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This paper is devoted to prove, in a nonclassical function space, the weak solvability of parabolic
integrodifferential equations with a nonclassical boundary conditions. The investigation is made
by means of approximation by the Rothes method which is based on a semidiscretization of the
given problem with respect to the time variable.

1. Introduction

The purpose of this paper is to study the solvability of the following equation:

∂v

∂t
(x, t) − ∂2v

∂x2 (x, t) =
∫ t

0
a(t − s)k′(s, v(x, s))ds + g(x, t), (x, t) ∈ (0, 1) × [0, T], (1.1)

with the initial condition

v(x, 0) = V0(x), x ∈ (0, 1), (1.2)

and the integral conditions

∫1

0
v(x, t)dx = E(t), t ∈ [0, T],

∫1

0
xv(x, t)dx = G(t), t ∈ [0, T],

(1.3)
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where v is an unknown function, E, G, and V0 are given functions supposed to be sufficiently
regular, while k′ and a are suitably defined functions satisfying certain conditions to be
specified later and T is a positive constant.

Since 1930, various classical types of initial boundary value problems have been
investigated by many authors using Rothe time-discretization method; see, for instance, the
monographs by Rektorys [1] and Kačur [2] and references cited therein. The linear case of
our problem, that is,

∫ t
0a(t − s)k′(s, v(x, s))ds = 0, appears, for instance, in the modelling

of the quasistatic flexure of a thermoelastic rod (see [3]) and has been studied, firstly, by
the second author with a more general second-order parabolic equation or a 2m-parabolic
equation in [3–5] by means of the energy-integrals method and, secondly, by the two authors
via the Rothe method [6–8]. For other models, we refer the reader, for instance, to [9–12], and
references therein.

The paper is organized as follows. In Section 2, we transform problem (1.1)–(1.3) to
an equivalent one with homogeneous integral conditions, namely, problem (2.3). Then, we
specify notations and assumptions on data before stating the precise sense of the desired
solution. In Section 3, by the Rothe discretization in time method, we construct approximate
solutions to problem (2.3). Some a priori estimates for the approximations are derived in
Section 4, while Section 5 is devoted to establish the existence and uniqueness of the solution.

2. Preliminaries, Notation, and Main Result

It is convenient at the beginning to reduce problem (1.1)–(1.3) with inhomogeneous integral
conditions to an equivalent one with homogeneous conditions. For this, we introduce a new
unknown function u by setting

u(x, t) = v(x, t) − R(x, t), (x, t) ∈ (0, 1) × [0, T], (2.1)

where

R(x, t) = 6(2G(t) − E(t))x − 2(3G(t) − 2E(t)). (2.2)

Then, the function u is seen to be the solution of the following problem:

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) =
∫ t

0
a(t − s)k(s, u(x, s))ds + f(x, t), (x, t) ∈ (0, 1) × [0, T],

u(x, 0) = U0(x), x ∈ (0, 1),
∫1

0
u(x, t)dx = 0, t ∈ [0, T],

∫1

0
xu(x, t)dx = 0, t ∈ [0, T],

(2.3)
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where

f(x, t) = g(x, t) − ∂R(x, t)
∂t

,

U0(x) = V0(x) − R(x, 0),

k(s, u(x, s)) = k′(s, u(x, s)) − R(x, t).

(2.4)

Hence, instead of looking for the function v, we search for the function u. The solution of
problem (1.1)–(1.3)will be simply given by the formula v(x, t) = u(x, t) + R(x, t).

We introduce the function spaces, which we need in our investigation. Let L2(0, 1)
and L2(0, T ;L2(0, 1)) be the standard function spaces. We denote by C0(0, 1) the linear space
of continuous functions with compact support in (0, 1). Since such functions are Lebesgue
integrable, we can define on C0(0, 1) the bilinear form given by

((u, v)) =
∫1

0
IxuIxv dx, (2.5)

where

Ixu =
∫x

0
u(ζ, ·)dζ. (2.6)

The bilinear form (2.5) is considered as a scalar product on C0(0, 1) for which C0(0, 1) is not
complete.

Definition 2.1. We denote by B1
2(0, 1) a completion of C0(0, 1) for the scalar product (2.5),

which is denoted by (·, ·)B1
2(0,1)

, called the Bouziani space or the space of square integrable
primitive functions on (0, 1). By the norm of function u from B1

2(0, 1), we understand the
nonnegative number

‖u‖B1
2(0,1)

=
√
(u, u)B1

2(0,1)
= ‖Ixu‖, (2.7)

where ‖v‖ denotes the norm of v in L2(0, 1).

For u ∈ L2(0, 1), we have the elementary inequality

‖u‖B1
2(0,1)

≤ 1√
2
‖u‖. (2.8)

We denote by L2(0, T ;B1
2(0, 1)) the space of functions which are square integrable in

the Bochner sense, with the scalar product

(u, v)L2(0,T ;B1
2(0,1))

=
∫T

0
(u(·, t), v(·, t))B1

2(0,1)
dt. (2.9)
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Since the space B1
2(0, 1) is a Hilbert space, it can be shown that L2(0, T ;B1

2(0, 1)) is a
Hilbert space as well. The set of all continuous abstract functions in [0, T] equipped with the
norm

sup
0≤τ≤T

‖u(·, τ)‖B1
2(0,1)

(2.10)

is denoted C(0, T ;B1
2(0, 1)). Let V be the set which we define as follows:

V =

{
v ∈ L2(0, 1);

∫1

0
v(x)dx =

∫1

0
xv(x)dx = 0

}
. (2.11)

Since V is the null space of the continuous linear mapping l: L2(0, 1) → R
2, ϕ →

l(ϕ) = (
∫1
0ϕ(x)dx,

∫1
0xϕ(x)dx), it is a closed linear subspace of L2(0, 1), consequently V is a

Hilbert space endowed with the inner product (·, ·). Strong or weak convergence is denoted
by → or⇀, respectively. The letter C will stand for a generic positive constant which may be
different in the same discussion.

Lemma 2.2 (Gronwall’s lemma). (a1) Let x(t) ≥ 0, h(t), y(t) be real integrable functions on the
interval [a, b]. If

y(t) ≤ h(t) +
∫ t

a

x(s)y(s)ds, ∀t ∈ (a, b), (2.12)

then

y(t) ≤ h(t) +
∫ t

a

h(s)x(s) exp

(∫ t

a

x(τ)dτ

)
ds, ∀t ∈ (0, T). (2.13)

In particular, if x(t) ≡ C is a constant and h(t) is nondecreasing, then

y(t) ≤ h(t)ec(t−a), ∀t ∈ (0, T). (2.14)

(a2) Let {ai}i be a sequence of real nonnegative numbers satisfying

ai ≤ A + Bh
i−1∑
k=1

ak, ∀i = 1, 2, . . . , (2.15)

where A, B, and h are positive constants, such that Bh < 1. Then

ai ≤ A exp[B(i − 1)h], (2.16)

takes place for all i = 1, 2, . . . .
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In the sequel, we make the following assumptions.
(H1) Functions f : [0, T] → L2(0, 1) and a : [0, T] → R are Lipschitz continuous, that

is,

∃l1 ∈ R
+;

∥∥f(t) − f
(
t′
)∥∥ ≤ l1

∣∣t − t′
∣∣, ∀t ∈ [0, T],

∃l2 ∈ R
+;

∣∣a(t) − a
(
t′
)∣∣ ≤ l2

∣∣t − t′
∣∣, ∀t ∈ [0, T].

(2.17)

(H2) The mapping k : [0, T] × V → L2(0, 1) is Lipschitz continuous in both variables,
that is,

∃l3 ∈ R
+;

∥∥k(t, u) − k
(
t′, u′)∥∥ ≤ l3

[∣∣t − t′
∣∣ + ∥∥u − u′∥∥], (2.18)

for all t, t′ ∈ I, u, u′ ∈ V , and satisfies

∃l4, l5 ∈ R
+; ‖k(t, u)‖B1

2(0,1)
≤ l4‖u‖B1

2(0,1)
+ l5, (2.19)

for all t ∈ I and all u ∈ V , where l4 and l5 are positive constants.
(H3) U0 ∈ H2(0, 1) and

∫1

0
U0(x)dx =

∫1

0
xU0(x)dx = 0. (2.20)

We will be concerned with a weak solution in the following sense.

Definition 2.3. A function u : I → L2(0, 1) is called a weak solution to problem (2.3) if the
following conditions are satisfied:

(i) u ∈ L∞(I, V ) ∩ C(I, B1
2(0, 1)),

(ii) u is strongly differentiable a.e. in I and du/dt ∈ L∞(I, B1
2(0, 1)),

(iii) u(0) = U0 in V ,

(iv) the identity

(
du

dt
(t), v

)
B1
2(0,1)

+ (u(t), v)

=

(∫ t

0
a(t − s)k(s, u(s))ds, v

)
B1
2(0,1)

+
(
f(t), v

)
B1
2(0,1)

(2.21)

holds for all v ∈ V and a.e. t ∈ [0, T].

To close this section, we announce the main result of the paper.

Theorem 2.4. Under assumptions (H1)–(H3), problem (2.3) admits a unique weak solution u, in
the sense of Definition (2.3).



6 International Journal of Stochastic Analysis

3. Construction of an Approximate Solution

In order to solve problem (2.3) by the Rothe method, we proceed as follows. Let n be a
positive integer, we divide the time interval I = [0, T] into n subintervals Inj := [tnj−1, t

n
j ],

j = 1, . . . , n, where tnj := jhn and hn := T/n. Then, for each n ≥ 1, problem (2.3)
may be approximated by the following recurrent sequence of time-discretized problems.
Successively, for j = 1, . . . , n, we look for functions un

j ∈ V such that

un
j − un

j−1
hn

−
d2un

j

dx2
= hn

j−1∑
i=0

a
(
tnj − tni

)
k
(
tni , u

n
i

)
+ fn

j , (3.1)

∫1

0
un
j (x)dx = 0, (3.2)

∫1

0
xun

j (x)dx = 0, (3.3)

starting from

un
0 = U0, δun

0 =
d2

dx2
U0 + f(0), (3.4)

where un
j (x) := u(x, tnj ), δu

n
j := (un

j − un
j−1)/hn, fn

j (x) := f(x, tnj ). For this, multiplying for all

j = 1, . . . , n, (3.1) by I2
xv :=

∫x
0(
∫ ξ
0v(τ)dτ)dξ and integrating over (0, 1), we get

∫1

0
δun

j (x)I
2
xv dx −

∫1

0

d2un
j

dx2 (x)I2
xv dx = hn

∫1

0

j−1∑
i=0

a
(
tnj − tni

)
k
(
tni , u

n
i

)
I2
xv dx +

∫1

0
fn
j I2

xv dx.

(3.5)

Noting that, using a standard integration by parts, we have

I2
1v =

∫1

0
(1 − ξ)v(ξ)dξ =

∫1

0
v(ξ)dξ −

∫1

0
ξv(ξ)dξ = 0, ∀v ∈ V. (3.6)

Carrying out some integrations by parts and invoking (3.6), we obtain for each term in (3.5)

∫1

0
δun

j I
2
xv dx = −

(
δun

j , v
)
B1
2(0,1)

,

∫1

0

d2un
j

dx2 (x)I2
xv dx =

(
un
j , v

)
,

hn

∫1

0

j−1∑
i=0

a
(
tnj − tni

)
k
(
tni , u

n
i (x)

)
I2
xv dx = −hn

j−1∑
i=0

a
(
tnj − tni

)(
k
(
tni , u

n
i

)
, v
)
B1
2(0,1)

,

(3.7)
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and for the last one

∫1

0
fn
j (x)I

2
xv(x)dx = −

(
fn
j , v

)
B1
2(0,1)

. (3.8)

By virtue of (3.7) and (3.8), (3.5) becomes

(
δun

j , v
)
B1
2(0,1)

+
(
un
j , v

)
= hn

j−1∑
i=0

a
(
tnj − tni

)(
k
(
tni , u

n
i

)
, v
)
B1
2(0,1)

+
(
fn
j , v

)
B1
2(0,1)

, (3.9)

or

(
un
j , v

)
B1
2(0,1)

+ hn

(
un
j , v

)

= h2
n

j−1∑
i=0

a
(
tnj − tni

)(
k
(
tni , u

n
i

)
, v
)
B1
2(0,1)

+ hn

(
fn
j , v

)
B1
2(0,1)

+
(
un
j−1, v

)
B1
2(0,1)

.

(3.10)

Let η(·, ·) : V × V → R and Lj(·) : V → R be two functions defined by

η(u, v) = (u, v)B1
2(0,1)

+ hn(u, v),

Lj(v) = h2
n

j−1∑
i=0

a
(
tnj − tni

)(
k
(
tni , u

n
i

)
, v
)
B1
2(0,1)

+ hn

(
fn
j , v

)
B1
2(0,1)

+
(
un
j−1, v

)
B1
2(0,1)

.
(3.11)

It is easy to see that the bilinear form η(·, ·) is continuous on V and V-elliptic, and
the form Lj(·) is continuous for each j = 1, . . . , n. Then, Lax-Milgram lemma guarantees the
existence and uniqueness of un

j , for all j = 1, . . . , n.

4. A Priori Estimates

Lemma 4.1. There exists C > 0 such that, for all n ≥ 1 and all j = 1, . . . , n, the solution uj of the
discretized problem (3.1)–(3.4) satisfies the estimates

∥∥∥un
j

∥∥∥ ≤ C, (4.1)
∥∥∥δun

j

∥∥∥
B1
2(0,1)

≤ C. (4.2)
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Proof. Testing the difference (3.9)j−1-(3.9)j with v = δun
j (∈ V ), taking into account assumptions

(H1)–(H3) and the Cauchy-Schwarz inequality, we obtain

∥∥∥δun
j

∥∥∥
B1
2(0,1)

+
∥∥∥un

j − un
j−1
∥∥∥
B1
2(0,1)

≤
∥∥∥δun

j−1
∥∥∥
B1
2(0,1)

+
C1

3
h2
n

j−2∑
i=0

∥∥un
i

∥∥
B1
2(0,1)

+
C1

3
hn +

C1

3
hn

∥∥∥un
j−1
∥∥∥
B1
2(0,1)

,

(4.3)

where

C1 := 3max{l2ζ, Tl2ζ +M1ζ + l1}, M1 := max
t∈I

|a(t)|, ζ := max{l4, l5}. (4.4)

Multiplying the left-hand side of the last inequality with (1 − (C1/3)hn)(< 1) and adding the
terme

2
3
C1hn

[∥∥∥un
j − un

j−1
∥∥∥
B1
2(0,1)

−
∥∥∥δun

j

∥∥∥
B1
2(0,1)

]
(< 0), (4.5)

we get

(1 − C1hn)
[∥∥∥δun

j

∥∥∥
B1
2(0,1)

+
∥∥∥un

j

∥∥∥
B1
2(0,1)

]

≤
[∥∥∥un

j−1
∥∥∥
B1
2(0,1)

+
∥∥∥δun

j−1
∥∥∥
B1
2(0,1)

]
+ C1h

2
n

j−2∑
i=0

∥∥un
i

∥∥
B1
2(0,1)

+ C1hn.

(4.6)

Applying the last inequality recursively, it follows that

(1 − C1hn)
j
[∥∥∥δun

j

∥∥∥
B1
2(0,1)

+
∥∥∥un

j

∥∥∥
B1
2(0,1)

]

≤
[∥∥un

0

∥∥
B1
2(0,1)

+
∥∥δun

0

∥∥
B1
2(0,1)

+ C1T
]
+ TC1hn

j−2∑
i=0

∥∥un
i

∥∥
B1
2(0,1)

,

(4.7)

or, by virtue of Lemma 2.2, there exists n0 ∈ N
∗ such that

∥∥∥δun
j

∥∥∥
B1
2(0,1)

+
∥∥∥un

j

∥∥∥
B1
2(0,1)

≤ C2, ∀n ≥ n0, (4.8)

where

C2 :=
(
exp(TC1) + 1

)[∥∥δun
0

∥∥
B1
2(0,1)

+
∥∥un

0

∥∥
B1
2(0,1)

+ TC1

]

× exp
[(
exp(TC1) + 1

)
TC1

]
,

(4.9)

and so our proof is complete.
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We address now the question of convergence and existence.

5. Convergence and Existence

Now let us introduce the Rothe function un(t) : I → V obtained from the functions uj by
piecewise linear interpolation with respect to time

un(t) = un
j−1 + δun

j

(
t − tnj−1

)
, in Inj , (5.1)

as well the step functions ũn(t), ûn(t), f̃n(t), and k̃(t, ũn(t)) defined as follows:

ũn(t) =

⎧⎨
⎩
un
0 , for t = 0,

un
j , in Ĩnj :=

(
tnj−1, t

n
j

]
,

ûn(t) =

⎧⎨
⎩
un
0 , for t = 0,

un
j−1, in Ĩnj ,

(5.2)

f̃n(t) =

⎧⎨
⎩
f(0), for t = 0,

fn
j , in Ĩnj ,

(5.3)

k̃n(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, for t = 0,

hn

j−1∑
i=0

a
(
tnj − tni

)
k
(
tni , u

n
i

)
, in Ĩnj =

(
tnj−1, t

n
j

]
.

(5.4)

Corollary 5.1. There exist C > 0 such that the estimates

‖un(t)‖ ≤ C, ‖ũn(t)‖ ≤ C, ∀t ∈ I, (5.5)
∥∥∥∥du

n

dt
(t)
∥∥∥∥
B1
2(0,1)

≤ C, for a.e. t ∈ I, (5.6)

‖ũn(t) − un(t)‖B1
2(0,1)

≤ Chn, ‖ûn(t) − un(t)‖B1
2(0,1)

≤ Chn, ∀t ∈ I, (5.7)
∥∥∥k̃n(t)

∥∥∥ ≤ C, ∀t ∈ I, (5.8)

hold for all n ∈ N
∗.

Proof. For the inequalities (5.5), (5.6), and (5.7) see [6, Corollary 4.2.], whereas for the last
inequality, assumption (H2) and estimate (4.1) guarantee the desired result.

Proposition 5.2. The sequence (un)n converges in the norm of the space C(I, B1
2(0, 1)) to some

function u ∈ C(I, B1
2(0, 1)) and the error estimate

‖un − u‖C(I,B1
2(0,1))

≤ C
√
hn (5.9)

takes place for all n ≥ n0.
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Proof. By virtue of (5.2), (5.3), and (5.4) the variational equation (3.9)may be rewritten in the
form

(
dun

dt
(t), v

)
B1
2(0,1)

+ (ũn(t), v) =
(
k̃n(t), v

)
B1
2(0,1)

+
(
f̃n(t), v

)
B1
2(0,1)

, (5.10)

for a.e. t ∈ [0, T]. In view of (5.10), using (5.6) and (5.8)with the fact that

∥∥∥f̃n(t)
∥∥∥
B1
2(0,1)

≤ M2 := max
t∈I

∥∥f(t)∥∥B1
2(0,1)

< ∞, (5.11)

we obtain

|(ũn(t), v)| ≤
(∥∥∥k̃n(t)

∥∥∥
B1
2(0,1)

+
∥∥∥f̃n(t)

∥∥∥
B1
2(0,1)

+
∥∥∥∥du

n

dt
(t)
∥∥∥∥
B1
2(0,1)

)
‖v‖B1

2(0,1)

≤ C‖v‖B1
2(0,1)

, a.e. t ∈ [0, T].

(5.12)

Now, for n, m being two positive integers, testing the difference (5.10)n-(5.10)m with v =
un(t) − um(t) which is in V, with the help of the Cauchy-Schwarz inequality and taking into
account that

2
(

d

dt
u(t), u(t)

)
B1
2(0,1)

=
d

dt
‖u(t)‖2

B1
2(0,1)

, a.e. t ∈ [0, T], (5.13)

and, by virtue of (5.12) we obtain after some rearrangements

1
2
d

dt
‖un(t) − um(t)‖2

B1
2(0,1)

+ ‖ũn(t) − ũm(t)‖2

≤ C‖um(t) − ũm(t)‖B1
2(0,1)

+ C‖ũn(t) − un(t)‖B1
2(0,1)

+
∥∥∥k̃n(t) − k̃m(t)

∥∥∥
B1
2(0,1)

‖un(t) − um(t)‖B1
2(0,1)

+
∥∥∥f̃n(t) − f̃m(t)

∥∥∥
B1
2(0,1)

‖un(t) − um(t)‖B1
2(0,1)

, a.e. t ∈ [0, T].

(5.14)

To derive the required result, we need to estimate the third and the last terms in the right-
hand side, for this, let t be arbitrary but fixed in (0, T], without loss of generality we can
suppose that there exist three positive integers p, q and β, such that

t ∈
(
tnp−1, t

n
p

]
∩
(
tmq−1, t

m
q

]
, n = βm, tnp = tmq . (5.15)
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Hence, using (5.4) we can write

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

= hm

∥∥∥∥∥∥
p−1∑
j=0

⎡
⎣β(j+1)−1∑

i=jβ

(
a
(
tnp − tnj

)
k
(
tnj , u

n
j

)
− a
(
tmq − tmi

)
k
(
tmi , u

m
i

))
⎤
⎦
∥∥∥∥∥∥
B1
2(0,1)

.

(5.16)

By virtue of assumption (H1) and the fact that |a(tnp − tnj ) − a(tmq − tmi )| ≤ Chn, there exist
εn ∈ [0, Chn] such that

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

≤ hm

p−1∑
j=0

⎡
⎣β(j+1)−1∑

i=jβ

∥∥∥(Chn − εn)k
(
tnj , u

n
j

)∥∥∥
B1
2(0,1)

+
∣∣∣a(tmq − tmi

)∣∣∣
∥∥∥k(tnj , un

j

)
− k
(
tmi , u

m
i

)∥∥∥
B1
2(0,1)

⎤
⎦.

(5.17)

Therefore, recalling assumptions (H1), (H2) and having in mind that εn ∈ [0, Chn], we
estimate

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

≤ hm

p−1∑
j=0

⎡
⎣β(j+1)−1∑

i=jβ

Chn + C

(
hn +

∥∥∥un
j − um

i

∥∥∥
B1
2(0,1)

)⎤
⎦, (5.18)

from where, we derive for all s ∈ (tmi , t
m
i+1]

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

≤ hm

p−1∑
j=0

⎡
⎣β(j+1)−1∑

i=jβ

Chn + C
(
hn + ‖ũn(s) − un(s)‖B1

2(0,1)

+‖un(s) − um(s)‖B1
2(0,1)

+ ‖um(s) − ũm(s)‖B1
2(0,1)

)⎤⎦.
(5.19)

Taking the supremum with respect to s from 0 to t in the right-hand side, invoking the fact
that s ∈ (tmi , t

m
i+1] ⊂ (tnj−1, t

n
j ] and estimate (5.7), we obtain

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

≤ hm

q−1∑
i=0

(
Chn + Csup

0≤s≤t
‖un(s) − um(s)‖B1

2(0,1)

)
, (5.20)

so that

∥∥∥k̃n(t) − k̃m(t)
∥∥∥
B1
2(0,1)

≤ Chn + Csup
0≤s≤t

‖un(s) − um(s)‖B1
2(0,1)

. (5.21)
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Let t ∈ (tnp−1, t
n
p] ∩ (tmq−1, t

m
q ], from assumption (H1) it follows that

∥∥∥f̃n(t) − f̃m(t)
∥∥∥
B1
2(0,1)

=
∥∥∥f(tnp

)
− f
(
tmq

)∥∥∥
B1
2(0,1)

≤ l1
∣∣∣tnp − tmq

∣∣∣
≤ l1hn.

(5.22)

Ignoring the second term in the left-hand side of (5.14) which is clearly positive and using
estimates (5.5), (5.7), (5.21), and (5.22) yield

d

dt
‖un(t) − um(t)‖2

B1
2(0,1)

≤ C(hn + hm) + Csup
0≤s≤t

‖un(s) − um(s)‖2
B1
2(0,1)

, a.e. t ∈ [0, T]. (5.23)

Integrating this inequality with respect to time from 0 to t and invoking the fact that un(0) =
um(0) = U0,we get

‖un(t) − um(t)‖2
B1
2(0,1)

≤ C(hn + hm) + C

∫ t

0
sup
0≤ξ≤t

‖un(ξ) − um(ξ)‖2
B1
2(0,1)

dξ, (5.24)

whence

sup
0≤s≤t

‖un(s) − um(s)‖2
B1
2(0,1)

≤ C(hn + hm) + C

∫ t

0
sup
0≤ξ≤t

‖un(ξ) − um(ξ)‖2
B1
2(0,1)

dξ. (5.25)

Accordingly, by Gronwall’s lemma we obtain

sup
0≤s≤t

‖un(s) − um(s)‖2
B1
2(0,1)

≤ C(hn + hm) exp(Ct), ∀t ∈ [0, T], (5.26)

consequently

sup
0≤s≤t

‖un(s) − um(s)‖B1
2(0,1)

≤ C
√
hn + hm (5.27)

takes place for all n,m ∈ N
∗. This implies that (un(t))n is a Cauchy sequence in the Banach

space C(I, B1
2(0, 1)), and hence it converges in the norm of this latter to some function u ∈

C(I, B1
2(0, 1)). Besides, passing to the limit m → ∞ in (5.27), we obtain the desired error

estimate, which finishes the proof.

Now, we present some properties of the obtained solution.
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The limit-function u from Proposition 5.2, possesses the following properties:

(i) u ∈ C(I, B1
2(0, 1)) ∩ L∞(I, V )),

(ii) u is strongly differentiable a.e. in I and du/dt ∈ L∞(I, B1
2(0, 1)),

(iii) ũn(t) → u(t) in B1
2(0, 1) for all t ∈ I,

(iv) un(t), ũn(t) ⇀ u(t) in V for all t ∈ I,

(v) (dun/dt)(t) ⇀ (du/dt)(t) in L2(I, B1
2(0, 1)).

Proof. On the basis of estimates (5.5) and (5.6), uniform convergence statement from
Proposition 5.2, and the continuous embedding V ↪→ B1

2(0, 1), the assertions of the present
theorem are a direct consequence of [2, Lemma 1.3.15].

Theorem 5.3. Under Assumptions (H1)–(H3), (2.3) admits a unique weak solution, namely, the
limit function u from Proposition 5.2, in the sense of Definition 2.3.

Proof. We have to show that the limit function u satisfies all the conditions (i), (ii), (iii),
and (iv) of Definition 2.3. Obviously, in light of the properties of the function u listed in
Theorem 5.3, the first two conditions of Definition 2.3 are already seen. On the other hand,
since un → u in C(I, V ) as n → ∞ and, by construction, un(0) = U0, it follows that u(0) = U0,
so the initial condition is also fulfilled, that is, Definition 2.3(iii) takes place. It remains to see
that the integral identity (2.21) is obeyed by u. For this, integrating (5.10) over (0, t) and using
the fact that un(0) = U0, we get

(un(t) −U0, v)B1
2(0,1)

+
∫ t

0
(ũn(τ), v)dτ =

∫ t

0

(
k̃(τ, ũn(τ)), v

)
B1
2(0,1)

dτ +
∫ t

0

(
f̃n(τ), v

)
B1
2(0,1)

dτ,

(5.28)

consequently, after some rearrangements

(un(t) −U0, v)B1
2(0,1)

+
∫ t

0
(ũn(τ), v)dτ

=
∫ t

0

(∫ τ

0
a(τ − s)k(s, u(s))ds, v

)
B1
2(0,1)

dτ +
∫ t

0

(
f(τ), v

)
B1
2(0,1)

dτ

+
∫ t

0

(
k̃(τ, ũn(τ)) −

∫ τ

0
a(τ − s)k(s, u(s))ds, v

)
B1
2(0,1)

dτ

+
∫ t

0

(
f̃n(τ) − f(τ), v

)
B1
2(0,1)

dτ.

(5.29)

Let ŝn : I → I and ŝn : I → I denote the functions

ŝn(t) =

⎧⎨
⎩
0, for t = 0,

tnj−1, in Ĩnj ,
s̃n(t) =

⎧⎨
⎩
0, for t = 0,

tnj , in Ĩnj .
(5.30)
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To investigate the desired result, we prove some convergence statements. Using (5.2), (5.4),
and (5.30)we have for all t ∈ (tnj−1, t

n
j ]

k̃(t, ũn(t)) −
∫ t

0
a(t − s)k(s, u(s))ds

=
∫ tnj

0

[
a
(
tnj − ŝn(s)

)
k(ŝn(s), ûn(s)) − a(t − s)k(s, u(s))

]
ds +

∫ tnj

t

a(t − s)k(s, u(s))ds.

(5.31)

Taking into account (5.5), (5.9), and assumptions (H1), (H2) it follows that

∥∥∥a(tnj − ŝn(s)
)
k(ŝn(s), ûn(s)) − a(t − s)k(s, u(s))

∥∥∥
B1
2(0,1)

≤ C
√
hn. (5.32)

Thanks to (5.31) and (5.32) we obtain

∥∥∥∥∥k̃(t, ũn(t)) −
∫ t

0
a(t − s)k(s, u(s))ds

∥∥∥∥∥
B1
2(0,1)

≤ C
√
hn. (5.33)

On the other hand, in view of the assumed Lipschitz continuity of f , we have

∥∥∥f̃n(τ) − f(τ)
∥∥∥
B1
2(0,1)

≤ ∥∥f(s̃n(τ)) − f(τ)
∥∥
B1
2(0,1)

≤ l1hn.

(5.34)

Now, the sequences {(ũn(τ), v)}, {(f̃n(τ), v)B1
2(0,1)

}, and {(k̃(τ, ũn(τ)), v)B1
2(0,1)

} are uniformly
bounded with respect to both τ and n, so the Lebesgue theorem of majorized convergence is
applicable to (5.29). Thus, having in mind (5.7), (5.9), (5.33), and (5.34), we derive that

(u(t) −U0, v)B1
2(0,1)

+
∫ t

0
(u(τ), v)dτ

=
∫ t

0

(∫ τ

0
a(τ − s)k(s, u(s))ds, v

)
B1
2(0,1)

dτ +
∫ t

0

(
f(τ), v

)
B1
2(0,1)

dτ

(5.35)

takes place for all v ∈ V and t ∈ [0, T]. Finally, differentiating (5.35) with respect to t,we get

(
d

dt
u(t), v

)
B1
2(0,1)

+ (u(t), v)

=

(∫ t

0
a(t − s)k(s, u(s))ds, v

)
B1
2(0,1)

+
(
f(t), v

)
B1
2(0,1)

, a.e. t ∈ [0, T].

(5.36)
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The uniqueness may be argued in the usual manner. Indeed, exploiting an idea in [11],
consider u1 and u2 two different solutions of (2.3), and define w = u1 − u2 then, we have

(
d

dt
w(t), v

)
B1
2(0,1)

+ (w(t), v) =

(∫ t

0
a(t − s)[k(s, u1(s)) − k(s, u2(s))]ds, v

)
B1
2(0,1)

. (5.37)

Choosing v = w(t) as a test function, with the aid of Cauchy-Schwarz inequality and
assumption (H1), we obtain

1
2
d

dt
‖w(t)‖2

B1
2(0,1)

+ ‖w(t)‖2 ≤ C

∫ t

0

[
‖k(s, u1(s)) − k(s, u2(s))‖B1

2(0,1)

]
ds‖w(t)‖B1

2(0,1)
. (5.38)

Let ξ ∈ [0, p] such that

‖w(ξ)‖B1
2(0,1)

= max
s∈[0,p]

‖w(s)‖B1
2(0,1)

, (5.39)

integrating (5.38) over (0, p), 0 ≤ p ≤ T , using (5.39), and invoking assumption (H2), we get

∫p

0

[
1
2
d

dt
‖w(t)‖2

B1
2(0,1)

+ ‖w(t)‖2
]
dt ≤ Cp2‖w(ξ)‖2

B1
2(0,1)

, (5.40)

consequently, with the fact that w(0) = 0

∫p

0

[
1
2
d

dt
‖w(t)‖2

B1
2(0,1)

+ ‖w(t)‖2
]
dt ≤ Cp2

∫ ξ

0

d

dt
‖w(t)‖2

B1
2(0,1)

dt. (5.41)

Choosing p as a constant verifying the condition

∃α ∈ N, T = αp, Cp2 ≤ 1
2
, (5.42)

we have, by virtue of (5.41)

∫p

0

1
2
d

dt
‖w(t)‖2

B1
2(0,1)

dt +
∫p

0
‖w(t)‖2dt ≤

∫ ξ

0

1
2
d

dt
‖w(t)‖2

B1
2(0,1)

dt, (5.43)

taking into account that ξ ≤ p, we obtain

‖w(t)‖ = 0, on
[
0, p

]
. (5.44)

Following the same lines as for [0, p], we deduce that

‖w(t)‖ = 0, on
[
ip, (i + 1)p

]
, i = 1, 2, 3, . . . , (5.45)

therefore, we derive w(t) ≡ 0, on [0, T], then u1 ≡ u2. This achives the proof.
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intégrales pour une classe d’équations paraboliques,”Maghreb Mathematical Review, vol. 9, no. 1-2, pp.
55–70, 2000.

[6] N. Merazga and A. Bouziani, “Rothe method for a mixed problem with an integral condition for the
two-dimensional diffusion equation,” Abstract and Applied Analysis, vol. 2003, no. 16, pp. 899–922,
2003.

[7] N. Merazga and A. Bouziani, “Rothe time-discretization method for a nonlocal problem arising in
thermoelasticity,” Journal of Applied Mathematics and Stochastic Analysis, vol. 2005, no. 1, pp. 13–28,
2005.

[8] N. Merazga and A. Bouziani, “On a time-discretization method for a semilinear heat equation with
purely integral conditions in a nonclassical function space,” Nonlinear Analysis, vol. 66, no. 3, pp.
604–623, 2007.

[9] D. Bahaguna, A. K. Pani, and V. Raghavendra, “Rothe’s method to semilinear hyperbolic
integrodifferential equations,” Journal of Applied Mathematics and Stochastic Analysis, vol. 3, no. 4, pp.
245–252, 1990.

[10] D. Bahuguna and V. Raghavendra, “Rothe’s method to parabolic integrodifferential equations via
abstract integrodifferential equations,” Applicable Analysis, vol. 33, no. 3-4, pp. 153–167, 1989.

[11] D. Bahuguna and R. Shukla, “Method of semidiscretization in time for quasilinear integrodifferential
equations,” International Journal of Mathematics and Mathematical Sciences, vol. 2004, no. 9, pp. 469–478,
2004.

[12] D. Bahuguna and S. K. Srivastava, “Approximation of solutions to evolution integrodifferential
equations,” Journal of Applied Mathematics and Stochastic Analysis, vol. 9, no. 3, pp. 315–322, 1996.


