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1. Introduction

The necessity to study impulsive differential equations is due to the fact that these
equations are a useful mathematical machinery in modelling of many processes and
phenomena studied in theory of optimal control, biology, mechanics, biotechnology,
medicine, electronics, radio engineering, etc.

Processes, which can be adequately modelled by impulsive differential-difference
equations, are characterized by a per saltum changing of their state as well as by the
fact that the processes under consideration depend on their pre-history at each mo-
ment of time.

Impulsive differential-difference equations are natural generalization of impulsive
differential equations. Their theory is analytically more attractive than the theory of
impulsive ordinary differential equations.

At the present time the theory of such equations undergoes rapid development [1-
6].

In the present paper we consider the problems of existence, uniqueness, and con-

tinuability of solutions of nonlinear system of impulsive differential-difference equa-
tions. The impulsive moments occur when the integral curve of the system meets
given hypersurfaces situated in the extended phase space.
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2. Statement of the Problem. Preliminary Notes

Let Rn be the n-dimensional Euclidean space with elements x- (Xl,...,Xn)T and
1

norm xl -(E=lx); h-const>0; ac_nn, ftO; (t0, x0) eRxft.
We consider the following initial value problem

it(t) f(t,x(t),x(t- h)), t > to, rk(x(t))
x(t) o(t), [to h, to]

(1)
x(to + 0) o,

Ax(t) Ik(x(t)),t rk(x(t)),t > to, k 1,2,...,

where f:(t0, oo) xfxaRn; rk:a(to, oe); Ik:gtRn, k=l,2,..., Ax(t)=
(t + 0) 0); [to h, to] a.

Let -o(X) o for x ft.
Introduce the following conditions:

(H1) 7k e C[a, (to, cx)], ]c 1,2,
(H2) to < 7"l(X < 7-2(x <..., x e a.
(H3) -k(x)-oe as k-oe, uniformly on x E ft.
Under the assumption that conditions (H1) (H2) and (H3) hold, we define the

following notations:

Gk {(t, x) e [to, x:))X a: 7"k I(X) < t < 7"k(X)} ] 1,2,...

Fk {(t,x) [to, CX)Xa:7"k_l(X

_
< 7"k(x)} k 1,2,...

k- {(t,x) [t0, c)X ft:t- rk(x)} i.e., rk, k- 1,2,...

are hypersurfaces with equations t- -k(x).
We denote by PC(to) the space of all functions : [to -h, t0] having points of

discontinuity at 01, 02, 0s (to h, to) of the first kind and are left continuous at
these points.

Let P0 G PC(to)" We shall denote by x(t)- x(t;to, Xo, Po) the solution of pro-
blem (1), and by J + (t0, x0, P0)-the maximal interval of type [t0,) where the solu-
tion x(t; to, x0, a0) is defined.

We will give a precise description of solution x(t) to problem (1)"
1. If to-h <_ <_ to, then solution x(t) of problem (1) coincides with the

function p0(t).
2. Let tl,t2,...(to < < 2 < ...) be the moments of time at which the inte-

gral curve (t,x(t)) of problem (1) meets the hypersurfaces {rk}

_
i.e

each of the points tl,t2,... is a solution of one of the equations
t-(x(t)), k- 1,2,

Let t - h, l- O,-,2,... and 0h
h n{ohfs Or +h’ r-l,2,...,s.

It is easy see that {t }l =0 r Jr 1- " We shall note that in general it is
possible that the following relation is valid"

{tk}c_ h (orb}; )0.
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We form the sequence {ri}_ 0 observing the following rules"
a) 7"

o o h cx h s{ ili 0 {tk}k 0
[-j {tl }l 0 [-j {Or }r 1"

b) r0 t0.
c) The sequence {vi}_ 0 is monotone increasing.

Ifr t ho hsd) i.E{ k}k=lCl({tl}l=oU{Or}r=l) for some ij--1,2,..., then the

moment vi. take part in the sequence {vi}i__ 1 exactly once.

2.1: For r0 < t _< rl, the solution x(t) of problem (1) coincides with the solution
of the problem

it(t) f(t, x(t), x(t h)),

x(t) e [to- h, to],
x(to + O) x0.

2.2: For 7 < t _< -i + 1’ 1,2,..., one of the following three cases may occur:

a) If r e {tk}k__ l\({t/h}= 0 t2 {0rh}sr 1), 7i tk and i is the number of the
hypersurface met by the integral curve (t,x(t)) at the moment tk, then the
solution x(t) coincides with the solution of the problem

](t) f(t, y(t), x(t h)), (3)

b)

y(tk) x(t) + Iik(x(tk) ). (4)

If 7 ({t/h}-0- [-J {Ohr}st- 1)\{tk}--1’ then the solution x(t)of problem
(1) coincides with the solution of the problem

](t) f(t, y(t), x(t h + 0)),

(6)

c) If T e {tk}k ({t/h}/= 0 [-j { h scx) o Or}r- 1)and ’i tk, then the solution x(t)
coincides with the solution of the problem (5), (4).

3. If the point x(tk)+ I (x(t)) f, then the solution x(t) of problem (1) is
knot defined for > k.

4. The function x(t) is piecewise continuous on d + (to, x0, 0), left continuous
at points keJ+(to,xo,o), and x(tk+O)--x(tk)+Iik(x(tk)), k--l,

Introduce the following conditions:

(H4) The function f is continuous on (to, oc) x f x f.
(Hs) The function f is locally Lipschitz continuous with respect to its second

and third arguments on (to, oc) x f x .
(H6) There exists a constant M > 0 such that

f(t, x, y) _< M < oc for (t, x, y) (to, oc) x f x f.

(HT)
(H8)
(Hg)

(I + Ik): f--,f, k 1,2,..., where I is the identity on f.
(t,X -- Ik(x)) Fk + 1, for (t,x) (Tk, ] 1,2,
The functions vk’s are Lipschitz continuous with respect to x f with Lip-
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1 k--12,schitz constants Lk, 0 < Lk <_-,
(Hlo) For each (to, Xo, o) E R x f x PC(to) the solution (t; to, Xo, o) of initial

value problem (2) without impulses does not leave the domain t2 for t E J,
where

J / (to, oc) if the -k’s are finitely many,

SU (tk_ 1, tk] if the rk are infinitely many

We shall note that for the impulsive systems with variable impulsive perturba-
tions a phenomenon the so-called "beating" may occur, i.e., a phenomenon for which
the integral curve (t,x(t)) meets several of infinitely many times one and the same hy-
persurface.

In this paper, we exclude the case of "beating".
Efficient sufficient conditions which guarantee the absence of the "beating" for im-

pulsive functional differential equations were found by D. D. Bainov and A. B.
Dishliev in [1] and [2].

In the sequel, we shall use the following lemma:
Lemma 1: [1, 2] Let conditions (H1)-(H4) (Hb)-(Hlo) hold and (to, Xo) Fk,

k= 1,2,
Then the integral curve (t,x(t)) of the solution of problem (1) meets successively

each one of the hypersurfaces rl I + 1,"" exactly once.
The already formulated lemma guarantees the absence of "beating" of solution to

problem (1) as well as the validity of the following properties:
1. For each (to, Xo,o)rkXPC(to), k= 1,2,... there exists a constant

/ > o such that (t, (t; to, Xo, o)) Gk + 1, t (to,/), where (t; to, Xo, o)
is a solution of problem (2).

2. If (to, x0, 0) E Gk + 1 x PC(to) k 1, 2,... and x(t; to, x0, 0) is a solution
of problem (1), then

{(t, x(t; to, Xo,o)):t >_ to} O {rI U o" U... U o"k} .
3. Main Results

Theorem 1" Let conditions (H1)-(H4) (Hb)-(H10) hold.
Then:
1. For each point (to, Xo) R f and for each function o PC(to), there

exists a solution x(t)-x(t;to, Xo,o to the initial value problem (1)
defined on J + (to, Xo, o)"

2. g + (to, [to,
3. If, moreover, condition (Hs) is met then the solution x(t;to, Xo,?o is

unique.
Proof of Assertion 1" The validity of (H4) (H10) as well as the existence

theorem applied to problem (2) (cf. Hale [7])imply that for each point (to, Xo) R x
f and for each function 0 G PC(to) there exists a solution (I)l(t) of problem (2) for

>_ 0. Moreover, (I)l(t) 0(t) as E [to h, to] (I)l(t0) x0 and this solution does
not leave the domain f. Let be the first moment at which the integral curve

(t, (I)l(t)) reaches some of the hypersurfaces {rk}= 1" Conditions of Lemma 1 are ful-
filled and therefore 71 > 0. Moreover, the order number of the first hypersur-
faces reached by the integral curve is 1. Setting x(t;to, Xo,o)-(bl(t) as
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t E [t0, tl] we have (I)l(t I q- 0) I1((I)1(tl)) if- (I)1(tl) (I)1+.
Now the above mentioned existence theorem applied to the problem (2) in the

interval (tl, 7.2) ensures that there exists a solution (I)2(t) such that (I)2(t)- (I)l(t) for
t -h

_
t

_
tI and (I)(tl)- (I)1+. The solution x(t;to, Xo, 7o) of problem (1) can be

extended to the moment t- 7. by setting x(tto, Xo, Po)- (I)(t) for tI < t

_
7..

In the same way, let us denote by (I)i(t) the solutions of problem (2) in the inter-
vals (7.i_ 1,7.i], i-3,4,..., respectively. On each of the intervals (7.i, 7. + 1], we have
only one of the next two cases"

a. 7.i- tlc" Then, for t- tk, we have

+ 0)

It follows from the existence theorem for problem (2) on the interval

(t/c, r + 1] that there exists a solution (I) + l(t) such that (I) + l(t) (i(t)
for r h <_ t _< t/c and (I) + l(t/c) (I)/+ Thus the solution x(t;to, Xo,o
of problem (1) can be extended to the moment ri+l, 2,3,..., when
setting x(t;to, Xo, Po Oi + l(t), t (t/c,r + 1]"

b. v e ({t/h}= 0 U {0rn} 1)\{t/C}/C= :. Then, by virtue of theorem on con-

tinuability of solutions of problem (2) (el. Hale, [7]), the solution

x(t;to, Xo,o) of the initial value problem (1) can be defined on interval

(7.i, 7"i + 1] by setting x(t;to, Xo,o (i(t), (7"i,7-i + 1].
Finally, by means of condition (Ha) solution x(t;to, Xo,o of problem (1) is de-

fined for t J + (to, x0, P0)"
Proof of Assertion 2: Conditions of Lemma 1 are satisfied and I 1. Therefore,

2 2, 3 3, ..., where i/c is the order number of the hypersurface that the integral
curve (t,x(t; to, Xo, 0)) reaches at moment t/c, k 1,2,

Thus we conclude that i/coc as koc. Now, condition (Ha) leads to

lim t/c lim 7.i (x/c)= lim 7./c(x/c)-
koc k-oc k

(7)

where x/c x(t/c; to, Xo, o)"
Since the solution x(t)= x(t;to, Xo,99o) is defined on each of the intervals

(t/c,t/c + -], k 1,2,..., then from (7) and Assertion 1, we conclude that it can be con-

tinued for all t >_ to, i.e., J + (to, Xo, 0) -[to, oc).
Proof of Assertion 3: Validity of condition (H5) ensures that the above defined

solutions (I)l(t), (I)2(t),... are unique and therefore the solution x(t;to, Xo,o of pro-
blem (1) is unique.

Let us consider now an initial value problem for the system of differential-differ-
ence equations with impulse effects at fixed moments of time:

2(t) f(t,x(t),x(t- h)), > to,
t [to h, to],

x(to + 0) xo,

Ax(7./c) x(7./c + 0) x(7./c 0) I/c(x(7./c)), 7./c > to, k 1,2,...,

where to 7.o < 7"1 < < 7"k < 7.k + and lira

7./c(x)- 7./c, k- 1,2,... and a/c are hyperplanes in R + 1.

(8)

In the present case,
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Theorem 2: Let conditions (H4) (H6)-(Hs) are met.
Then for each point (to, Xo) E Rxf and for each function 9o PC(to), there

exists a solution x(t;to, Xo,ao) of problem (8) that is defined on interval [to -h,w)
and it can be continued to the right from w.

If, in addition, condition (H5) is met, then the solution of (8) is unique.
The proof of Theorem 2 is a simple consequence of Theorem 1.
Now we consider an initial value problem for the linear system of differential-

difference equations with impulse effects at fixed moments:

&(t) A(t)x(t) + B(t)x(t h), t > to, t

(t) t [to h, to],
(9)

x(to + 0) xo,

Ax(z-k) Bkx(z-k),z-k > to, k 1,2,...

where A(t), B(t), and Bk, k 1,2,... are n x n matrices.
Theorem 3: Let the matrix functions A(t) and B(t) are continuous for t> to,

t 5 z-k, It--1,2,... with points of discontinuity at z-l, T2’ where they are left
continuous.

Then for each point (t0, x0) Rf and for each function ao PC(to) there
exists a unique solution x(t)--x(t;to, Xo,ao) of problem (9) that is defined for all
t>to.

Theorem 3 is a consequence of the theorem on existence and uniqueness for the
solutions of a linear system of differential-difference equations [7].

The problem on left-continuability of solutions will be considered now for systems
of type (8) only.

Assume that x(t) is a solution of (8) defined on interval (7, w).
If 7 :/: vk, then the problem on continuability of x(t) on the left of 7 can be

solved in the same way as for differential-difference equations without impulses. In
this case the solution x(t) is continuable on the left of 7 and J- J- (to, Xo, ao)

A straightforward calculation shows that the solution x(t) of problem (8) satisfies
the equation"

Xo + E Ik(x(z-k)) + / f(s,x(s),x(s- h))ds, J +,
x(t)- to <- rk < Jto

Xo- E Ik(x(z-k)) + / f(s,x(s),x(s h))ds, t J-.
_< rk < O to

J

The solution of linear system (9) can be extended to the left of rk if the below
conditions are met:

det(E + Bk) :fi 0, k 1,2,..., (10)

where E is the n x n identity matrix.
Let Uk(t,s (t,s E (z-k-1, z-k]) be the Cauchy matrix [8] for the linear system
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&(t)- A(t)x(t), vk_ < < vk, k- 1,2,

Then by virtue of Theorem 3, the solution of the initial problem (9) can be de-
composed as:

z(t; to, ;o, ’o) (t) w(t, to + O)o

where

+ f W(t,)B()(-), t > to,
o

(11)

w(t,)

Uk(t 8) as t, 8 (7"k 1, 7-k],

Uk + 1( t, ’k -t- O)(E + Bk)Uk(7k, s)

as Tk_l < 8

_
Tk < t

_
Tk+l,

Uk(t’ Tk)(E + Bk)- 1Uk -t- 1(7k -- 0, s)

as Tk_l < Tk < s Tk + l,

i+1

Uk + l(t,’k -O)H (E + Bj)Uj(j, Tj_ + O)(E + Bi)Ui(’l-i, s)
j-k

(12)

as Ti_l < s

_
T < Tk < Tk + l,

k-1

gi(t, Ti) H (Ent-Bj)-Iuj+I(Tj+O, Tj+I)(E- Bk)-IUk+I(Tk+O, 8)

is the solving operator of the system

5:(t)- A(t)x(t), 7 k,

X(-)- B(-).

Now, (11), (12), and the linearity of operator Uk(t,s imply that the space L of all
solutions of the problem (9) is an n-dimensional linear space.
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