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Abstract. This paper is concerned with evaluating the performance of loss networks.
Accurate determination of loss network performance can assist in the design and dimen-
sioning of telecommunications networks. However, exact determination can be difficult
and generally cannot be done in reasonable time. For these reasons there is much interest
in developing fast and accurate approximations. We develop a reduced load approxima-
tion that improves on the famous Erlang fixed point approximation (EFPA) in a variety
of circumstances. We illustrate our results with reference to a range of networks for
which the EFPA may be expected to perform badly.
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1. Introduction

We shall use the standard model for a circuit-switched teletraffic network.
The network consists of a finite set of links J and the j-th link comprises a
co-operative group of Cj circuits. Upon connection of a call an end-to-end
route is established such that a call initiated on route r seizes ajr circuits
from one or more of the links in J . For simplicity, we will assume that ajr =
1 if link j is part of route r; otherwise ajr = 0. More general models may
allow ajr ∈ {0, 1, 2, . . . , Cj}. The (ajr; j ∈ J) circuits remain exclusively
dedicated to the connection as long as it is maintained, even when no
information is being transferred. When the call is terminated, all of the
circuits are released simultaneously and are then available to be used by
future calls. Denote the set of all routes by R, the routing matrix (ajr; j ∈
J, r ∈ R) by A, and write j ∈ r as an abbreviation for j ∈ {i ∈ J : air > 0}.
Rather than identifying a call by its origin and destination points, a call is
identified by its route, and we assume that arriving calls are requesting to
be connected along a particular route. There are no waiting arrangements
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for calls that cannot be connected immediately; a call that arrives to find
insufficient capacity on one or more of the links along its route is blocked
from service and is then lost. The proportions (Lr; r ∈ R) of calls that
are expected to be lost on the various routes form a natural measure of
network efficiency.
The usual state description tracks the number of calls in progress on each
of the routes. Let Y = (Yr; r ∈ R), where Yr is the number of route-r calls
in progress. Due to the capacity constraints, Y takes values in the subset
S = S(C) of NR given by

S(C) =

{

n ∈ NR :
∑

r∈R

ajrnr ≤ Cj , j ∈ J

}

. (1)

We will suppose that calls for each route arrive in independent Poisson
streams, with route-r calls arriving at rate νr. Further, we will suppose
that calls have an exponentially distributed duration after being connected.
Under these assumptions, Y is a reversible Markov process and its equilib-
rium distribution has a product form. Without loss of generality, let the
mean holding time of calls be 1. Define P to be the probability measure
under which (Yr; r ∈ R) are independent Poisson random variables with
means νr, r ∈ R. This would be the equilibrium measure for the usage on
each of the routes were the system not to have any capacity constraints.
The restriction Y to S is a truncation of a reversible Markov process and
its equilibrium probability measure is thus given by

π(A) = P (A|Y ∈ S), for all P -measurable A. (2)

Under π, Y is still reversible (Corollary 1.10 of [8]), and thus the form of π
can be easily obtained from the detailed balance equations,

ψrπ(Y = n) = (nr + 1)φrπ(Y = n+ er), n,n+ er ∈ S. (3)

(Here er represents the unit vector with a 1 in the r-th position.) The
solution of (3) is the equilibrium distribution

π (Y = n) = G(C)−1
∏

r∈R

νnr
r

nr!
, (4)

where G(C) is a normalising constant chosen so that the distribution π
sums to unity. The probability a call requesting route r arrives to find one
or more of the links in r full is Lr = 1−G(C −Aer)/G(C).
Unfortunately, calculating the loss probabilities using G(C) is often in-
tractable. Direct normalisation of the distribution π in (2) entails summing
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over the space S, and, even for moderately sized networks, it is apparent
from (1) that the number of distinct states in S is large and grows rapidly
with the number of routes, and also with the link capacities. In fact, the
problem of evaluating π in this way is #P -complete [13]. Thus, there is
strong evidence to suggest that an algorithm for finding the loss probabil-
ities in polynomial time using G does not exist.
We have described the classical loss network model similar to that of
Kelly [9]. It also arises in variety of different contexts. Appropriate choices
of A and C for the linear constraints will lead to simple models for fixed-
line networks [17], [6], [10], cellular mobile networks [5], [3], computer
database access problems [14], and other kinds of telecommunications net-
works [19], [16]. Part of the model’s appeal is that it can easily be extended
to include call acceptance criteria that cannot necessarily be expressed us-
ing a linear constraint AY ≤ C. Provided those controls preserve the
reversibility of the process Y , even the product-form distribution π in (4)
applies. Unfortunately, this is not the case for admission policies such as
trunk reservation [11], [7] or virtual partitioning [2], [15]. Nor does the
product-form result hold for networks allowing alternative routing.

2. The Erlang Fixed Point Approximation

In the EFPA the loss probability for route r is estimated to be

Lr = 1−
∏

i∈r

(1−Bi), (5)

with B1, B2, . . . , BJ a solution to the system of equations

Bj = E(ρj , Cj), j ∈ J, (6)

ρj =
∑

r∈Rj

νr
∏

i∈r\{j}

(1−Bi), j ∈ J, (7)

where

E(ν, C) =
νC

C!

(

C
∑

n=0

νn

n!

)−1

is Erlang’s formula for the blocking probability on a single isolated link with
Poisson traffic offered at rate ν. The EFPA has the effect of replacing the
true probability measure π by a more amenable measure P. For each link j,
let Uj =

∑

r∈Rj
Yr be the capacity used on link j. Under P, each link j is

assumed to be offered a stream of traffic at a constant rate ρj . If indeed this
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were the case, the equilibrium probability distribution for U = (Uj ; j ∈ J)
would be P(U = u) =

∏

j∈J P(Uj = uj), where

P(Uj = u) =
ρuj
u!

(

C
∑

n=0

ρnj
n!

)−1

.

This amounts to the assumption that the links operate independently. Un-
der P, the probability that link j is full is Bj in equation (6). Kelly [9]
proved that, for the model under consideration, there is a unique fixed
point (B1, . . . , BJ ) ∈ [0, 1]

J of the system.
The EFPA is known to be effective under a variety of limiting regimes.
Kelly [10] proved that the estimates for a network with fixed routing and
no controls tend towards the exact probabilities when (i) the link capaci-
ties and arrival rates are increased at the same rate, keeping the network
topology fixed (Kelly limiting regime), and (ii) [22] the number of links and
routes are increased while the link loads are held constant (diverse rout-
ing limit). The EFPA performs least well in highly linear networks and
in circumstances where the offered traffic loads are roughly equal to the
capacities (critically loaded).

3. A Two-Link Approximation

An estimate of the route loss probabilities, which is more accurate than
those in (5), can be obtained by taking into account the link interdepen-
dencies. This two-link approximation is achieved by approximating the
joint distribution of the usage on pairs of links (the EFPA effectively esti-
mates this distribution on single links). The approximation is as follows.
For each pair of links i, j, let

hij(ui|j , uij , uj|i) =

∏ui|j−1
m=0 ρi|j(m)

ui|j !

∏uij−1
m=0 ρij(m)

uij !

∏uj|i−1
m=0 ρj|i(m)

uj|i!
,

for (ui|j , uij , uj|i) ∈ N3 : ui|j + uij ≤ Ci, uj|i + uij ≤ Cj , where

ρi|j(u) =

∑

r∈Ri\Rj

νr

min(Ci−u,Cj)
∑

l=0

∏

k∈r

(

1−Bk|i(u+ l)
)

∑Cj−l
v=0 hij(u, l, v)

∑Ci−u−1
w=0

∑Cj−w
v=0 hij(u,w, v)

, (8)
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ρij(u) =

∑

r∈Ri∩Rj

νr

Ci−u−1
∑

l=0

∏

k∈r

(

1−Bk|i(l + u)
)

∑Cj−u−1
v=0 hij(l, u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hij(w, u, v)

, (9)

and

Bk|i(ui) =







∑min(Ck,ui)

l=0 hki(Ck−l,l,ui−l)
∑Ck

m=0

∑min(m,ui)

l=0 hki(m−l,l,ui−l)
, if k 6= i,

1{ui=Ci}, if k = i.
(10)

These equations will be derived in Section 5. They form a set of equations
in the unknowns B = (Bk|i; i, k ∈ J), where Bk|i = (Bk|i(m);m ≤ Ci) ∈
RCi . Existence of a fixed point is guaranteed by Brouwer’s Fixed Point
Theorem.
The loss probabilities can be estimated using h = (hij ; i, j ∈ J). Losses
on two-link routes, for example, have

Lr = 1−
Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
, if r = {i, j}, (11)

where

Φij(Ci, Cj) =

Ci
∑

ui=0

Cj
∑

uj=0

min(ui,uj)
∑

k=0

hij(ui − k, k, uj − k) .

Calls that use the single link r = {i} are lost with probability

Bi = 1−
Φij(Ci − 1, Cj)

Φij(Ci, Cj)
, (12)

where j is any link with a route common to i.
The rationale for the approximation is as follows. The traffic offered to
a subsystem consisting of two arbitrary links, i and j, can be classified
as either (i) link i only, (ii) link j only, or (iii) common to both links.
Correspondingly, let Ui|j =

∑

r∈Ri\Rj
Yr, Uj|i =

∑

r∈Rj\Ri
Yr and Uij =

∑

r∈Ri∩Rj
Yr be, respectively, the number of calls using link i but not j,

the number using link j and not i, and the number on routes using both i
and j. This is a natural way to classify the traffic offered to the sub-
system. Without capacity constraints, the joint distribution of the link
utilisations Ui = Ui|j + Uij and Uj = Uj|i + Uij is

P (Ui = ui, Uj = uj) =

min(ui,uj)
∑

k=0

P (Ui|j = ui − k, Uij = k, Uj|i = uj − k) ,
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where

P (Ui|j=ui|j , Uij=uij , Uj|i=uj|i)=
ρ
ui|j

i|j

ui|j !

ρ
uij

ij

uij !

ρ
uj|i

j|i

uj|i!
e−(ρi|j+ρij+ρj|i) , (13)

with ρij =
∑

r∈Ri∩Rj
νr, ρi|j =

∑

r∈Ri\Rj
νr and ρj|i =

∑

r∈Rj\Ri
νr.

To construct a reduced load approximation we shall replace the aggregate
rates ρij , ρi|j and ρj|i in (13) with reduced load rates, and we isolate the
subsystem composed of traffic offered to links i and j. Motivated by the
form of (13), let us suppose for the moment that π(Ui|j = ui|j , Uij =
uij , Uj|i = uj|i) has the form hij(ui|j , uij , uj|i)/Φij(Ci, Cj). If this were
the case then questions concerning call blocking could be answered easily.
For instance, the probability that link i is full would be Bi in expres-
sion (12), the probability that either link i or link j are full would be Lr

in expression (11), and the conditional probability that link k is full given
link i carries ui calls would be Bk|i(ui) in expression (10). To ensure that
the traffic offered to the subsystem is consistent with blocking in other
parts of the network, the rates ρij , ρi|j and ρj|i are replaced by state-
dependent reduced load rates. For example, expression (8) for ρi|j(ui|j) is
just ρi|j =

∑

r∈Ri\Rj
νr reduced by an estimate of the expected blocking

on the other links k ∈ r such that r ∈ Ri \ Rj when link i is carrying ui|j
calls that are not also carried by link j.

4. Examples

In this section we examine the performance of the two-link reduced load
approximation when applied to a suite of simple networks. To compare its
accuracy with that of other approximations, we have used relative errors:
specifically, the difference between the approximate value and the exact
loss probability, expressed as a proportion of the exact value. These exact
values were calculated directly from G(C).

4.1. A star network

Consider a private computing network consisting of a number of worksta-
tions linked to a central mainframe in a star configuration. Each worksta-
tion is linked directly to the central processor. Any exchange of information
between workstations must be via the central mainframe. This structure
is quite common and in the past it was a popular design for computing
environments. As such, the backbone of many networks in existence today
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is a number of star configurations with a few additional links to improve
resilience [12].
In a star network, each link carries a single-link traffic as well as sharing
two-link traffic with each of the other links. For simplicity, we will assume
that the network is completely symmetric: the link capacities are the same
(Cj = C for all j ∈ J = {1, 2, . . . , l}), each link is offered single-link traffic
at the same rate ν1 and the l−1 streams of two-link traffic are each offered
at rate ν2.

4.1.1. The two-link approximation

The two-link reduced load approximation is obtained by solving the sys-
tem comprising (14) and (15) below. By the symmetry of the network,
Bk|i(u) = B(u) and ρi|j(u) = ρ(u) are independent of i and j. Since the
longest route consists of only two links, ρij(u) = ν2. The parameters B(u)
and ρ(u) satisfy

ρ(u) = ν1 + (J − 2)ν2

×

C−u−1
∑

w=0

(

1−B(w + u)
)

∑C−w
v=0

∏u−1
m=0 ρ(m)

u!
νw
2

w!

∏v−1
m=0 ρ(m)

v!
∑C−u−1

k=0

∑C−k
v=0

∏u−1
m=0 ρ(m)

u!
νk
2

k!

∏v−1
m=0 ρ(m)

v!

, (14)

and

B(u) =

∑min(C,u)
w=0

∏C−w−1
m=0 ρ(m)
(C−w)!

νw
2

w!

∏u−w−1
m=0 ρ(m)
(u−w)!

∑C
v=0

∑min(v,u)
w=0

∏v−w−1
m=0 ρ(m)
(C−w)!

νw
2

w!

∏u−w−1
m=0 ρ(m)
(u−w)!

(15)

for u = 0, . . . , C−1. Under this scheme, the loss probabilities are estimated
to be

L1 = 1−
Φ(C − 1, C)

Φ(C,C)
and L2 = 1−

Φ(C − 1, C − 1)

Φ(C,C)
, (16)

with

Φ(ui, uj) =

ui
∑

x=0

uj
∑

y=0

min(x,y)
∑

k=0

∏x−k−1
m=0 ρ(m)

(x− k)!

νk2
k!

∏y−k−1
m=0 ρ(m)

(y − k)!
.

4.1.2. Zachary and Ziedins’ method

In Section 4 of their paper, Zachary and Ziedins [21] describe a generic
approximation for networks that exhibit a certain degree of symmetry. For
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the star model, the approximation is achieved by replacing the existing
probability measure π under which

π
(

Y Rj
= nRj

)

=
θ
(

n∂Rj

)

G(C)

∏

r∈Rj

νnr
r

nr!
, for all j ∈ J,

by P with

P
(

Y Rj
= nRj

)

∝
l−1
∏

k=1

λ
(

nRj∩Rk

)

∏

r∈Rj

νnr
r

nr!
, for all j ∈ J,

where λ is given by

λ
(

nRj∩Rk

)

∝
∑

mRk
∈SRk

:

mRj∩Rk
=nRj∩Rk

l−2
∏

i=1

λ (mRk∩Ri
)

∏

r∈Rk\Rj

νmr
r

mr!
.

Under P, instances of blocking of single-link and two-link routes have the
respective likelihoods

L1 =

∑C−1
k=0 λ(k)λ(k + 1)

νk
2

k!
∑C

k=0 λ(k)λ(k)
νk
2

k!

and L2 =

∑C−1
k=0 λ(k + 1)λ(k + 1)

νk
2

k!
∑C

k=0 λ(k)λ(k)
νk
2

k!

.

This scheme is labelled MFA.
Figure 1 compares the relative errors in the MFA, EFPA, and two-link
reduced load approximation schemes. The network considered had five
links and five circuits per link. The x-axes have the single-link arrival
rate ν1 varying over [0, 10]. We have chosen ν2 = ν1/4, so that each link
is offered roughly equal proportions of single-link and two-link traffic. It
is apparent that the two-link approximation compares favourably with the
EFPA over most of the region tested. The accuracy of the two-link scheme
is only marginally worse than the MFA.

4.2. A ring network

Reduced load approximations such as the EFPA tend to perform least well
in networks of linear structure, with the links joined end-to-end or in a
cycle. A popular test case is the ring network, where the links are arranged
in a loop with adjacent pairs of links sharing routes.
As with the star network, we assume a high degree of symmetry in the
model. Suppose that all links have the same capacity C and that there are
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Figure 1. Accuracy for a star network (J = 5, C = 5, ν2 = ν1/2)

only two types of traffic. Single-link traffic is offered to each link, 1, 2, . . . , l,
at a common rate ν1 and two-link traffic is offered to each pair of adjacent
links, {1, 2} , {2, 3} , . . . , {l, 1}, at rate ν2.

4.2.1. The two-link approximation

The EFPA is accurate when links are blocked almost independently of one
another. Unfortunately, the link utilisations are sometimes significantly
dependent. This is particularly true of linear and cyclic networks, such as
the ring. The two-link approximation is an attempt to account for the link
interactions. The approximation used for the star network requires only
minor modification for the ring network. In fact, the only change is that

ρ(u)=ν1+ν2

C−u−1
∑

w=0

(

1−B(w + u)
)

∑C−w
v=0

∏u−1
m=0 ρ(m)

u!
νw
2

w!

∏v−1
m=0 ρ(m)

v!
∑C−u−1

k=0

∑C−k
v=0

∏u−1
m=0 ρ(m)

u!
νk
2

k!

∏v−1
m=0 ρ(m)

v!

,

instead of (14) (in the ring network each link i carries a single two-link
route {i, i + 1}, not shared with an adjacent link i − 1). Expression (15)
for B(u) and expressions (16) for the loss probabilities remain unaltered.
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4.2.2. The method of Bebbington, Pollett and Ziedins

A similar approximation for the ring network was devised by Bebbing-
ton, Pollett and Ziedins [1] (here labelled BPZ). In both their Approxima-

tion II and our two-link approximation, the rates are reduced by a usage-
dependent factor (1 − B(m)). Link i is offered three streams of traffic.
Let Yi, Yi,i+1 and Yi−1,i be the numbers currently carried on the respec-
tive streams. Taking into account the cyclic structure of the network, we
write i = 1 for i = l + 1. For m = 0, . . . , C − 1, they define

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i = m) ,

whereas our approximation requires

B(m) = P (Yi + Yi,i+1 + Yi−1,i = C |Yi−1 + Yi−1,i + Yi−2,i−1 = m) .

Aside from this, the schemes are the same. The event {Yi−1 + Yi−1,i = m}
yields more information than does {Yi−1 + Yi−1,i + Yi−2,i−1 = m} in de-
termining the likelihood of {Yi + Yi,i+1 + Yi−1,i = C}.
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Figure 2. Accuracy for a ring network (J = 5, C = 5, ν2 = ν1/2)
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Figure 2 shows that the relative errors in the estimates from the BPZ
scheme are negligible when compared with our two-link approximation and
the EFPA. Both two-link approximations improve on the EFPA.

4.3. A linear network with three-link routes

As a final example, we will analyse a linear network in which there are
traffic streams spanning groups of three adjacent links. The presence of
these three-link routes increases the difficulty of accurately approximating
the loss probabilities, because of the need to account for an increase in the
amount interaction between links. Furthermore, their presence destroys
the simple structure needed for the Zachary and Ziedins [21] recursion to
work.

4.3.1. The two-link approximation

For i, j = 1, . . . , l, let

hi,j(ui|j , ui,j , uj|i) =

∏ui|j−1
m=0 ρi|j(m)

ui|j !

∏ui,j−1
m=0 ρi,j(m)

ui,j !

∏uj|i−1
m=0 ρj|i(m)

uj|i!
,

and Φi,j(C,C) =
∑C

ui=0

∑C
uj=0

∑min(ui,uj)
ui,j=0 hi,j(ui−ui,j , ui,j , uj−ui,j). We

propose to estimate the loss probabilities on single and two-link routes as

Li = 1−
Φi,i+1(C − 1, C)

Φi,i+1(C,C)
, for i = 1, . . . , l − 1, or

Li = 1−
Φi,i−1(C − 1, C)

Φi,i−1(C,C)
, for i = 2, . . . , l,

and Li,i+1 = 1 − Φi,i+1(C − 1, C − 1)/Φi,i+1(C,C), for i = 1, . . . , l − 1.
Loss probabilities on three-link routes {i, i + 1, i + 2} are then estimated
as Li,i+1,i+2 = 1− (1− Li,i+1) (1− Li+2).
Applying our technique here requires us to estimate Bi|j(u), u = 0, . . . , C,
for each ordered pair of links (i, j) such that |i − j| ≤ 2. Although there
is no difficulty implementing the procedure for this network, it exposes a
potential problem with the procedure: that, for large networks with routes
spanning many links, the number of parameters needing to be estimated
may be large and this may lead to excessive demands on memory. One
possible solution is to have the analyst identify links i for which Bi|j(u)
is expected be approximately constant with respect to u. An algorithmic
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approach might then treat as constant all those Bi|j(u)’s for which the
correlation between blocking events on the two links was relatively weak.
In the present context, make the simplifying assumption that Bi|j(u) =

Bi whenever |i− j| ≥ 2. Under this assumption, estimates of the marginal
reduced load rates are ρ1|2(u) = ν1,

ρ2|1(u) = ν1 + (ν2 + ν3(1−B4))

C−u−1
∑

k=0

(1−B3|2(u+ k))H
(1)
2,1 (k, u),

ρ2|3(u) = ν1 + ν2

C−u−1
∑

k=0

(1−B1|2(u+ k))H
(1)
2,3 (k, u),

ρi|i−1(u) = ν1 + (ν2 + ν3(1−Bi+2)

C−u−1
∑

k=0

(1−Bi+1|i(u+ k))H
(1)
i,i−1(k, u),

ρi|i+1(u) = ν1 + (ν2 + ν3(1−Bi−2))

C−u−1
∑

k=0

(1−Bi−1|i(u+ k))H
(1)
i,i+1(k, u),

for i = 3, . . . , l − 3, ρl|l−1(u) = ν1,

ρl−1|l−2(u) = ν1 + ν2

C−u−1
∑

k=0

(1−Bl|l−1(u+ k))H
(1)
l−1,l−2(k, u),

ρl−1|l(u) = ν1+(ν2+ ν3(1−Bl−3))

C−u−1
∑

k=0

(1−Bl−2|l−1(u+k))H
(1)
l−1,l(k, u),

where H
(1)
i,j (k, u) =

∑C−k
w=0 hi,j(u, k, w)/

∑C−u−1
v=0

∑C−v
w=0 hi,j(u, v, w). And,

the joint reduced load rates are

ρ1,2(u) = ν2 + ν3

C−u−1
∑

k=0

(1−B3|2(k + u))H
(2)
2,1 (k, u),

ρi,i+1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bi−1|i(k + u))H
(2)
i,i+1(k, u)

+ ν3

C−u−1
∑

k=0

(1−Bi+2|i+1(k + u))H
(2)
i+1,i(k, u),
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for i = 2, . . . , l − 2,

ρi,i−1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bi+1|i(k + u))H
(2)
i,i−1(k, u)

+ ν3

C−u−1
∑

k=0

(1−Bi−2|i−1(k + u))H
(2)
i−1,i(k, u),

for i = 3, . . . , l − 1,

ρl,l−1(u) = ν2 + ν3

C−u−1
∑

k=0

(1−Bl−2|l−1(k + u))H
(2)
l−1,l(k, u),

where H
(2)
i,j (k, u) =

∑C−u−1
w=0 hi,j(k, u, w)/

∑C−u−1
v=0

∑C−u−1
w=0 hi,j(v, u, w).
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Figure 3. Accuracy for a line network (5 links, C = 5, ν2 = ν1/2)

We compare the relative errors in the proposed two-link approximation
with those of the Erlang fixed point approximation in Figures 3, 4, 5,
and 6. Our approximation shows an improvement for all of the single-link
routes. On the routes where multiple approximations are possible, it may
be beneficial to take an average of the approximations. Since we cannot
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Figure 4. Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)

be sure which approximation will be the more accurate beforehand, this
would make the results more robust. Interestingly, neither of the two-
link approximations are consistently better than the other (see Figure 4).
Significant improvements over the EFPA are also observed in Figure 5 for
the two-link routes. On the three-link routes, our proposed approximation
again improves on the EFPA (see Figure 6).

5. Derivation of the Two-Link Approximation

In this section we derive the fixed-point equations for the two-link re-
duced load approximation of Section 3. Recall the way that we classified
traffic offered to links i and j. We had introduced Ui|j =

∑

r∈Ri\Rj
Yr,

Uj|i =
∑

r∈Rj\Ri
Yr and Uij =

∑

r∈Ri∩Rj
Yr. When capacity constraints

are present, questions concerning U ij = (Ui|j , Uij , Uj|i) are generally not

easily answered. Let us now introduce new, independent processes Ũ ij =

(Ũi|j , Ũij , Ũj|i), for each pair of links i, j ∈ J . We shall suppose Ũ ij is a
continuous-time Markov chain that approximates the π-behaviour of U ij in
the space Sij = Sij(Ci, Cj) = {(ui|j , uij , uj|i) : ui|j + uij ≤ Ci, uj|i + uij ≤
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Figure 5. Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)

Cj}. Suppose that Ũ ij makes transitions from (ui|j , uij , uj|i) to

(ui|j − 1, uij , uj|i), at rate ui|j ,

(ui|j , uij − 1, uj|i), at rate uij ,

(ui|j , uij , uj|i − 1), at rate uj|i,

(ui|j + 1, uij , uj|i), at rate ρi|j(ui|j)1{ui|j+uij≤Ci},

(ui|j , uij + 1, uj|i), at rate ρij(uij)1{ui|j+uij≤Ci,uj|i+uij≤Cj},

(ui|j , uij , uj|i + 1), at rate ρj|i(uj|i)1{uj|i+uij≤Cj},

and no other transitions are possible. Then, the stationary distribution
for Ũ ij is

P
(

Ũ ij = (ui|j , uij , uj|i)
)

=

Φij(Ci, Cj)
−1

∏ui|j−1
m=0 ρi|j(m)

ui|j !

∏uij−1
m=0 ρij(m)

uij !

∏uj|i−1
m=0 ρj|i(m)

uj|i!
.
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Figure 6. Accuracy for a line network (5 links, C = 7, ν2 = ν1/2, ν3 = ν1/3)

The partition function Φij(Ci, Cj) is chosen so that P sums to 1 over the
set Sij :

Φij(Ci, Cj) =

Ci
∑

ui=0

Cj
∑

uj=0

min(ui,uj)
∑

k=0

∏ui−k−1
m=0 ρi|j(m)

(ui − k)!

∏k−1
m=0 ρij(m)

k!

∏uj−k−1
m=0 ρj|i(m)

(uj − k)!
.

Our aim is to choose ρi|j(·), ρij(·) and ρj|i(·) such that the behaviour of Ũ ij ,
with its assumed transition structure, best approximates that of U ij . We
assign these quantities expected rates.
Let S̃ =

∏

i,j∈J Sij and Λi|j(u) = {(u,v) ∈ S̃× S̃ : ui|j = u, vi|j = u+1},
for u = 0, 1, . . . , Ci − 1. Then ρi|j(u) defined as r(Λi|j(u)):

ρi|j(u) = EP
(

q(Ũ ,Λi|j(u, Ũ))
∣

∣

∣ Ũi|j = u, Ũi|j + Ũij < Ci

)

, (17)

where

q(u,Λi|j(u,u)) =
∑

r∈Ri\Rj

νr
∏

k∈r\{i}

1{uk|i+uki<Ck}1{u+uij<Ci} .
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Expression (17) can be evaluated partially as follows:

E
(

q(Ũ ,Λi|j(u, Ũ))
∣

∣

∣Ũi|j = u, Ũi|j + Ũij < Ci

)

=

E
(

αi|j(Ũi|j + Ũij , Ũj|i + Ũij)
∣

∣

∣Ũi|j = u, Ũi|j + Ũij < Ci

)

,

where αi|j(ui, uj) = E(q(Ũ ,Λi|j(u, Ũ))|E(ui, uj)), and

E(ui, uj)=
{

Ũi|k+Ũik = ui, k ∈ J \ {i}
}

∩
{

Ũj|k+Ũjk = uj , k ∈ J \ {j}
}

is the event that links i and j have utilisations ui and uj respectively. The
function αi|j(ui, uj) is the expected rate of transitions in the set {(u,v) ∈

S̃ × S̃ : ui|j + uij = ui, uj|i + uij = uj , vi|j = ui|j + 1}. It simplifies to
αi|j(ui, uj) = 0 if ui = Ci and

αi|j(ui, uj) =
∑

r∈Ri\Rj

νrP
(

Ũk|i + Ũik < Ck, k ∈ r \ {i}
∣

∣

∣E(ui, uj)
)

,

otherwise. Extending the rationale of independent blocking, characteristic
of the EFPA, we now assume that pairs of links {i, j} ∈ J index independent

random processes Ũ ij . Under this assumption,

αi|j(ui, uj) =
∑

r∈Ri\Rj

νr
∏

k∈r\{i}

P
(

Ũk|i + Ũik < Ck

∣

∣Ũi|k + Ũik = ui
)

1{ui<Ci}

=
∑

r∈Ri\Rj

νr
∏

k∈r

(

1−Bk|i(ui)
)

,

where Bk|i(ui) is the likelihood that link k is full when link i is known to
have ui circuits busy. This quantity is estimated to be

Bk|i(ui) =

∑min(Ck,ui)
l=0 P

(

Ũk|i = Ck − l, Ũik = l, Ũi|k = ui − l
)

∑Ck

m=0

∑min(m,ui)
l=0 P

(

Ũk|i = m− l, Ũik = l, Ũi|k = ui − l
)

=







∑min(Ck,ui)

l=0 hki(Ck−l,l,ui−l)
∑Ck

m=0

∑min(m,ui)

l=0 hki(m−l,l,ui−l)
, if k 6= i,

1{ui=Ci}, if k = i,

with hki(uk|i, uki, uk|i) ∝ P
(

Ũki = (uk|i, uki, uk|i)
)

in Ski. Thus, we have
an expression for the reduced load marginal rate of arrivals to link i that
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do not use link j:

ρi|j(u) =

∑

r∈Ri\Rj

νr

min(Ci−u,Cj)
∑

v=0

∏

k∈r

(

1−Bk|i(u+ v)
)

P
(

Ũij = v
∣

∣Ũi|j = u, Ũi|j+Ũij < Ci

)

.

(8) results when P
(

Ũij = uij
∣

∣ Ũi|j = u, Ũi|j + Ũij < Ci

)

is estimated by

∑Cj−uij

v=0 hij(u, uij , v)
∑Ci−u−1

w=0

∑Cj−w
v=0 hij(u,w, v)

.

Expression (9) for the reduced load rate ρij(u) of arrivals correspond-

ing to transitions in Λij(u) = {(u,v) ∈ S̃ × S̃ : uij = u, vij = u + 1},
u = 0, 1, . . . ,min(Ci − 1, Cj − 1), is derived in a similar way. The quan-
tity αij(ui, uj) representing the expected rate at which calls that cause an
increase in the utilisation of both resource i and j are arriving when Ui = ui
and Uj = uj , is

αij(ui, uj) = E





∑

r∈Ri∩Rj

νr
∏

k∈r\{i,j}

1{Ũk|i+Ũki<Ck}

∣

∣

∣

∣

E(ui, uj)



1{ui<Ci,uj<Cj},

which leads to

αij(ui, uj) =

{

0, if uj = Cj ;
∑

r∈Ri∩Rj
νr
∏

k∈r

(

1−Bk|i(ui)
)

, otherwise.

Setting ρij(u) = r(Λij(u)), we get

ρij(u) =

E
(

αij(Ũi|j + Ũij , Ũj|i + Ũij)
∣

∣

∣
Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)

=
∑

r∈Ri∩Rj

νr

Ci−u−1
∑

ui|j=0

∏

k∈r\{j}

(

1−Bk|i(ui|j + u)
)

P
(

Ũi|j = ui|j

∣

∣

∣ Ũij = u, Ũi|j + Ũij < Ci, Ũj|i + Ũij < Cj

)

.

Expression (9) follows on using

∑Cj−uij−1
v=0 hij(ui|j , u, v)

∑Ci−u−1
w=0

∑Cj−u−1
v=0 hij(w, u, v)
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to estimate the latter conditional probability. The loss probabilities may
be estimated using Φij . Losses on two-link routes, r = {i, j}, have

Lr = 1− π(Ui < Ci, Uj < Cj) ≈ 1−
Φij(Ci − 1, Cj − 1)

Φij(Ci, Cj)
.

Calls that use the single link i are lost with probability

Bi = 1− π(Ui < Ci) ≈ 1−
Φij(Ci − 1, Cj)

Φij(Ci, Cj)
.

The approximation for Bi depends on j because the distribution of Ũi|j+Ũij

is different from that of Ũi|k+ Ũik. As a result, the loss estimated using Φij

may be different from the estimate using Φik.

Acknowledgments

We would like to thank the Associate Editor and the referee for valuable
suggestions. We would also like to thank Ilze Ziedins for valuable discus-
sions on this work and Nick Denman for comments on an earlier draft of
the paper. The support of the Centre for Mathematics and its Applica-
tions at the Australian National University, for an award to attend the
National Symposium “Non-linear Time Series, Stochastic Networks and
Allied Modern Statistical Techniques” (Australian National University, 28
June–2 July, 2000), was of great assistance with Mark Thompson’s work
relating to this paper. The support of the Australian Research Council is
also gratefully acknowledged.

References

1. M. Bebbington, P. Pollett and I. Ziedins. Improved fixed point methods for loss
networks with linear structure. In W. Lavery, editor, Proceedings of the 4th Inter-

national Conference on Telecommunications, Vol. 3, Melbourne, Australia, pages
1411–1416. 1997.

2. S. Borst and D. Mitra. Virtual partitioning for robust resource sharing: compu-
tational techniques for heterogeneous traffic. IEEE Journal on Selected Areas in

Communications, 16:668–678, 1998.
3. R. Boucherie and M. Mandjes. Estimation of performance measures for prod-
uct form cellular mobile communications networks. Telecommunication Systems

10:321–354, 1998.
4. Z. Dziong and J. Roberts. Congestion probabilities in a circuit-switched integrated
services network. Performance Evaluation, 7:267–284, 1987.

5. D. Everitt and N. Macfadyen. Analysis of multi-cellular mobile radiotelephone sys-
tems with loss. British Telecom Technology Journal , 1:37–45, 1983.



248 M.R. THOMPSON AND P.K. POLLETT

6. A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison-
Wesley, 1990.

7. P. Hunt and C. Laws. Optimization via trunk reservation in single resource loss
systems under heavy traffic. The Annals of Applied Probability, 7:1058–1079, 1997.

8. F. Kelly. Reversibility and Stochastic Networks. Wiley series in Probability and
Mathematical Statistics, Wiley, Chichester, 1979.

9. F. Kelly. Blocking probabilities in large circuit-switched networks. Advances in

Applied Probabability, 18:473–505, 1986.

10. F. Kelly. Loss networks. The Annals of Applied Probability, 1:319–378, 1991.

11. P. Key. Optimal control and trunk reservation in loss networks. Probability in the

Engineering and Informational Sciences, 4:203–242, 1990.
12. R. Lloyd-Evans. Wide Area Network Performance and Optimization: Practi-

cal Strategies for Success. Data Communications and Networks Series, Addison-
Wesley, Harlow, 1996.

13. G. Louth, M. Mitzenmacher and F. Kelly. Computational complexity of loss net-
works. Theoretical Computer Science, 125:45–59, 1994.

14. D. Mitra and P. Weinberger. Probabilistic models of database locking: solutions,
computational algorithms and asymptotics. Journal of the Association for Com-

puter Machinery 31:855–878, 1984.
15. D. Mitra and I. Ziedins. Virtual partitioning by dynamic priorities: fair and effi-

cient resource-sharing by several services. In B. Plattner, editor, 1996 International

Zurich Seminar on Digital Communications, Lecture Notes in Computer Science,
Broadband Communications, Springer, pages 173–185. 1996.

16. K. Ross. Multiservice Loss Models for Broadband Telecommunication Networks,
Telecommunication Networks and Computer Systems, Springer-Verlag, New York,
1995.

17. K. Ross and D. Tsang. Teletraffic engineering for product-form circuit-switched
networks. Advances in Applied Probabability, 22:657–675, 1990.

18. P. Pollett and M. Thompson. A new method for analysing the equilibrium and time-
dependent behaviour of Markovian models.Mathematical and Computer Modelling

(to appear).
19. W. Whitt. Blocking when service is required from several facilities simultaneously.

AT&T Technical Journal 64:1807–1856, 1985.

20. S. Zachary. On blocking in loss networks. Advances in Applied Probabability,
23:355–372, 1991.

21. S. Zachary and I. Ziedins. Loss networks and Markov random fields. Journal of

Applied Probabability, 36:403–414, 1999.
22. I. Ziedins and F. Kelly. Limit theorems for loss networks with diverse routing.

Advances in Applied Probabability, 21:804–830, 1989.


