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We examine the service mechanism of two queueing models with two units
in tandem. In the first model, customers who complete service in Unit 1
must wait in an intermediate buffer until the ongoing service in Unit II
ends. In the second model, jobs can be pre-positioned in an intermediate
buffer to await service in Unit II. Under the assumption of phase-type ser-

vice times, the steady-state regime of the service system is studied in de-
tail.

The models are inspired by the gas pump model of A.B. Clarke and
by phenomena observed in cafeteria lines and certain manufacturing sys-
tems. However, their primary interest may lie in the methodology of their
exceptionally tractable analysis. We derive formulas for the throughput
and other quantities by using the familiar PH-formalism. These formulas
turn out to be unusually transparent and have probabilistic interpretations
that do not depend on the PH assumptions. These interpretations there-
fore also hold for general service time distributions. The methodology is
general and can be applied to other systems with interactions between
servers. The models also present interesting algorithmic problems of didac-
tic interest.
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1. Introduction

We discuss two systems of queues with two service stations. Access to the second
server or departures from the first station may be blocked by customers present in the
other unit. In 1977 and 1978, in a series of preprints, A.B. Clarke introduced the
first model. Informally described, it represents the interference one might see at two
gasoline pumps with a narrow lane so that a customer who has completed service at
the second pump may be blocked by a vehicle that is still using the first pump.

It was recognized that, under the assumption of exponential service times, the
model called A.B. Clarke’s Tandem Queue can be studied as a continuous-time
Markov chain of GI/M/1 type. A fairly detailed analysis is found in Section 5.3 of
Neuts [5].

Our model I is just Clarke’s tandem queue with service time distributions of phase-
type that are discussed in Chapter 2 of the cited book by Neuts. It is a fairly routine
matter to extend the analysis of Markovian queueing systems with exponential
assumptions to the corresponding models with PH service time distributions. One
usually obtains Markov chains having the classical block structures but with blocks of
large, often huge, dimensions. The resulting algorithmic problems are challenging
but their discussion is not the purpose of this paper.
We shall show that the analysis with phase-type distributions can provide signifi-

cant new physical insight that is lost in the multitude of special and interrelated
simplifications due to the exponential assumptions. Important quantities can be
given probabilistic interpretations that are independent of the PH-formalism. These
interpretations are therefore also valid for general service time distributions. That
points the way to the computation of these quantities by other analytic means or to
their measurement through efficient simulations.
We concentrate on the throughput analysis of the two-server systems rather than

on a full analysis of the queues. That is, we assume that an unlimited number of
jobs are waiting for service and we analyze the departure rate of customers and va-
rious other descriptors of the service mechanism.

The analysis of the models suggests interesting algorithmic problems of clear didac-
tic interest. A numerical exploration will yield insight into queueing models with be-
havior not seen in the classical models.

2. Description of the Models

In both models, there are two servers I and II with I placed to the left of II. The job
flow is from left to right. Each customer is served by only one of the servers. All ser-
vice times are independent random variable but the duration of those dispensed by
Server I have the probability distribution F1(. ); those of Server II obey the probabili-
ty law F2(. ). These probability distributions are of phase type. For j- 1,2, Fj(.
has m, phases and the irreducible representation (/3(j),S(j)). The column vectors
S(j) -S(j)e play their usual role in the formalism of PH-distributions.

The interest of Clarke’s tandem model to queueing analysis lies in the quantifica-
tion of the interference between the two servers. When there is a job in course in
Unit II, a customer whose service is completed in cannot leave the system imme-
diately. Server I remains blocked as long as his customer cannot move forward. To
alleviate that blocking there is a finite waiting space between the two servers. The
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distinction between our two models lies in the way that this waiting space is used.
In distinguishing between the models, we see what happens at service completions

in Unit I. In Model I, if upon such a completion Server II is free, the completed job
leaves the system and two new jobs are initiated, one by each server. If Server II is
not free, the completed job moves into a buffer of size n and Server I initiates a new

job. Should that buffer be full, the completed job blocks Unit I. At the end of a job
in II, that customer and all those that have already been served by I leave the sys-
tem. Server II then remains idle until the job in I is finished.

In Model II, the buffer is used to pre-position customers for Server II. If upon a job
completion in Unit I Server II is free, the completed job leaves the system and m + 1
new jobs are brought into the service system; one for each server to start processing
and m- 1 to wait in the buffer for service by II. These customers leave one at a time
as they finish service in II. Jobs completed by I can leave the system only when there
are not active jobs downstream.

With phase-type service times, the service systems of each of the models can be des-
cribed as finite Markov chains, typically with many states, but with highly structured
infinitesimal generators. To make that structure clear, we display these generators
for small but representative values of n or m. By exploiting their special structure,
we obtain explicit matrix formulas for various steady-state descriptors of the two
models. These formulas can be used in numerical explorations from which substantial
physical insight can be gained. Our approach is an example of the general modeling
methodology advocated in [8].

3. Discussion of Model I

The state space of the Markov chain for Model I consists of n + 3 macro-states deno-
ted by 0,1,...,n+2. The macro-state 0 corresponds to the case where Unit II is empty
and it contains the m1 labels of the phases for service time distribution FI(. ). The
set of states n+2 contains the m2 phases to service time distribution F2(.). It
corresponds to the case where Server I is blocked. The macro-states 1,...,n-t-1 contain
the mira2 phases of the two service times in course. Within each macro-state with
1 < < n the phases are listed in lexicographic order. The macro-state signifies that
Server II is occupied and i-1 customers who have already been served by I are

waiting in the buffer. For i-n-4- 1, the buffer is full but the service in I is going on.

If that service terminates before that in Unit II, blocking occurs. The Markov chain
then moves into the macro-state n+2.
We make extensive use of the Kronecker produce (R) and sum (R) of matrices. The

properties of these operations are discussed in many books on matrix algebra; a

summary of these for use with PH-distributions is given in Chapter 2 of [5].
The infinitesimal generator Q1, displayed here for n- 3 is given by

0 S(1) S(1)/3(1) )/3(2) 0 0 0 0

1 I (R) S(2) S(1) (R) S(2) S(1)/3(1) ) I 0 0 0

Q1 2 I (R) S(2) 0 S(1) (R) S(2) S(1)/3(1) (R) I 0 0

3 I (R) S(2) 0 0 S(1) ) S(2) S(1)/3(1) (R) I 0

4 I e S(2) 0 0 0 S(1) (R) S(2) S(1) (R) I
5 0 /3(1) (R) S(2)/3(2) 0 0 0 S(2)
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We partition the stationary probability vector r of Q1 according to the macro-
states as

(0), (1),..., (n / 1), (n / 2).

The explicit matrix formulas for the steady-state probabilities involve two matrices
M and N, each having a probabilistic significance to be explained later.

The matrix M is m2 m2 and is give by:

M [/(1) (R) I][ S(1) (R) S(2)]- 1[S(1) (R) I]. (1)

The matrix N is m2 mI and is given by:

N [/(1) (R) I][- S(1) (R) S(2)]- 111 (R) S0(2)].

With irreducible representations of the two-phase-type distributions, the matrix M
is irreducible and sub-stochastic. The matrix N is nonnegative and, as is easily
verified, Me / Ne- e.

Theorem 3.1: The vectors in the partitioned form of r are given by

r(0) k*/(2)(I Mn + 1)(I M)- 1N[- S(1)]- 1, (3)

(i) k*(2)Mi- 1[/(1) (R) I][- S(1) (R) S(2)]- 1 (4)

for l < k < n + l, and

(n + 2) k*(2)Mn + 1[_ S(2)]- 1. (5)

The normalizing constant k* is given by

[]c*]- 1 #i(2 +/3(2)(1 Mn + 1)(i M)- 1N[- S(1)]- le, (6)

where ]21’(2) is the mean service time in Unit II. The quantity k* is the rate at
which simultaneously services in both units are initiated. It is also the steady-state
rate of departure of customers processed by Server II.

Proof: The steady-state equations are:

n+l

(O)S(1) + r(r)[I (R) S(2)] O, (7)
r--1

(0)[S(1)fl(1) (R) fl(2)] + (1)[S(1) (R) S(2)] + (n + 2)[/(1)(R) S(2)fl(2)] O, (8)

(i- 1)[S(1)/(1)(R) I] + (i)[S(1)(R) S(2)] 0 (9)

for 2 < < n + 1, and

(n + 1)[S(1)(R) I] + (n + 2)S(2) O. (10)

We notice that
(0)[S(1)(1) (R)/(2)] [(0)S(1)][/(1) (R)/(2)], (11)
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r(n + 2)[/3(1) (R) S(2)/3(2)] [r(n + 2)S(2)][/3(1) (R)/3(2)], (12)

and
/3(2)[/3(1) (R) I] -/3(1) (R)/3(2). (3)

By using (11) and (12) we may write (8) as

where
r(1) k*[/3(1) (R)/3(2)][- S(1) (R) S(2)]- 1

k* zr(0)S(1)+ r(n + 2)S(2).

(14)

(15)

From (9) it follows, for 2 < < n + 1,

r(i) r(i- 1)[S(1)(R) I][/3(1)(R) I][- S(1)(R) S(2)]- 1.

Equation (4) now readily follows. Upon substituting these expressions into (7) and
(10), the formulas (3) and (5) follow by routing calculations.

The quantity k* has several interesting interpretations. From its definition in
(15), it is clearly the steady-state rate at which service in both units are simultaneous-
ly started. The rate of terminations of jobs in Unit II is given by

n+l
(R) s(2)] + +

i--1

which after substitutions and routine simplification reduces to k*.
From the normalizing equation starting that r is a probability vector, we obtain

[k*]-1 as the sum of three expressions. The first of these, r(0)e, is just the second
term in the equation (6).
To show that the sum

/3(2)(I Mn + 1)(I_ M)- lift(l)@ I][- S(1)@ S(2)]- l(e @ e)

+ (2)Mn + l[- S(2)]- le,
of the other two reduces to the mean service time ](2) in Unit II requires slightly
intricate manipulations with Kronecker products. We show the essential steps.

In the first expression, we write

[- S(1) S(2)] (. )

-[- (1) (2)]-111 (2)][[- (2)]-e], (16)
and we notice that

[- S(1) S()]- [I. S(2)] I. -[- S(1) S()]- 1[S(1) * I]. (17)
Recalling the definition of M, routine matrix calculations now show that the sum of
the two involved expressions reduces to (2)[- S(2)]-le- ](2).

The Exponential Case

Upon replacing S(1) and S(2) by the scalars -#1 and -#2 and /3(1) and /3(2) by
one, we obtain the case of exponential service times discussed in [5]. The infinite-
simal generator Q1 agrees with the matrix A of formula (5.3.3) except that the latter
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corresponds to n 4.
The matrix M reduces to the scalar p #1(#1 -+" #2)- 1, and k* is given by

]* [#2-1+ (1-- pn 3-1)#1-1]-1.

The steady-state probabilities r(i) are as stated in formula (5.3.4) of [5].

The Departure Rate

Next we calculate the steady-state rate #*(n) at which jobs leave the service system
or the throughput of the system. The differential #*(n)dt may be interpreted as the
expected number of completed jobs departing in a time interval of length dt. We ob-
serve that, in steady-state, there are single departures at a rate r(0)S(1). Customers
can also leave in groups of sizes i, 2 _< <_ n + 2, consisting of one customer processed
by II and i- 1 by Server I.

Theorem 3.2: The departure rule #*(n) is given by

#*(n) k*/3(2)[2I M Mn + 1](i M)- le. (18)

The rate #*(n) is equal to A*(n), the steady-stale rate at which services are initia-
ted.

Proof: We have that
n+l

#*(n) r(0)S(1) + E ir(i)[e (R) S(2)] + (n + 2)r(n + 2)S(2).
i=1

Using the expressions in Theorem 3.1, recalling that Ne- (I- M)e, and
n-t-1

E iMi-l(/-M)- (I-Mn +I)(/-M)-I-(n-t-1)Mn +1,
i=1

the stated formula follows by routine calculations.
Services are either initiated singly or in pairs. Two services are stated at a transi-

tion from the macro-state 0 or after a blocked system is cleared. The rate A*(n) is
therefore given by

n

A*(n) 2r(0)S(1) + E r(i)[S(1)(R)e] + 2r(n + 2)S(2).
i=1

Routine calculations show that 1*(n) *(n).
For the exponential case,

p*(n) (#1 4- #2)(2p p2 pn 4- 2)( 1 pn + 1 + pn + 2)- 1,

which agrees with the right-hand side in the equilibrium condition (5.3.5) in [5].

Other Steady-State Descriptors

As for most other models analyzed by matrix-analytic methods, there are many use-
ful descriptors of the steady-state regime of the service mechanism that are readily ex-
pressed once we have the stationary probability vector r. The following is a selection
of such descriptors.
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The fraction p(n) of jobs served by Unit II, is given by the ratio

p(n) ]*[#*(n)]- 1. (19)

A typical idle time of Server II has the PH-distribution with representations
[’,oz(1)], where the vector , is given by

7 [(O)e]- lr(O),

and its mean equals #’1(2idle, n)- [r(0)e]-lr(0)[--S(1)]-le. In addition, the mean
time between an arbitrary visit to the macro-state 0 and the next is just [r(0)e]-1.
The fraction of time that Server II is idle is given by

P2(2idle, n) r(O)[- (1)]- le, (20)

a descriptor of interest in quantifying the effect of the buffer size on the performance
of the system.

The point processes of the departure epochs and of the epochs of initiations of ser-
vices are both BMAPs. The BMAP is a Markovian point process for which many
descriptors can be expressed in explicit matrix formulas. From its extensive litera-
ture, we refer to Lucantoni [2, 3], Neuts [7], and Narayana and Neuts [4] for discus-
sions of the basic definitions and properties of BMAPs.
We note that the order of the coefficient matrices of these BMAPs is the same as

that of QI" The matrix formulas for most descriptors involve matrices of that order.
The principal challenge therefore lies in the efficient organization of numerical compu-
tations with large but highly structured matrices.

From the present results, we immediately obtain expressions for various rates.
The rate of single initiations of service is = lr(i)[S(1)(R)e] while pairs of services
start at rate k*.

Jobs leave the system in groups of sizes ranging from 1 to n + 2. The steady-state
departure rate #*(i; n) of a group of size is given by

tt*(1; n)- (0)S(1)+ (1)[e (R) S(2)],

for2_<i_<n+l, and
n) s(2)]

+ +

The sum #**(n) of these quantities is the rate at which departures occur regardless of
the group size. By using formulas (15) and (4), we readily obtain that

p**(n) k*[2 -/(2)Mn + le].

The probability that an arbitrary departure consists of customers is therefore
#*(i; n)[#**(n)]- 1, for 1 <_ _< n + 2. The mean group size is #*(n)[#**(n)]- 1.

The Matrices M and N

These matrices arise naturally in studying the super-position of two independent PH-
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renewal processes; they were introduced in Latouche and Neuts [1]. Consider the pro-
duct Markov chain of the familiar Markov chains with generators S(1) + S(1)(1)
and S(2)+ S(2)/(2), used in discussing the PH-renewal process.

The element Mj, j, of M is the conditional probability that, given that we start at

a renewal in the first process and with the second in phase j, the next renewal is also
in the first process and when it occurs, the phase in the second process is j’. Similar
ly, the element N

j, h, of N is the conditional probability that, given that we start at

a renewal in the first process and with the second in phase j, the next renewal is in
the second process and when it occurs, the phase in the first process is h’.

Most constants arising as descriptors of the present models can be interpreted as ex-
pected values of random variables associated with the super-position of two indepen-
dent PH-renewal processes. We given an illustration in the sequel.

3.1 Model I via Maxkov Renewal Theory

When, as in the case here, models based on phase-type or MAP analysis are
unusually tractable, it is often possible to obtain slightly more general results by
studying an embedded Markov renewal process. The succinct discussion that follows
serves to illustrate that point.
We consider Model I at the ends of successive services in Unit II. We allow the

service times in that unit to have a general probability distribution F2(.). The
service times in Unit I have the PH-distribution with representation [fl(1),S(1)].
When a service in II ends while Server I is occupied, we include the phase of that
service in the state description. The rn1 corresponding states form the macro-state 0.
The single state 1 signifies a transition epoch in which new services simultaneously
start in both units. It is readily seen that we obtain a Markov renewal process with
m1+ 1 states. We write its transition probability matrix K(.) in the partitioned
form:

It’(x)-
1 K(,O,x) K(1,1, x)

The elements of K(x) are obtained by routine conditioning arguments. To write
them concisely, we need the standard matrices P(u, t) for the counting process of the
PH-renewal process with the underlying distribution FI(. ). To remind us that these
correspond to the service time distribution in Unit I, we add the subscript 1.

The matrix K(0, 0, x) is given by

x y

K(O, O, x) exp[S(1)ulS(1)du(1)E P1(r; y tt)dr2(Y u),
0 0 r=O

for x _> O. To obtain that expression, we condition on the end of the service in course
in Unit I and on the number of additional service time terminations in I during the
service by II. There can be at most n such job completions; otherwise, blocking
occurs.

There are similar expressions for the other elements of K(x), but for the sake of
brevity, we only give the expressions for their Laplace-Stieltjes transforms which facili-



Two Service Units with Interference in the Access to Servers 365

tate the subsequent calculations. We write

Al(r;s)- / e-sYPl(r;y)dF2(y),
0

(21)

for r_> 0. These are the same matrices that arise in the analysis of the PH/G/1
queue.

The Laplace-Stieltjes transforms of the elements of K(. are given by"

K*(0, 0, s) [sI S(1)]-1S(1)/(1)E Al(r;s)’
r--0

(22)

n

K*(O, 1, s) [sI S(1)] 1S(1)(1)[f2(s) E Al(r; s)e],
r--0

(23)

and

n

K*(1,0, s) -/?(1) E A1 (r; 8), (24)

n

K*(1, 1,s) f2(s)-/3(1) E Al(r;s)e"
r----O

(25)

We find that the row sums of the transform matrix are given by

K*(O, O, s)e + K*(O, 1, s) f2(s)[sI S(1)]- ls(1), (26)

and
K*(1, O, s)e + K*(1, 1, s) f2(s). (27)

We shall use a symbol with the variable s suppressed to denote which its value for
8--0.
We do not present a detailed analysis of this embedded Markov renewal process as

all explicitly tractable results agree with those derived by the approach using PH-
distributions. We give a brief derivation of its fundamental mean E whose inverse is
the steady-state rate of transitions, that is, ends of services in Unit II.

Theorem 3.3: The fundamental mean E of the embedded Markov renewal process
is given by

E u](2) + /(1)Al(r)[- S(1)]- le. (28)
r--0

Proof: Let (, ’) be the (partitioned) invariant probability vector of the stochastic
matrix K K(c); then an elementary calculation shows that

b E/(1)Al(r)’ ’ 1 E (1)Al(r)e"
r=0 r--0

The vector (b,b’) of the row sum means of the transition probability matrix is ob-
tained by differentiating with respect to s in the equations (26) and (27). We find
that

b #i(2)e+ S(1)]-le, b’--/i(2).
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By evaluating the inner product bb + ’b’ we obtain formula (28).
When the probability distribution F2(. is of phase type, the matrices Al(r are

given by (1)Al(r -fl(2)MrN, for r > 0, so that the expressions obtained here
agree with those obtained earlier.

The pervasiveness of lower order moments of the service and interarrival times in
the equilibrium conditions and mean values of the descriptors of the classical queues
can be deceptive. The quantities that arise in the corresponding descriptors of more

complex queueing models are rarely insensitive. To enhance our understanding of the
physics of such models, it is useful to have interpretations of various constants.
We shall not do this for all the constants we have encountered so far, but for the

sake of an illustration we interpret the quantity
n

to(n) E/(1)Al(r)[- S(1)]- le, (29)
r-’0

in the formula for the fundamental mean E.
Consider two independent renewal processes with underlying probability distribu-

tions El(. and F2(. that are continuous at 0. The sequences of successive renewal
epochs (called, respectively, 1-renewals and 2-renewals) are denoted by {$1,} and

{$2,} respectively. We agree that $1, 0 $2, 0 -0, so that time 0 corresponds to an
event in both renewal processes.
We define the event {$1,

_
S2,1 < $1, + 1} Ci that there are exactly events in

the first renewal process prior to the first event in the second one. The summands in
formula (29) are the expectations

E[(ql,i + 1 q2,1)I(Ci)],

when FI(. is of phase type. I(Ci) is the indicator function of Ci. Informally, there-
fore, g is the expected time to the first 1-renewal following the first 2-renewal, eva-
luated over the event where there are at most n 1-renewals prior to that first 2-re-
newal.
When there is positive probability of coincident renewals, g may not be a con-

tinuous functional of FI(-) and F2(-). Application of the continuity argument in
Section 5.1, p. 243 of Neuts [6] requires some caution. However, under mild restric-
tions- in the present case, that F2(. can be continuous- the continuity argument
can be invoked. The interpretation of the fundamental mean E is then also valid for
general (continuous) distributions.

Several other constants in this paper may be given similar interpretations. By the
same argument and with the same proviso, these interpretations hold for general dis-
tributions.

4. Discussion of Model II

For Model II, we keep track of the number of jobs in the service system what are
currently allocated to Server II. If that number is positive, we need to distinguish the
cases where Server I is active or is blocked. The state space of the Markov chain for
Model II therefore consists of 2m+ 1 macro-states denoted by 0, 1,...,m and
l*,...,m*, where the asterisk indicates that Server I is blocked. The macro-state 0
corresponds to the case where Unit II is empty. It contains the rn1 labels of the
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phases for the service time distribution FI(. ). The macro-states 1,...,m contain the
mlm2 phases of the two service times in course. The corresponding macro-states with
an asterisk contain the phases of the service in course in Unit II. Server I has then
completed a job but is blocked so we need not keep track of a service phase.

The infinitesimal generator Q2 for Model II is displayed for m 3. The structure
for a general value of m is similar.

Q2

0 S(1) 0 0 S(1)/3(1) (R)/3(2) 0 0 0

9 s() s() (R) s() o o s() (R) I o o
2 0 I (R) S(2)(2) S(1) if) S(2) 0 0 S(1) (R) 0
3 0 0 I @ S(2)/3(2) S(1) ff S(2) 0 0 S(1)@ I
1" 0 0 0 /3(1) (R) S(2)/3(2) S(2) 0 0
2" o o o o s()/3(2) s() o
3" o o o o o s()(2) s(2)

As for Model I, two matrices M1 and N1 appear in the explicit matrix formulas
for the steady-state probabilities. These matrices are defined as follows: The matrix
M1 is m1 x m1 and

M1 [I (R)/3(2)][- S(1) (R) S(2)]- 111 (R) S(2)]. (30)

The matrix N is m X m2 and

N [I (R)/3(2)][- S(1)(R) 5’(2)]- l[s(1) (R) I]. (31)

The matrix M1 is irreducible and sub-stochastic. The matrix N1 is nonnegative and

Mle + Nle e.
The stationary probability vector r of Q2 is partitioned according to the macro-

states as

r(O), r(1),..., r(rn), r(l*),..., r(rn*).

Theorem 4.1: For Model II, the vectors in the partitioned form of r are given by

and
r(0) h*/3(1)M[- S(1)]- 1 (32)

and
r(i) h*/3(1)Mr-i[I (R)/3(2)][- S(1)(R) S(2)] 1 (33)

r(i*) h*/3(1)M -iN1[- S(2)] + h*[1 -/3(1)M -ie]./3(2)[- S(2)]- (34)

for 1 <_ <_ m. The normalizing constant h* is given by

[h*] m (2) - 3(1)M[ S(1)]- le, (35)

where #1(2) is the mean service time in Unit II.
Proof." The required calculations are similar to those for Model I. We present only
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the essential steps. The steady-state equations are as follows:

and for l_<i_<m-1,
r(0)S(1) + r(1)[I (R) S(2)] 0, (36)

r(i)[S(1) (R) S(2)] + r(i + 1)[I (R) S(2)3(2)] 0 (37)

r(0)[S(1)/3(1) (R) (2)] + r(m)[S(1)(R) S(2)]

and for l<i<m-1
+ r(l*)[fl(1) (R) S(2)3(2)] 0, (38)

r(i)[S(1) (R) I] + r(i*)S(2) + r(i + 1")S(2)/3(2) 0 (39)

Defining h* by
r(m)[S(1) (R) I] + r(m*)S(2) O.

h* r(0)S(1)+ r(l*)S(2),

(40)

(41)

and proceeding as in Theorem 3.1, we get that r(i) for 1 <_ <_ m is as given by
formula (33). That immediately gives the expressions for r(0) and r(m*). Working
backwards from that last formula, we obtain (34).

The constant h* is obtained by using the normalizing equation. However, to get
the simple expression in (35) we need the following equality that results in major
cancellations:

[I (R) (2)][- S(1) S(2)]- l(e (R) e) e#(2)- NI[- S(2)]- le.
That equality is established by the same manipulations involving the formulas (16)
and (17). El

By a direct calculation, we can verify that h* is the steady-state departure rate of
customers processed by Server I. The second term in formula (35) is the mean time
that an arbitrary customer served by is delayed by jobs in progress in Unit II.

The Exponential Case

Replacing the general PH-representations for the service time distributions by-#1
and -#2, we obtain formulas for the stationary probability vector for the exponential
case. These are written most concisely in terms of the ratio - #1/#2 and read as
follows"

r(0) [1 + rn(1 + )m]- 1,
and

r(i)- (1 + )i[1 + rn(1 + )m]- 1,

r(i*)- [(1 + )’-(1 + )i][1 + rn(1 + )m]-1

for 1 _< _< m. The constant h* is given by h* ((1 + )m[1 + rn(1 + )m]- 1#2
The Departure ILte

Customers leave the system singly or in pairs. A pair leaves when the end of a
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service in II also releases a customer blocked in Server I.
Theorem 4.2: The steady-state rates #*(m) of departures and ,*(m) of service

initiations are given by
#*(m) A*(rn) (m + 1)h*. (42)

Proof: By substitution and simplification in the expressions
m m

#*(m) r(0)S(1) + E r(i)[e (R) S(2)] + 27r(1")S(2) + E 7r(i*)S(2)
i=1 i=2

and
,*(m) (m + 1)r(0)S(1)+ (m + 1)r(l*)S(2) (m + 1)h*. (43)

In Neuts [5] it is shown that, with exponential servers of unequal rates, the
throughput in Model I is largest with the faster server is assigned to Unit I. For
Model II and with the same m, the opposite conclusion holds.

To see this, we let be less than one, so that the second server is the faster of the
two. The departure rate #*(m) is then given by

#*(m) (m + 1)(1 + )m[1 + m(1 + )m]- 1#2
If we interchange the role of the two servers, the throughput #**(m) is obtained by
replacing by - 1 and the final #2 by #1"

NOW,

[#**(m)/#*(m)- 1][TM + 1 _1_ m(1 -t- )m] 1 m - 1 m(1 )(1 + )m, (44)

and for 0 < < 1, the right-hand side is negative.
Given the complex dependence on the service time distributions it is by no means

obvious that the same conclusion holds for non-exponential distributions. For PH-
distributions, a numerical exploration of that question is easy.
A further interesting question is to find the value of m for which the throughput is

largest. For the exponential case, that is elementary; for fixed , we find the m for
which the function in (43) attains its maximum. For PH-distributions, the numeri-
cal exploration is more substantial.

5. Some General Methodological Comments

While the two service systems in this paper may be of limited practical applicability,
their analysis is similar to that required for other tandem queues and for the complex
systems arising in manufacturing and telecommunications.
We have demonstrated how the formulation with PH-distributions can provide

structural insights that are lost under exponential assumptions. That formulation
also makes clear how much or more commonly, how little- analytic tractability of
the model is to be expected. The models in this paper are highly tractable. For
others that are less, the computational effort required to study large, structured
Markov chains becomes clear. Such an effort is worthwhile; it can be methodological-
ly challenging and its results provide benchmarks for the more common simulation
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studies.
The throughput analysis is an important first step in studying complex queueing

systems where the input process is independent of the service mechanism. Both
models in this paper, even with a BMAP arrival process, lead to Markov chains of

GI/M/1 type. Provided that the fundamental rate of arrivals is less than the
departure rate of the saturated system, these Markov chains have a (modified)
matrix-geometric stationary probability vector. The definition of the boundary
matrices is a belabored task which we have avoided here. With realistic choices of the
service time distributions and even for Poisson arrivals. The order of the rate matrix
R of the matrix-geometric solution is so high that its evaluation requires a massive, if
not infeasible numerical computation.
When an approach under PH-assumptions is inadequate, there remains the alterna-

tive of an empirical study by computer experimentation. Such a study is much more

challenging than running a few simulations may suggest. We propose to investigate
that approach, in combination with a PH-analysis, for other models of greater
applied interest.

Acknowledgements

The research of R.E. Lillo was partially supported by a scholarship from the Carlos
III Foundation; that of M.F. Neuts by NSF Grant Nr. DMI-9306828.

References

[1] Latouche, G. and Neuts, M.F., The super-position of two PH-renewal processes
In: Coemi-Markov Models: Theory and Applications (ed. by J. Janssen), Plenum
Press, New York (1986), 131-177.

[2] Lucantoni, D.M., New results on the single server queue with a batch Marko-
vian arrival process, Commun. in Statistics: Stochastic Models 7:1 (1991), 1-46.

[3] Lucantoni, D.M., The BMAP/G/1 queue: A tutorial, In: Performance
Evaluation of Comp. and Commun. Systems: Joint Tutorial papers of Perf. ’93
and Sigmetrics ’93 (ed. by L. Donatiello and R. Nelson), Springer-Verlag, Berlin
(1993), 330-358.

[4] Narayan, S. and Neuts, M.F., The first two moments matrices of the counts for
the Markovian arrival process, Comm. Statist. Stoch. Models 8:3 (1992), 459-
477.

[5] Neuts, M.F., Matrix-Geometric Solutions in Stochastic Models: An Algorithmic
Approach, The Johns Hopkins University Press 1981. Corrected reprint: Dover
Publications, Inc., New York 1994.

[6] Neuts, M.F., Structured Stochastic Matrices of M/G/1 Type and Their Applica-
tions, Marcel Dekker, New York 1989.

[7] Neuts, M.F., Models based on the Markovian arrival processes, IEICE Trans.
on Commun. E75-B:12 (1992), 1255-1265.

[8] Neuts, M.F., Some promising directions in algorithmic probability, In: Adv. in
Matrix Analytic Methods for Stoch. Models (ed. by A.S. Alfa and S.R.
Chakravarthy), New Jersey (1998), 429-443.


