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In this paper, we suggest a new approach to the analysis of an N/G/1 fin-
ite queue with the supplementary variable method. Compared to the con-
ventional approach, our approach yields a sitnpler formula for the queue
length distribution, which in turn gives a more efficient computational
algorithm. Also, the new approach enables us to derive the joint density
of the queue length and the elapsed service time.
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1. Introduction

Very complex input flows often occur in integrated service communication systems.
As an approximation to such a stream, Neuts [4] introduced the N-process. This N-
process is analytically tractable and can appropriately represent the correlation and
burstiness of the stream. Many familiar arrival processes are special cases of the N-
process.

To investigate the performance of the service facility with finite resources, Blondia
[1] considered an N/G/1 finite queue, i.e., a single server queue with K waiting rooms

in which customers arrive according to an N-process. For the analysis, he used the
imbedded Markov chain technique upon service completion epochs. He also gave a

computational algorithm for the queue length distribution of the system by using the
Schur-Banachiewicz formula [3] for the inverse of the block matrices.

However, the computational algorithm suggested by Blondia [1] needs a large
amount of work. This motivated us to study an N/G/1 finite queue. Our aim is to
obtain a more efficient computational algorithm. To this end, we employ the supple-
mentary variable method originated by Cox [2].

This paper is organized as follows. In Section 2, we define N-process as originally
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introduced in Neuts [4]. Section 3 consists of the joint density of the queue length
and the elapsed service time and the distribution of the queue length of the N/G/1
finite queue.

2. N-Process

Consider a continuous-time Markov process with m transient states and a single
absorbing state. Then the infinitesimal generator of this Markov chain has the form

Thewhere T is an m m non-singular matrix with ,i < O, Ti, j >_ 0 for #)tj._vector TO is non-negative and satisfied Te+ O, with e- (1,...,1 Let
(a, am + 1) be a vector of initial state probabilities of the Markov process. In what
follows, we shall assume that am + 1 0.

Now, construct a continuous-time process by restarting the above Markov process
Q instantaneously after each absorption through a multinomial trial with probability
a and outcomes 1,...,m. Then this process is also a Markov process with the state
space {1,2,...,m} and the infinitesimal generator

Q* = T + TA,
where TO is an m x m matrix whose columns are all To and A- diag(al,...,am). A
transition from the state to the state j in the Markov process Q*, which does not
involve absorptionis, will be called an (i,j)-transition, while the others are called
(i,j)-renewal transition. Then the N-process is an arrival process defined in the
following way [4].

(1) During any sojourn in the state i, there are Poisson group arrivals of rate
and group size of densities Pi(k),k >_ 0}. We shall denote i(.) the p.g.f.
of {i(k),k >_ 0}, and define A- diag(il,...,,m) and q(z)- diag((z),
...,

(2) At (i,j)-renewal transitions, there are group arrivals with probability
density {Oi, j(k):k >_ 0} whose p.g.f, is i,j(z). Let us denote the m x m
matrix (i,j(z)) by q(z).

(3) At (i,j)-transitions (i : j), there are group arrivals with probability densi-
ties {f]i,j(k),k > 0}, whose p.g.f, is fi _.(z). For notational convenience, we
set fti, i(z 1 for all and define (fti, j(z)) <_ i,j <_ m by f(z).

Define the conditional probabilities

Pi, j(n, t) Pr(J(t) j, N(t) n J(O) i, N(O) 0),

where N(t) and J(t) denote the number of arrivals during (0, t] and the state of the
underlying Markov process Q* at time t, respectively. We also define conditional
probability matrices P(n, t) (Pi, j(n, t)) 5_ i, j < m,n >- O. It was shown in [4] that

E znP(n’t)- exp(R(z)t),O <_ z _< 1, (1)
n’-O
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with R(z)- c n
n 0z Rn and

Ro AO(O)- A + TA o (0) + T o fl(O)

Rn A(n) + TA o q(n) + T o gt(n), n >_ 1,

where o denotes the Schur (entrywise) product of two matrices. For the upcoming
analysis, we shall assume that the matrix R0- exists.

3. Analysis of an N/G/1 Finite Queue

In this section, we will analyze the N/G?I finite queue with the supplementary
variable method. The queue size is assumed to be K. When describing the N-
process, we will use the same notations as in Section 2. The successive service times
are independent and identically distributed according to H(x). Also the hazard rate
function and the mean of H(x) are denoted by r(x) and # respectively.

3.1 Supplementary Variable Method

Let X(t) denote the number of customers in the system at time t. We define the
elapsed service time S(t) as follows: If X(t) > O, S(t) denotes the amount of service
already received by a customer in service. Otherwise, S(t) denotes the amount of
time elapsed after the last service completion. Then, the triplet (J(t),X(t),S(t))is a

three-dimensional Markov process with state space {1,..., m} x {0,...,K} x [0, c).
Suppose that

r(i, n, x)dx lim Pr(J(t) i, X(t) n, x <_ S(t) < x + dx)

exists for all states and define r(n,x) (r(1,n,x),...,r(rn, n,x)). Then the
Kolmogorov differential equations of the joint density r(n,x) can be written down as

follows:

.(0..) .(0. (2)

n

(.,)- -(.. )()+ (. )no_ . 0 <. <
k=l

(3)

K oo

d-r(K,x) r(K, x)r(x) + E E r(k, x)RI. (4)
k=l l=K-k

The joint density r(n, x) should satisfy the boundary conditions

r(O, O) / r(1, x)r(x)dx,
0

(5)
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r(n, O)- / r(n + 1,x)r(x)dx + /" r(O,x)Rmdx, 0 < n < K,
0 0

(6)

.(K,0)- .o .(0,.)d.,
0

and the normalization condition

(7)

K

E / r(n,x)d&e- 1, (8)
n=O 0

where e (1,..., 1)t.
Now, we shall find the joint density r(n,x) of the queue length and the elapsed

service time. From equation (1), we obtain
n

P(,)- P(,)_ , _> 0.
k=O

With this and equations (2)-(8), we get

(0, ) (0, 0)P(0, ),
n

(n, x) E (k, O)P(n k, x)(1 H(x)), 0 < n < K,
k=l

(K,x) E E (k,o)e(i,x)(1 H(x)).
k--1 i= K-k

(9)

(10)

(11)

We may also derive the above solutions by conditioning on the state of the system
time x back.

Before finding the coefficients 7r(n,0), we consider the embedded Markov chain
{g(rn),X(rn)}, where {rnn >_ 0} is the nth epoch of service or idle completion. Then
the transition probability matrix of {J(vn),X(vn)) is

f 0 U1 UK_ 2

Ao A1 AK- 2

0 A0 AK 3

0 0 0

UK 1 E n KVn ’
An 0n=K-1_, cx

2An 0

where

U, / P(O, Z)Rndx R- 1]/n, rt 1,
0
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An- / P(n,x)dH(x), n >_ O.
0

The matrix Un (or An) is the probability that n customers arrive during an idle time
(or a service time).

Theorem 1" The coefficients r(n,O) of the joint density r(n,x) are given by

(r(0, 0),..., r(K, 0) 1

where (Xo,...,XK) is the stationary vector of the transition probability matrix QE" I
is an identity matrix of size rn.

Proof: By inserting (9)-(11)into the boundary conditions, we show that (r(0,0),
r(K, 0)) is a positive invariant vector of QE, that is,

(r(0, 0),..., r(K, 0))- C(Xo, XK) for some constant c > 0.

Applying (9)-(11)to the normalization condition, we have

r(0, 0)[-/i0- lie q- # r(n, 0)e 1.
n=l

Therefore, we have

C

#- x0[#I + Ro- 1]t"So the proof is complete.
The matrices P(n,x) and An can be efficiently evaluated by means of an iterative

procedure in [3]. Therefore, we can compute r(n,x) by deriving the stationary vector
of the transition probability matrix QE" As Blondia [1] did, we can also reduce the
complexity of the computation for the stationary vector with the Schur-Banachiewicz
formula for the inverse of block matrices.

3.2 Queue Length Distribution

In this subsection, we shall consider two computational algorithms to obtain the
queue length distribution r(n) using the coefficients r(n,0) derived in the previous
subsection.

Let us define

Mn / P(n,x)(1- H(x))dx, n >_ 0

0

and let M(z) be the generating function of {Mn, n > 0}.
yield

0)[- no-
Then equations (9)-(10)

(12)

r(n) E r(k’O)Mn_k, 1 <_ n <_ K-1.
k--1
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Since Y K r(n) is the stationary vector 0 of the underlying Markov process Q* wen’-0
get K 1

(K)- 0- (n). (13)
n--0

Using the fact that ((0, 0),..., (K, 0))is an invariant vector of the transition proba-
bility matrix QE and A(z)= M(z)R(z)+ I, we have

(n)--(17f(]c)R’n-k\k=1 --’(0)ln- 1) i0-" 1]

(l(n _> 2)(n 1, 0) (n, 0))[ Ro- 1], 1 _< n _< K 1,
(14)

where 1( is the indicator function.
The 1bve equation (14) for the queue length distribution has a simpler form than

on derived by Blondia [1], since Blondia’s formulas require additional computation of
matrices {Rn(s), n _> 0} satisfying JR(z) + sl]- 1 = oRn(s)z. Consequently,
we can obtain a more efficient computational algorithm for the queue length distribu-
tion.
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