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We consider the symmetric Poissonian two-armed bandit problem. For
the case of switching arms, only one of which creates reward, we solve ex-

plicitly the Bellman equation for a -discounted reward and prove that a

myopic policy is optimal.
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1. Introduction

We discuss the Two-Armed Bandit (TAB) problem which is a continuous analogue of
the discrete-time TAB studied by Feldman [6]. A self-contained statement of the
discrete-time TAB can be found also in DeGroot [1] and Dynkin and Yushkevich [5].
The Poissonian version of this problem was stated and studied in detail by Sonin [8]
and Presman and Sonin [7]. The symmetric Poissonian TAB is determined by a

matrix

A- O_<#<A.
# A

The columns of A represent the left and the right arms of the TAB; the rows corres-

pond to hypotheses H1 and H2. Both arms generate Poisson flows of particles. Ac-
cording to H1, the intensities of the flows corresponding to the left and the right
arms are equal to A and #, respectively. According to H2, these intensities are # and
A. An input flow with intensity 1 can be directed either to the left or to the right
arms. A controller, at each time t >_ 0, selects probabilities u and 1- ut, with which
an arriving particle (if any) is directed to the input of the left or the right arm. If a
particle gets into an arm with a higher intensity, then it is immediately observed at
the output of this arm. If a particle gets into an arm with lower intensity, then the
same happens with probability #/A; with probability 1- #/A, the particle remains
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unobserved. The aim of the controller is to maximize the expected number of ob-
served particles if he knows a priori probability x of hypothesis H1 at time t 0. In
this setting, it is shown by Presman and Sonin [7] that the optimal policy is given by
the rule u (xt) where x is a posteriori probability of H1 at time t, and

0, if 0 _< x < 1/2,
99(X 1 1, if x , (1)

1, if1/2<x_<l.
A new feature studied in this paper is the random switching of arms (or equivalently,
hypotheses) in the TAB. This switching occurs at jump-times of an unobserved
Poisson process with known rate a > 0. In the case of an infinite horizon and dis-
counted rewards, Donchev [2] has proved the optimality of policy (1) for all suffi-
ciently small values of #/a. However, this is not done by using the explicit solution
of the optimality equation. In that paper (Donchev [2]), we made use of a compari-
son of a special functional-differential equation with delay, and two ordinary differ-
ential equations utilizing some recent results for the solution of the equation with
delay.

Here, we consider the particular case of a matrix

0 ,
Since for this matrix #/a 0, the above result implies that policy from Equation
(1) is optimal with respect to the fl-discounted reward criterion for any a > 0. In this
paper, we suggest a direct proof of this statement by solving explicitly the Bellman
equation for the corresponding controlled process {xt} of posteriori probabilities. We
also provide an explicit formula for the /%discounted reward corresponding to policy
9. A direct solution of the average optimality equation in the case # 0 is given in
Donchev and Yushkevich [4].

In Section 2, we characterize the process {xt} which is a piecewise-deterministic
process and describe sufficient optimality conditions. In Section 3, we solve the equa-
tion which the value function, provided that policy is optimal, should satisfy. In
Section 4, we show that the solution of this equation also solves the Bellman equa-
tion.

2. The Process {xt}. Optimality Conditions

Let x be a posterior probability of H at time t. It depends on the given probability
x0 -x, on the known controls us, 0 <_ s < t, and on the observations over the time
interval [0, t]. It is well known that the process {xt} forms a sufficient statistic for
the TAB problem, which is a problem with incomplete information. In the case
where there is an absence of switching, hence in our problem for a- 0, a rigorous
proof of this assertion can be found in Presman and Sonin [7]. On an intuitive level,
this can be done by means of the Bayes rule. Utilizing it to re-evaluate x + dt given
xt, ut, and observations on the interval (t, + dr), one may see the following"

(i) In the absence of observed particles, the process x satisfies the ordinary
differential equation
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x ,(1 2ut)xt(1 xt) + a(1 2xt); (2)

(ii) With probability utxtdt a particle is observed at the output of the left
arm and in this case, x + dt 1;

(iii) With probability (1- ut)(1- xt)dt a particle is observed at the output
of the right arm, and in this case x + dt 0; and

(iv) Since we get income when observing particles, the expected increment of
rewards is equal to the sum of these two probabilities (for more details, see
Donchev [2]).

This characterization of the process {xt} allows to put our problem into the
framework of controlled, piecewise-deterministic processes. Following Yushkevich [9]
(for the case of no impulse actions, no restrictions on the continuous actions, and sta-
tionary in time components of the model), we define a model Z which is determined
as follows:

(a) A state space X -[0, 1];
(b) A space of admissible controls U -[0, 1];
(c) A drift coefficient

b(x, u) A(1 2u)x(1 x) + a(1 2x); (3)

(d) A jump rate-measure q(x, u, dy) on X defined by

q(x,u,O)- A(1-u)(1-x),q(x,u, 1)- Aux, q(x,u,(O, 1))-0; (4)

A reward rate

r(x,u)-Aux+A(1-u)(1-x), xGX, uGU.

A policy r is a random process {ut} >_ O, which is progressively measurable
with respect to the past observations, and such that some usual conditions for solvabi-
lity of the equation dy b(yt, ut)dt are satisfied. For more details, we refer the read
to Yushkevich [9]. Here we discuss only the concept of a Markov policy, which we
need in the sequel. A stationary policy is a Borel mapping from X to U such that
the equation dy b(y, (y))dt has a unique solution Yt, t >_ O, for every initial condi-
tion Y0 x E X, with values Yt X. Let II and denote, respectively, the sets of all
policies and all Markov policies in Z. To every policy r and a priori probability x,
there corresponds a measure P on the space of all sample paths of the process {xt}.
Denoting the corresponding expectation by E, we consider a problem with a
criterion

v(x) E/ e-3tr(xt, ut)dt x e X, r {ut) G l-I, (6)
o

with r(x,u) being defined by Equation (5). In Equation (6), > 0 is a discounting
factor which ensures finiteness of the expectation in its right-hand side. The problem
is to maximize the expected total/-discounted reward over " II. Let us denote by

v(x) sup vrr(x) (r)
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the value function in this problem
To formulate sufficient optimality conditions, let CI[x] be the space of all contin-

uously differentiable functions defined on X- [0,1]. Utilizing Equations (2) through
(5), and taking into account the definitions of the model, we define the operators

Llf(x [- Ax(1 x) + a(1 2x)]f’(x) + Ax[f(1)- f(x) + 1],

L2f(x [Ax(1 x) + a(1 2x)]f’(x) + A(1 x)[f(O)- f(x) + 1], (9)

acting on functions f E CI[x]. Let us set

Lf(x, u) uLlf(x + (1- u)L2f(x), u E U, x X. (10)

Proposition 2.1"
relations

If a Markov policy (x) and a function V(x) CI[x] satisfy the

LV(x, p(x)) -/V(x) max LV(x, u), x e X,
uU

(11)

then v is a value function and is an optimal policy for the problem presented in
Equations (6) and (7).

This proposition follows from well known results in continuous-time dynamic pro-
gramming. In the framework used here, a formal reference should be made to Theo-
rem 7.1 in Yushkevich [9] (with some obvious simplifications due to the absence of im-
pulses and constraints on continuous actions).

3. Solution of the Equation for the Value Function

In this section, we find a solution of the equation

Lv( , (12)

which is the first relation in Equation (11), assuming that the policy defined by
Equation (1) is optimal. In view of the symmetry of and elements (c), (d) and
of the model Z with respect to x- 1/2, we seek a solution of Equation (12) with a

symmetric function V, so that

V(x)-V(1-x), O_<x_<l. (13)

Obviously, such a function satisfies the relations

V(O) V(1), (14)

V’ (1/2)- 0, (15)

LIV(X L2V(1 x). (16)

To avoid misunderstanding, we denote the restriction of V(x) on the interval
1/2 < x _<1 by v(x). On this interval, the equation LY(x,(x))-/Y(x) becomes
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LlV(X =/v(x), or equivalently

F(x)v’(x)- (Ax +/)v(x) Ax[1 + v(1)],
where

(17)

F(x) Ax(1 x)+ a(1 2x) (x1 x)(x x2) (18)

1/2 a V/41_ ()2Xl, 2 / i / (19)

Equation (17) is a linear, first-order ordinary differential equation for the function v.

Its general solution depends on v(1), the unknown value v(x) for x- 1, as well as on

the integration constant C. To determine these two quantities, we utilize Equation
(15) and the identity v(1)= v(1). By applying to Equation (16) the standard solution
formula, we get that its general solution is

v(x) e- I(x)EC + (l + v(1)) / eI(x)(xI --X)(XX x2)dx, 1/2_< x _< 1, (20)

where

and

x +/
)dx c ln(x- x2)-(1 + c)ln(xI x)I(x)- (Xl_X)(x_x2

(21)

C
Xl X2 (22)

Let us mention the following useful relations

CX (1 + c)x2 -,
c(1 /c)- R

(1-- X2)2’

and

(23)

(24)

which follow from Equations (19) and (22).
To compute the integral in the right-hand side of Equation (20), we use a decom-

position of the fraction under the integral as a sum of elementary fractions:

x 1 ( Xl x2 )(X1-x)(x-x2) ZI--X2 Xl--X /x-x2

By Equation (21), we have

(26)

I(x) )c -1-c(X- X2 (X X) (27)

Utilizing Equations (26) and (27), we get

eI(x) x Xl [ x)-c- 2dx (28)x2)C(Xl(Xl X)(x-- x2 Xl X2 J
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X2__
X2 /(X--X2)c- l(x1 x)-C- ldx

11 -4-12.

Both integrals I1 and 12 can be solved as follows

x1 j X- x2 c. dxII--Xl-X2 (Xl-X) (Xl x)2

Xl [ x_x2\c x--x2 xI x--x2
c

(X X2)2 ] (X1 x) d-::- --(c + 1)(xI -;1:2)2(2:1 -x)
+1

12 Xl
x2 [ Xl_ x -c-1

x tg
2

We add the expressions for I1. and 12 from the last two formulas and multiply

11 + 12 by e I(x) (xI x)c +l(x x2 c. After some elementary algebra in which
Equations (23) and (24) are used, we get that the second term in the right-hand side
of Equation (20) is equal to

l+v(1)( fiX)R + x.

Thus we obtain the following formula for v(x):
1 +v(1) ( a )V(X) C(xI x)c + l(x- x2)-c _[_ ..___ X -}- x (29)

Next, we set x 1 in Equation (29) in order to express the constant C by means
of v(1). Easy calculations show that

a 3 a

C R (x1 1) (1 x2)%(1 R A(xl 1)- c- 1(1 x2)C. (30)

Substituting Equation (30)in Equation (29), we get

Rv(x) [l /v(1)][/x-(/)X(x)]/ Rv(1)X(x), (31)

where

(Xl--X)C+l(Xl--X2)-c I1/2 1X(x)-
Xl_ 1 -x x 1. (32)

The function X(x) plays an important role in the sequel. We summarize some of
its properties in the next lemma.

LemIna 3.1: The function X(x) satisfies relations

X(1)- 1, (33)
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X’(x) x(1 x)+ (1 2x)X(x)’ (35)

x"()
[- x(1- x)+ (1- 2x)]

2X(x)" (36)

The first of these formulas is trivial; the third follows from the fact that X(x)
solves the homogeneous part of Equation (17). To check Equation (34), we represent
the powers in Equation (32) as c / 1 (c / 1/2) / 1/2, -c -(c /-}) / 1/2, and use identi-
ties

xI x2

(21--x2)(x1-1/2)-, (1-- 2)(x1--1) .
Finally, we get Equation (36) by a direct computation.
Now, let us return to the function v(). It remains to determine only v(1), the

value of v(x) at x 1. Making use of Equations (15) and (34), we obtain an easy
equation for v(1). Solving it, we get

(38)

_(a )() V/g (Xl)C + 1/2 /3T 2+ 1 + 2
x2 ] (39)

with R being given by Equation (25).
Substituting Equations (37) and (38)into Equation (31), we obtain an explicit

formula for v(x):

1/2 < x < 1. (40)+1/2(a+ + x(),

Finally, we set

v(x), if 1/2 <_ _< 1

1 (41)V(x)
v(1 ), if 0 _< < g.

Now, we are in a position to formulate our main result. Its proof will be given in
Section 4.

Theorem 3.1: The policy 9 and the function V defined by Equations (1) and (41)
are, respectively, an optimal policy and the value function for the problem presented
in Equations (6) and (7).
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4. Main Results. (Proof of Theorem 3.1)

By construction, the function V(x) satisfies the first equation in Equation (11) on

, 1. In view of Equation (16), it satisfies the same equation on the whole segment

[0, 1]. Thus, it remains to prove only the second relation in Equation (11). On the
other hand, since the operator L is linear with respect to u, it suffices to show only
that

L2V(x <_ V(z), if 1/2 <_ x _< 1,

and

1Liv(x) <_ V(x), if 0 _< x <_ .
By a symmetry, we need to prove only the first of these inequalities, which is equiva-
lent to

Llv(x)+L2v(x)<_2v(x), 1/2_<x<_ 1. (42)

According to Equations (8) and (9), the inequality in Equation (42) reduces to

2a(1 2x)v’(x) + ,[1 + v(1)] _< (2 + .X)v(x), (43)

where we have used the equality V(0)= V(1)= v(1), which follows from Equation
(14). The same equality, along with Equation (15), implies the relation

LV(1/2,1/2)-, Iv(i)+1-v(21-)] -2/v(1/2). (44)

Comparing Equations (43) and (44), we see that inequality (43) is equivalent to

2a(1-2x)v’(x)<_ (, + 2?)[v(x)- v(1/2)J. (45)

To prove inequality (45), we need the next lemma.
Lemma 4.1: The following inequalities hold:

v(1) > v(1/2)> 0.

The probabilistic meaning of these inequalities is quite apparent. The first one
means that, if at time 0, we know exactly that the left arm is the better arm,
then the expected total number of observed particles is greater than the corresponding
number in the case of a full uncertainty about arms. According to the second inequa-
lity in Equation (46), even in the worst case, we get a strictly positive income.

We only sketch the details of the proof which is quite technical. First, we show
that T > 0, where T is given by Equation (39). To do this, we cancel the factor in
the expression for T and get the inequality

2 + 1 + 2
x2 ] > 1,
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which, in view of Equations (19) and (22), is to be proved only for / 0. In this
case, the last inequality reduces to

1/2+z

lee+-+ z + 2
2 4z2

>
+z- +z2

a Since the fraction and the power in the left-hand side of the inequality inwith z X"
Equation (47) are greater than 1 and 1/2, respectively, it would hold provided that

(1 z2 z2

1
2
2+z- +

Obviously, this inequality holds for all positive values of z. Now, both inequali-
ties in Equation (46) follow easily from Equations (34), (37) and (40).

Lemma 4.1 allows us to complete the proof of Theorem 3.1, making use of the
same idea as in Donchev and Yushkevich [4]. Returning to Equation (45), we notice
that it certainly would hold provided that

v’(x)>_O, 1/2<_x<_l,
and

v(x)-v(1/2)>_O, 1/2<_x<_l.
The second of these two inequalities is a corollary of the first of them, hence it

1remains to prove only that v (x) >_ 0 for _< x _< 1. Assume the cpntrary. By Equa-
tion (46), we have that v’(x) is positive somewhere in the interval (, 1]. Since v’(x) is
contiugus in r, 1], the as’su’mption implies that v’(,f,)--0 at someoitt 7(: @h’en,
in view of Equation (15), we deduce that v"(x) must attain the value 0 at some point

1of the interval (, 1], which obviously contradicts Equations (32), (36) and (40). This
completes the p’rZoo of Theorem 3.1.
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