theorem 4.2 in [13]. The result follows from
Theorem T10 in Chapter VIII of [27] and the orthogonal assumption between L and γ(·, ·).

Theorem 4.2. Let α := {α(t) | t ∈ T} be a process defined by

α(t) := 〈α,X(t)〉, (4.2)

where α := (α1, α2, . . . , αN)′ ∈ �N and αi > 0, for each i = 1, 2, . . . ,N.
For each t ∈ T and j = 1, 2, . . . , J , let

ĥ(t,X(t−)) := ĥ
(
t, zj , r(t−),X(t−)

)
=
(
r(t−) + zj

)+(
α(t−) − r(t−) − zj

)+
. (4.3)

Suppose that

h(t,X(t−)) :=
ĥ
(
t, zj , r(t−),X(t−)

)

∑J
j=1 ĥ

(
t, zj, r(t−),X(t−)

)
Φt

(
zj
) . (4.4)

Define a process θ†1 := {θ†1(t) | t ∈ T} by

θ†1(t) := θ†1
(
t, zj ,X(t−)

)
= 1 −

h
(
t, zj , r(t−),X(t−)

)

λ(t)
. (4.5)

Then,

(1)
∑J

j=1 h(t, zj , r(t−),X(t−))Φt(zj) = 1;

(2) γ(·, ·) has the (G, P †)-local characteristics (1, h(t, zj , r(t−),X(t−))Φt(zj)), so that the
intensity of γ(·, ·) vanishes if r(t−) + zj /∈ [0, α(t−)], for each j = 1, 2, . . . , J .

Theorem 4.2 states that the intensity of the jump component of the short-rate process
vanishes when r(t) + zj /∈ [0, α(t−)].

The following theorem gives the probability law of the chain X under the risk-adjusted
probability P †. It was due to Lemma 2.3 in [25]. We cite the result without proof.
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Theorem 4.3. Under the risk-adjusted measure P †, X is a Markov chain with intensity matrix C.
Consequently, under P †,

X(t) = X(0) +
∫ t

0
CX(u)du +MC(t), (4.6)

whereMC := {MC(t) | t ∈ T} is an �N-valued (FX, P †)-martingale.

We now consider a pure discount bond maturing at a future time T > twith face value
equal to one. Let P(t, T | G(t)) be a conditional price of the discount bond at time t given G(t).
Then,

P(t, T | G(t)) = E†
[

exp

(

−
∫T

t

r(u)du

)

| G(t)
]

. (4.7)

Note that (r, Y,X) is jointly Markov with respect to G. Consequently, conditional on
(r(t), Y(t),X(t)) = (r, y, x),

P(t, T | G(t)) = E†
[

exp

(

−
∫T

t

r(u)du

)

| G(t)
]

= E†
[

exp

(

−
∫T

t

r(u)du

)

| r(t) = r, Y(t) = y,X(t) = x

]

= P
(
t, T, r, y, x

)
, P -a.s..

(4.8)

For each t ∈ T, let

P̃
(
t, T, r, y, x

)
:=

P
(
t, T, r, y, x

)

B(t)

= E†
[

exp

(

−
∫T

0
r(u)du

)

| r(t) = r, Y(t) = y,X(t) = x

]

= E†
[

exp

(

−
∫T

0
r(u)du

)

| G(t)
]

.

(4.9)

This is the discounted, or normalized, bond price. By definition, the discounted bond price
process P̃ is a (G, P †)-martingale.
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Theorem 4.4. Let Pi := P(t, T, r, y, ei), for each i = 1, 2, . . . ,N. Write

P := (P1, P2, . . . , PN)′ ∈ �N, (4.10)

and μ(t) := μ(t, r(t−), Y(t)) and σ(t) := σ(t, r(t−), Y(t)). Then, Pi, i = 1, 2, . . . ,N, satisfy the
following system of coupled partial differential equations:

∂Pi

∂t
+
(
μ(t) − θ0(t)σ(t)

)∂Pi

∂y
+
1
2
σ2(t)

∂2Pi

∂y2 + 〈P,Cei〉 − r(t−)Pi

+
∫

Z
(P(t, T, r(t−) + z, Y(t), ei) − P(t, T, r(t−), Y(t), ei)) × h(t, ei)Φt(dz) = 0,

(4.11)

for i = 1, 2, . . . ,N.

Proof. Let

γ†(dt, dz) := γ(dt, dz) − h(t,X(t))Φt(dz)dt. (4.12)

Then, applying Itô’s differentiation rule to P(t, T, r(t), Y(t),X(t)) gives

P(t, T, r(t), Y(t),X(t))

= P(0, T, r(0), Y(0),X(0)) +
∫ t

0

∂P

∂u
du +

∫ t

0

∂P

∂y
dY(u) +

1
2

∫ t

0
σ2(u)

∂2P

∂y2 du

+
∑

0<u≤t
(P(u, T, r(u), Y(u),X(u)) − P(u, T, r(u−), Y(u),X(u))) +

∫ t

0
〈P, dX(u)〉

= P(0, T, r(0), Y(0),X(0)) +
∫ t

0

∂P

∂u
du +

∫ t

0

(
μ(u) − θ0(u)σ(u)

)∂P

∂y
du

+
∫ t

0
σ(u)

∂P

∂y
dW†(u) +

1
2

∫ t

0
σ2(u)

∂2P

∂y2 du

+
∫ t

0

∫

Z
(P(u, T, r(u−) + z, Y(u),X(u)) − P(u, T, r(u−), Y(u),X(u)))γ†(du, dz)

+
∫ t

0

∫

Z
(P(u, T, r(u−) + z, Y(u),X(u)) − P(u, T, r(u−), Y(u),X(u)))

× h(u,X(u))Φu(dz)du +
∫ t

0
〈P,CX(u)〉du +

∫ t

0

〈
P, dMC(u)

〉
. (4.13)
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Write P̃ := P̃(t, T, r(t), Y(t),X(t)) and P̃i := P̃(t, T, r(t), Y(t), ei), for each i =
1, 2, . . . ,N, and P̃ := (P̃1, P̃2, . . . , P̃N)′ ∈ �

N . Again, applying Itô’s differentiation rule to
B−1(t)P(t, T, r(t), Y(t),X(t)) gives

P̃(t, T, r(t), Y(t),X(t))

= P̃(0, T, r(0), Y(0),X(0)) +
∫ t

0

∂P̃

∂u
du +

∫ t

0

(
μ(u) − θ0(u)σ(u)

)∂P̃

∂y
du

+
∫ t

0
σ(u)

∂P̃

∂y
dW†(u) +

1
2

∫ t

0
σ2(u)

∂2P̃

∂y2 du

+
∫ t

0

∫

Z

(
P̃(u, T, r(u−) + z, Y(u),X(u)) − P̃(u, T, r(u−), Y(u),X(u))

)
× γ†(du, dz)

+
∫ t

0

∫

Z

(
P̃(u, T, r(u−) + z, Y(u),X(u)) − P̃(u, T, r(u−), Y(u),X(u))

)

× h(u,X(u))Φu(dz)du +
∫ t

0

〈
P̃,CX(u)

〉
du +

∫ t

0

〈
P̃, dMC(u)

〉
−
∫ t

0
r(u−)P̃du

= P̃(0, T, r(0), Y(0),X(0))

+
∫ t

0

[
∂P̃

∂u
+
(
μ(u) − θ0(u)σ(u)

)∂P̃

∂y
+
1
2
σ2(u)

∂2P̃

∂y2 +
〈
P̃,CX(u)

〉
− r(u−)P̃

+
∫

Z

(
P̃(u, T, r(u−) + z, Y(u),X(u)) − P̃(u, T, r(u−), Y(u),X(u))

)

× h(u,X(u))Φu(dz)

]

du +
∫ t

0
σ(u)

∂P̃

∂y
dW†(u)

+
∫ t

0

∫

Z

(
P̃(u, T, r(u−) + z, Y(u),X(u)) − P̃(u, T, r(u−), Y(u),X(u))

)
γ†(du, dz)

+
∫ t

0

〈
P̃, dMC(u)

〉
. (4.14)

Note that P̃ is a (G, P †)-martingale, so it is a special semimartingale under P †. By the unique
decomposition of a special semimartingale, the finite variation term of the above stochastic
integral representation for P̃ must be indistinguishable from the zero process under P †.
Consequently, multiplying the integrand of the finite variation term by B(t) gives

∂P

∂t
+
(
μ(t) − θ0(t)σ(t)

)∂P

∂y
+
1
2
σ2(t)

∂2P

∂y2 + 〈P,CX(t)〉 − r(t−)P

+
∫

Z
(P(t, T, r(t−) + z, Y(t),X(t)) − P(t, T, r(t−), Y(t),X(t)))

× h(t,X(t))Φt(dz) = 0.

(4.15)
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So, if X(t−) = ei, i = 1, 2, . . . ,N,

∂Pi

∂t
+
(
μ(t) − θ0(t)σ(t)

)∂Pi

∂y
+
1
2
σ2(t)

∂2Pi

∂y2 + 〈P,Cei〉 − r(t−)Pi

+
∫

Z
(P(t, T, r(t−) + z, Y(t), ei) − P(t, T, r(t−), Y(t), ei))

× h(t, ei)Φt(dz) = 0.

(4.16)

5. Conclusion

A novel short-rate model based on a Markov, regime-switching, marked point process was
introduced. This model provides the flexibility in incorporating the impacts of both an
observed economic factor and credit ratings in the short-term interest rate. A diffusion
process was used to model the evolution of the economic factor over time while credit ratings
evolve over time according to a continuous-time, finite-state, Markov chain. A general pricing
kernel was introduced to price three different sources of risk, namely, economic, market, and
credit risks. We also provided an analysis for some theoretical properties of the pricing kernel.
Some properties of the transformed intensity of the jump process were discussed. We also
derived a system of coupled partial differential equations governing the evolution of the
prices of a pure discount bond with different rating levels over time.
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