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Dynamical systems driven by Gaussian noises have been considered extensively in modeling,
simulation, and theory. However, complex systems in engineering and science are often subject
to non-Gaussian fluctuations or uncertainties. A coupled dynamical system under a class of Lévy
noises is considered. After discussing cocycle property, stationary orbits, and random attractors, a
synchronization phenomenon is shown to occur, when the drift terms of the coupled system satisfy
certain dissipativity and integrability conditions. The synchronization result implies that coupled
dynamical systems share a dynamical feature in some asymptotic sense.

1. Introduction

Synchronization of coupled dynamical systems is an ubiquitous phenomenon that has been
observed in biology, physics, and other areas. It concerns coupled dynamical systems that
share a dynamical feature in an asymptotic sense. A descriptive account of its diversity
of occurrence can be found in the recent book [1]. Recently Caraballo and Kloeden [2, 3]
proved that synchronization in coupled deterministic dissipative dynamical systems persists
in the presence of various Gaussian noises (in terms of Brownian motion), provided that
appropriate concepts of random attractors and stochastic stationary solutions are used
instead of their deterministic counterparts.
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In this paper we investigate a synchronization phenomenon for coupled dynamical
systems driven by nonGaussian noises. We show that couple dissipative systems exhibit
synchronization for a class of Lévy motions.

This paper is organized as follows. We first recall some basic facts about random
dynamical systems (RDSs) as well as formulate the problem of synchronization of stochastic
dynamical systems driven by Lévy noises in Section 2. The main result (Theorem 3.3) and an
example are presented in Section 3.

Throughout this paper, the norm of a vector x in Euclidean space R
d is always denote

by |x|.

2. Dynamical Systems Driven by Lévy Noises

Dynamical systems driven by nonGaussian Lévy motions have attracted much attention
recently [4, 5]. Under certain conditions, the SDEs driven by Lévy motion generate stochastic
flows [4, 6], and also generate random dynamical systems (or cocycles) in the sense of Arnold
[7]. Recently, exit time estimates have been investigated by Imkeller and Pavlyukevich [8],
and Imkeller et al. [9], and Yang and Duan [10] for SDEs driven by Lévy motion. This
shows some qualitatively different dynamical behavior between SDEs driven by Gaussian
and nonGaussian noises.

2.1. Lévy Processes

A Lévy process or motion on R
d is characterized by a drift parameter γ ∈ R

d, a covariance
d × d matrix A, and a nonnegative Borel measure ν, defined on (Rd,B(Rd)) and concentrated
on R

d \ {0}, which satisfies

∫
Rd\{0}

(∣∣y∣∣2 ∧ 1
)
ν
(
dy

)
< ∞, (2.1)

or equivalently

∫
Rd\{0}

∣∣y∣∣2
1 +

∣∣y∣∣2 ν
(
dy

)
< ∞. (2.2)

This measure ν is the so-called the Lévy jumpmeasure of the Lévy process Lt. Moreover Lévy
process Lt has the following Lévy-Itô decomposition:

Lt = γt + Bt +
∫
|x|<1

xÑ(t, dx) +
∫
|x|≥1

xN(t, dx), (2.3)

where N(dt, dx) is Poisson random measure,

Ñ(dt, dx) = N(dt, dx) − ν(dx)dt, (2.4)
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is the compensated Poisson random measure of Lt, and Bt is an independent Brownian
motion on R

d with covariance matrixA (see [4, 10–12]). We call (A, ν, γ) the generating triplet.
General semimartingales, especially Lévy motions, are thought to be appropriate

models for nonGaussian processes with jumps [11]. Let us recall that a Lévy motion Lt is
a nonGaussian process with independent and stationary increments. Moreover, its sample
paths are only continuous in probability, namely, P(|Lt − Lt0 | ≥ δ) → 0 as t → t0 for
any positive δ. With a suitable modification [4], these paths may be taken as càdlàg, that
is, paths are continuous on the right and have limits on the left. This continuity is weaker
than the usual continuity in time. In fact, a càdlàg function has finite or at most countable
discontinuities on any time interval (see, e.g., [4, page 118]). This generalizes the Brownian
motion Bt, since Bt satisfies all these three conditions, but additionally, (i) almost every sample
path of the Brownian motion is continuous in time in the usual sense, and (ii) the increments
of Brownian motion are Gaussian distributed.

The next useful lemma provides some important pathwise properties of Lt with two-
sided time t ∈ R.

Lemma 2.1 (pathwise boundedness and convergence). Let Lt be a two-sided Lévy motion on R
d

for which E|L1| < ∞ and EL1 = 0. Then we have the following.

(i) limt→±∞(1/t)Lt = 0, a.s.

(ii) The integrals
∫ t
−∞e

−λ(t−s) dLs(ω) are pathwisely uniformly bounded in λ > 1 on finite time
intervals [T1, T2] in R.

(iii) The integrals
∫ t
T1
e−λ(t−s) dLs(ω) → 0 as λ → ∞, pathwise on finite time intervals [T1, T2]

in R.

Proof. (i) This convergence result comes from the law of large numbers, in [11, Theorem
36.5].

(ii) Since the function h(t) = e−λt is continuous in t, integrating by parts we obtain

∫ t

−∞
e−λ(t−s) dLs(ω) = Lt(ω) − λ

∫ t

−∞
e−λ(t−s)Ls(ω)ds. (2.5)

Then by (i) and the fact that every càdlàg function is bounded on finite closed intervals, we
conclude (ii).

(iii) Integrating again by parts, it follows that

∫ t

T1

e−λ(t−s) dLs(ω) = (Lt − LT1)e
−λ(t−T1) + λ

∫ t

T1

e−λ(t−s)(Lt(ω) − Ls(ω))ds, (2.6)

from which the result follows.

Remark 2.2. The assumptions on Lt in the above lemma are satisfied by a wide class of Lévy
processes, for instance, the symmetric α-stable Lévy motion on R

d with 1 < α < 2. Indeed, in
this case, we have

∫
|x|> 1|x|ν(dx) < ∞, and then E|L1| < ∞, see [11, Theorem 25.3].

For the canonical sample space of Lévy processes, that is, Ω = D(R,Rd) of càdlàg
functions which are defined on R and taking values in R

d is not separable, if we use



4 International Journal of Stochastic Analysis

the usual compact-open metric. However, it is complete and separable when endowed with
the Skorohod metric (see, e.g., [13], [14, page 405]), in which case we call D(R,Rd) a
Skorohod space.

2.2. Random Dynamical Systems

Following Arnold [7], a random dynamical system (RDS) on a probability space (Ω,F,P)
consists of two ingredients: a driving flow θt on the probability space Ω, that is, θt is a
deterministic dynamical system, and a cocycle mapping ϕ : R × Ω × R

d → R
d, namely, ϕ

satisfies the conditions

ϕ(0, ω) = idRd , ϕ(t + s,ω) = ϕ(t, θsω) ◦ ϕ(s,ω) (2.7)

for allω ∈ Ω and all s, t ∈ R. This cocycle is required to be at least measurable from the σ-field
B(R) × F × B(Rd) to the σ-field B(Rd).

For random dynamical systems driven by Lévy noise we take Ω = D(R,Rd) with
the Skorohod metric as the canonical sample space and denote by F := B(D(R,Rd)) the
associated Borel σ-field. Let μL be the (Lévy) probability measure on F which is given by
the distribution of a two-sided Lévy process with paths in D(R,Rd).

The driving system θ = (θt, t ∈ R) on Ω is defined by the shift

(θtω)(s) := ω(t + s) −ω(t). (2.8)

The map (t, ω) → θtω is continuous, thus measurable ([7, page 545]), and the (Lévy)
probability measure is θ-invariant, that is,

μL

(
θ−1
t (A)

)
= μL(A) (2.9)

for all A ∈ F, see [4, page 325].
We say that a family Â = {A(ω), ω ∈ Ω} of nonempty measurable compact subsets

A(ω) of R
d is invariant for a RDS (θ, ϕ), if ϕ(t, ω,A(ω)) = A(θtω) for all t > 0 and that it is a

random attractor if in addition it is pathwise pullback attracting in the sense that

H∗
d

(
ϕ(t, θ−tω,D(θ−tω)), A(ω)

) −→ 0 as t −→ ∞ (2.10)

for all suitable families (called the attracting universe) of D̂ = {D(ω), ω ∈ Ω} of nonempty
measurable bounded subsets D(ω) of R

d, where H∗
d
(A,B) = supx∈Ainfy∈B|x − y| is the

Hausdorff semi-distance on R
d.

The following result about the existence of a random attractor may be proved similarly
as in [2, 15–18].
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Lemma 2.3 (random attractor for càdlàg RDS). Let (θ, ϕ) be an RDS on Ω × R
d and let ϕ be

continuous in space, but càdlàg in time. If there exits a family B̂ = {B(ω), ω ∈ Ω} of nonempty
measurable compact subsets B(ω) of R

d and a TD̂,ω ≥ 0 such that

ϕ(t, θ−tω,D(θ−tω)) ⊂ B(ω), ∀t ≥ TD̂,ω, (2.11)

for all families D̂ = {D(ω), ω ∈ Ω} in a given attracting universe, then the RDS (θ, ϕ) has a random
attractor Â = {A(ω), ω ∈ Ω} with the component subsets defined for each ω ∈ Ω by

A(ω) =
⋂
s>0

⋃
t≥s

ϕ(t, θ−tω, B(θ−tω)). (2.12)

Forevermore if the random attractor consists of singleton sets, that is, A(ω) = {X∗(ω)} for some
random variable X∗, then X∗

t (ω) = X∗(θtω) is a stationary stochastic process.

We also need the following Gronwall’s lemma from [19].

Lemma 2.4. Let x(t) satisfy the differential inequality

d

dt+
x ≤ g(t)x + h(t), (2.13)

where (d/dt+)x := limh↓0+((x(t + h) − x(t))/h) is right-hand derivative of x. Then

x(t) ≤ x(0) exp

[∫ t

0
g(r)dr

]
+
∫ t

0
exp

[∫ t

s

g(r)dr

]
h(s)ds. (2.14)

2.3. Dissipative Synchronization

Suppose that we have two autonomous ordinary differential equations in R
d,

dx

dt
= f(x),

dy

dt
= g

(
y
)
, (2.15)

where the vector fields f and g are sufficiently regular (e.g., differentiable) to ensure the
existence and uniqueness of local solutions, and additionally satisfy one-sided dissipative
Lipschitz conditions

max
{〈
x1 − x2, f(x1) − f(x2)

〉
,
〈
x1 − x2, g(x1) − g(x2)

〉} ≤ −l|x1 − x2|2 (2.16)

on R
d for some l > 0. These dissipative Lipschitz conditions ensure existence and uniqueness

of global solutions. Each of the systems has a unique globally asymptotically stable equilibria,
x and y, respectively [18]. Then, the coupled deterministic dynamical system in R

2d

dx

dt
= f(x) + λ

(
y − x

)
,

dy

dt
= g(x) + λ

(
x − y

)
(2.17)
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with parameter λ > 0 also satisfies a one-sided dissipative Lipschitz condition and, hence,
also has a unique equilibrium (xλ, yλ), which is globally asymptotically stable [18]. Moreover,
(xλ, yλ) → (z, z) as λ → ∞, where z is the unique globally asymptotically stable equilibrium
of the “averaged” system in R

d

dz

dt
=

1
2
(
f(z) + g(z)

)
. (2.18)

This phenomenon is known as synchronization for the coupled deterministic system (2.17).
The parameter λ often appears naturally in the context of the problem under consideration.
For example in control theory it is a control parameter which can be chosen by the engineer,
whereas in chemical reactions in thin layers separated by a membrane it is the reciprocal of
the thickness of the layers; see [20].

Caraballo and Kloeden [2], and Caraballo et al. [3] showed that this synchronization
phenomenon persists under Gaussian Brownian noise, provided that asymptotically stable
stochastic stationary solutions are considered rather than asymptotically stable steady state
solutions. Recall that a stationary solution X∗ of a SDE system may be characterized as a
stationary orbit of the corresponding random dynamical system (θ, ϕ) (defined by the SDE
system), namely, ϕ(t, ω,X∗(ω)) = X∗(θtω).

The aim of this paper is to investigate synchronization under nonGaussian Lévy noise.
In particular, we consider a coupled SDE system in R

d, driven by Lévy motion

dXt =
(
f(Xt) + λ(Yt −Xt)

)
dt + adL1

t ,

dYt =
(
g(Yt) + λ(Xt − Yt)

)
dt + bdL2

t ,
(2.19)

where a, b ∈ R
d are constant vectors with no components equal to zero, L1

t , L2
t are

independent two-sided scalar Lévy motion as in Lemma 2.1, and f, g satisfy the one-sided
dissipative Lipschitz conditions (2.16).

In addition to the one-sided Lipschitz dissipative condition (2.16) on the functions f
and g, as in [2] we further assume the following integrability condition. There exists m0 > 0
such that for any m ∈ (0, m0], and any càdlàg function u : R → R

d with subexponential
growth it follows

∫ t

−∞
ems

∣∣f(u(s))∣∣2ds < ∞,

∫ t

−∞
ems

∣∣g(u(s))∣∣2ds < ∞. (2.20)

Without loss of generality, we assume that the one-sided dissipative Lipschitz constant l ≤ m0.
In the next section we will show that the coupled system (2.19) has a unique stationary

solution (X̃λ
t , Ỹ

λ
t )which is pathwise globally asymptotically stable with (X̃λ

t , Ỹ
λ
t ) → (Z∞

t , Z∞
t )

as λ → ∞, pathwise on finite time intervals [T1, T2], where Z∞
t is the unique pathwise

globally asymptotically stable stationary solution of the “averaged” SDE in R
d

dZt =
1
2
[
f(Zt) + g(Zt)

]
dt +

1
2
adL1

t +
1
2
bdL2

t . (2.21)
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3. Systems Driven by Lévy Noise

For the coupled system (2.19), we have the following two lemmas about its stationary
solutions.

Lemma 3.1 (existence of stationary solutions). If the Assumption (2.20) holds, f and g are
continuous and satisfy the one-sided Lipschitz dissipative conditions (2.16) with Lipschitz constant l,
then the coupled stochastic system (2.19) has a unique stationary solution.

Proof. First, the stationary solutions of the Langevin equations [4, 21]

dXt = −λXtdt + adL1
t , dYt = −λYtdt + bdL2

t (3.1)

are given by

X
λ

t = ae−λt
∫ t

−∞
eλsdL1

t , Y
λ

t = be−λt
∫ t

−∞
eλsdL2

t . (3.2)

The differences of the solutions of (2.19) and these stationary solutions satisfy a system of
random ordinary differential equations, with right-hand derivative in time

d

dt+

(
Xt −X

λ

t

)
= f(Xt) + λ(Yt −Xt) + λX

λ

t ,

d

dt+

(
Yt − Y

λ

t

)
= g(Yt) + λ(Xt − Yt) + λY

λ

t .
(3.3)

The equations (3.3) are equivalent to

d

dt+
Uλ

t = f(Xt) + λ
(
V λ
t −Uλ

t

)
+ λY

λ

t ,
d

dt+
V λ
t = g(Yt) + λ

(
Uλ

t − V λ
t

)
+ λX

λ

t , (3.4)

where Uλ
t = Xt −X

λ

t and V λ
t = Yt − Y

λ

t . Thus,

1
2
d

dt+

(∣∣∣Uλ
t

∣∣∣2 +
∣∣∣V λ

t

∣∣∣2
)

=
(
Uλ

t , f

(
Uλ

t +X
λ

t

)
− f

(
X

λ

t

))
+
(
V λ
t , g

(
V λ
t + Y

λ

t

)
− g

(
Y

λ

t

))

+
(
Uλ

t , f

(
X

λ

t

)
+ λY

λ

t

)
+
(
V λ
t , g

(
Y

λ

t

)
+ λX

λ

t

)
− λ

∣∣∣Uλ
t − V λ

t

∣∣∣2

≤ − l

2

(∣∣∣Uλ
t

∣∣∣2 +
∣∣∣V λ

t

∣∣∣2
)
+
2
l

∣∣∣∣f
(
X

λ

t

)
+ λY

λ

t

∣∣∣∣
2

+
2
l

∣∣∣∣g
(
Y

λ

t

)
+ λX

λ

t

∣∣∣∣
2

.

(3.5)
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Hence, by Lemma 2.4,

∣∣∣Uλ
t

∣∣∣2 +
∣∣∣V λ

t

∣∣∣2 ≤
(∣∣∣Uλ

t0

∣∣∣2 +
∣∣∣V λ

t0

∣∣∣2
)
el(t−t0)

+
4e−lt

l

∫ t

t0

els
[∣∣∣∣f

(
X

λ

t

)
+ λY

λ

t

∣∣∣∣
2

+
∣∣∣∣g
(
Y

λ

t

)
+ λX

λ

t

∣∣∣∣
2
]
ds.

(3.6)

Define

|Rλ(ω)|2 = 1 +
4
l

∫0

−∞
els

[∣∣∣∣f
(
X

λ
(θsω)

)
+ λY

λ
(θsω)

∣∣∣∣
2

+
∣∣∣∣g
(
Y

λ
(θsω)

)
+ λX

λ
(θsω)

∣∣∣∣
2
]
ds

(3.7)

and let Bλ
2d(ω) be a random closed ball in R

2d centered on the origin and of radius Rλ(ω).
Now we can use pathwise pullback convergence (i.e., with t0 → −∞) to show that

|Uλ
t |

2
+ |V λ

t |
2
is pathwise absorbed by the family B̂λ

2d = {Bλ
2d(ω), ω ∈ Ω}, that is, for appropriate

families D̂, there exists TD̂,ω ≥ 0 such that

ϕ(t, θ−tω,D(θ−tω)) ⊂ Bλ
2d(ω), ∀t ≥ TD̂,ω. (3.8)

Hence, by Lemma 2.3, the coupled system has a random attractor Âλ = {Aλ(ω), ω ∈
Ω}with Aλ(ω) ⊂ Bλ

2d(ω).
Note that, by Lemma 2.1, it can be shown that the random compact absorbing balls

Bλ
2d(ω) are contained in the common compact ball for λ ≥ 1.

However, the difference (ΔXt,ΔYt) = (X1
t −X2

t , Y
1
t −Y 2

t ) of any pair of solutions satisfies
the system of random ordinary differential equations

d

dt+
ΔXt = f

(
X1

t

)
− f

(
X2

t

)
+ λ(ΔYt −ΔXt),

d

dt+
ΔYt = g

(
Y 1
t

)
− g

(
Y 2
t

)
− λ(ΔYt −ΔXt),

(3.9)

so

d

dt+

(
|ΔXt|2 + |ΔYt|2

)
= 2

(
ΔXt, f

(
X1

t

)
− f

(
X2

t

))
+ 2

(
ΔYt, g

(
Y 1
t

)
− g

(
Y 2
t

))

− 2λ|ΔXt −ΔYt|2

≤ −2l
(
|ΔXt|2 + |ΔYt|2

)
(3.10)

from which we obtain

|ΔXt|2 + |ΔYt|2 ≤
(
|ΔX0|2 + |ΔY0|2

)
e−2lt (3.11)
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which means all solutions converge pathwise to each other as t → ∞. Thus the random
attractor consists of a singleton set formed by an ordered pair of stationary processes
(X̃λ

t (ω), Ỹ λ
t (ω)) or equivalently (X̃λ(θtω), Ỹ λ(θtω)).

Lemma 3.2 (a property of stationary solutions). The stationary solutions of the coupled stochastic
system (2.19) have the following asymptotic behavior:

X̃λ
t (ω) − Ỹ λ

t (ω) −→ 0 as λ −→ ∞ (3.12)

pathwise on any bounded time interval [T1, T2] of R.

Proof. Since

d
(
X̃λ

t − Ỹ λ
t

)
=
(
−2λ

(
X̃λ

t − Ỹ λ
t

)
+ f

(
X̃λ

t

)
− g

(
Ỹ λ
t

))
dt + adL1

t − bdL2
t , (3.13)

we have

d
(
Dλ

t e
2λt

)
= e2λt

(
f
(
X̃λ

t

)
− g

(
Ỹ λ
t

))
+ ae2λtdL1

t − be2λtdL2
t , (3.14)

where Dλ
t = X̃λ

t − Ỹ λ
t , so pathwise

∣∣∣Dλ
t

∣∣∣ ≤ e−2λ(t−T1)
∣∣∣Dλ

T1

∣∣∣ +
∫ t

T1

e−2λ(t−s)
(∣∣∣f(X̃λ

s

)∣∣∣ + ∣∣∣g(Ỹ λ
s

)∣∣∣)ds

+ |a|
∣∣∣∣∣
∫ t

T1

e−2λ(t−s)dL1
t

∣∣∣∣∣ + |b|
∣∣∣∣∣
∫ t

T1

e−2λ(t−s)dL2
t

∣∣∣∣∣.
(3.15)

By Lemma 2.1 we see that the radius Rλ(θtω) is pathwise uniformly bounded on each
bounded time interval [T1, T2], so we see that the right hand of above inequality converge
to 0 as λ → ∞ pathwise on the bounded time interval [T1, T2].

We now present the main result of this paper.

Theorem 3.3 (synchronization under Lévy noise). Suppose that the coupled stochastic system in
R

2d

dXt =
(
f(Xt) + λ(Yt −Xt)

)
dt + adL1

t ,

dYt =
(
g(Yt) + λ(Xt − Yt)

)
dt + bdL2

t

(3.16)

defines a random dynamical system (θ, ϕ). In addition, assume that the continuous functions f, g
satisfy the integrability condition (2.20) as well as the one-sided Lipschitz dissipative condition (2.16),
then the coupled stochastic system (3.16) is synchronized to a single averaged SDE in R

d

dZt =
1
2
[
f(Zt) + g(Zt)

]
dt +

a

2
dL1

t +
b

2
dL2

t , (3.17)
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in the sense that the stationary solutions of (3.16) pathwise converge to that of (3.17), that is,
(X̃λ

t , Ỹ
λ
t ) → (Z∞

t , Z∞
t ) pathwise on any bounded time interval [T1, T2] as parameter λ → ∞.

Proof. It is enough to demonstrate the result for any sequence λn → ∞. Define

Zλ
t :=

1
2

[
X̃λ

t + Ỹ λ
t

]
, t ∈ R. (3.18)

Note that Zλ
t (ω) = Zλ(θtω) satisfies the equation

dZλ
t =

1
2

[
f
(
X̃λ

t

)
+ g

(
Ỹ λ
t

)]
dt +

a

2
dL1

t +
b

2
dL2

t . (3.19)

Also we define

Zt(ω) = Z(θtω) :=
1
2

[
Xt(ω) + Yt(ω)

]
, t ∈ R, (3.20)

where Xt and Yt are the (stationary) solutions of the Langevin equations

dXt = −Xtdt + adL1
t , dYt = −Ytdt + bdL2

t , (3.21)

that is,

Xt = ae−t
∫ t

−∞
esdL1

t , Y t = be−t
∫ t

−∞
esdL2

t . (3.22)

The difference Zλ
t − Zt satisfies

2
(
Zλ

t − Zt

)
= 2

(
Zλ − Z

)
+
∫ t

0

(
f
(
X̃λ

s

)
+ g

(
Ỹ λ
s

)
+Xs + Ys

)
ds. (3.23)

By Lemma 2.1, and the fact that these solutions belong to the common compact ball and every
càdlàg function is bounded on finite closed intervals, we obtain

∣∣∣f(X̃λ
t (ω)

)
+ g

(
Ỹ λ
t (ω)

)∣∣∣ +
∣∣∣Xt(ω) + Yt(ω)

∣∣∣ ≤ MT1,T2(ω) < ∞, (3.24)

which implies uniform boundedness as well as equicontinuity. Thus by the Ascoli-Arzela
theorem [13], we conclude that for any sequence λn → ∞, there is a random subsequence
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λnj (ω) → ∞, such thatZ
λnj
t (ω)−Zt(ω) → Z∞

t (ω)−Zt(ω) as j → ∞. ThusZ
λnj
t (ω) → Z∞

t (ω)
as j → ∞. Now, by Lemma 3.2

Z
λnj
t (ω) − Ỹ

λnj
t (ω) =

X̃
λnj
t (ω) − Ỹ

λnj
t (ω)

2
−→ 0,

Z
λnj
t (ω) − X̃

λnj
t (ω) =

Ỹ
λnj
t (ω) − X̃

λnj
t (ω)

2
−→ 0,

(3.25)

as λnj → ∞, so

X̃
λnj
t (ω) = 2Z

λnj
t (ω) − Ỹ

λnj
t (ω) −→ Z∞

t (ω),

Ỹ
λnj
t (ω) = 2Z

λnj
t (ω) − X̃

λnj
t (ω) −→ Z∞

t (ω),
(3.26)

as λnj → ∞.
Using the integral representation of the equation, it can be verified thatZ∞

t is a solution
of the averaged random differential equation (3.17) for all t ∈ R. The drift of this SDE satisfies
the dissipative one-sided condition (2.16). It has a random attractor consisting of a singleton
set formed by a stationary orbit, which must be equal to Z∞

t .
Finally, we note that all possible subsequences of Zλn

t have the same pathwise limit.
Thus the full sequence Zλn

t converges to Z∞
t , as λn → ∞. This completes the proof.

3.1. An Example

Consider two scalar SDEs:

dXt = −(Xt + 1)dt + dL1
t , dYt = −(Yt + 3)dt + 2dL2

t , (3.27)

which we rewrite as

dXt = −Xtdt + dL3
t , dYt = −Ytdt + 2dL4

t , (3.28)

where L3
t = −t + L1

t and L4
t = −3t/2 + L2

t .
The corresponding coupled system (3.16) is

dXt = −Xtdt + λ(Yt −Xt)dt + dL3
t ,

dYt = −Ytdt + λ(Xt − Yt)dt + 2dL4
t

(3.29)
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with the stationary solutions

X̃λ
t =

∫ t

−∞
e−(λ+1)(t−s) coshλ(t − s)dL3

s + 2
∫ t

−∞
e−(λ+1)(t−s) sinhλ(t − s)dL4

s,

Ỹ λ
t =

∫ t

−∞
e−(λ+1)(t−s) sinhλ(t − s)dL3

s + 2
∫ t

−∞
e−(λ+1)(t−s) coshλ(t − s)dL4

s.

(3.30)

Let λ → ∞, then

(
X̃λ

t , Ỹ
λ
t

)
−→ (Z∞

t , Z∞
t ), (3.31)

where Z∞
t , given by

Z∞
t =

∫ t

−∞

1
2
e−(t−s)dL3

s +
∫ t

−∞
e−(t−s)dL4

s, (3.32)

is the stationary solution of the following averaged SDE:

dZt = −Ztdt +
1
2
dL3

t + dL4
t , (3.33)

which is equivalent to the following SDE, in terms of the original Lévy motions L1 and L2,

dZt = −(Zt + 2)dt +
1
2
dL1

t + dL2
t . (3.34)
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