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Abstract. High-frequency asymptotics have been used at our Centre to develop codes
for modelling pulse propagation and scattering in the near-field of the ultrasonic trans-
ducers used in NDE (Non-Destructive Evaluation), particularly of walls of nuclear reac-
tors. The codes are hundreds of times faster than the direct numerical codes but no less
accurate.

1. Introduction

Our Centre specialises in mathematical modelling of NDE based on high-
frequency asymptotics. We have been the first1-3 to produce the complete
asymptotic description of the time-harmonic near field of a circular com-
pressional transducer which is directly coupled to isotropic solid, both its
geometrical regions and boundary layers in between the geometrical regions
(see Fig. 1). Pulse propagation, rectangular transducers and transducers
of complex apodisation have been also modelled using this approacha-6.
The crux of the method is approximation of integrals containing an ex-
ponential factor, such that when observation point moves across the near
field, the factor undergoes many oscillations while the amplitudes varies
slowly. The main contributions to the integrals of this type come from the
critical points: singularities of the amplitude, PSP (the stationary points
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b)

Figure 1. a) The wave fronts and b) boundary layers underneath a circular compressional
transducer. Thick solid line- direct, thin solid lines edge P, dashed lines edge S, and
dotted lines edge head wave. P penumbra, AH, AC and zone between lines marked
A axial region, C boundary layers around the critical rays.

of the phase functions) and various types of critical boundary points. Such
contributions may be evaluated using various formulae of the USPM9-1

(Uniform Stationary Phase Method), depending on whether the critical
points are isolated or coalesce. In the first case the exponential factor
undergoes at least several oscillations in between the points, and in the
second it does not. The resulting time-harmonic field contains the geo-
metrical zones and boundary layers in between. The geometrical zones are
described by ray-asymptotic series (in inverse powers of dimensionless wave
number) which are contributions of isolated critical points. The boundary
layers are described by boundary layer asymptotic series (in other types
of functions of dimensionless wave number) which are due to coalescing
critical points. We illustrate the approach in the next section.

2. Ultrasonic modelling of an elliptic crack

Let an elliptic crack be irradiated by a plane harmonic P wave uP(i’c)

nP(inc) eik’(’’c)’x, where (inc) stands for incident; a P for compressional
and S for shear; wave number k, w/ca, with w, the frequency and ca,
the speed of c-wave. Inside the solid, the total harmonic displacement field
u u(i’c) -t- u(scat), where (scat) stands for scattered is described by the
reduced elastodynamic equation

(s)v x (v x u)- (P)v(v. u)- 0. ()
On. the boundary, the zero normal surface traction is assumed

o =0, (2)
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where the total stress tensor o’ij ,,ij "eii -k- 21zeij; $ij is the Kronecker
delta; ,k and / are the Lame constants; the total strain tensor is eij
1- [ui,1 + uj,i], i,j x, y,z whatever the orientation of x- and y-axis;

index before the comma denotes a component, and index after the comma
denotes differentiation with respect to the corresponding spatial variable.
The usual radiation condition at infinity and Meixner’s condition at the
edge are assumed. We can use the well-known scalar and vector potentials,
0 and (1, 2, 3), respectively and write

ue V0, us 37 . (3)

First let us recall the

2.1 Canonical problem

Let a plane compressional wave scatter off a semi-infinite crack. Let us
introduce the standard Cartesian coordinate system with the x-axis running
along the edge of the crack and the y-axis directed into the crack half-plane.
The corresponding spherical coordinates are (r, , 0). Then the unit wave
vector np(inc) is

nP(inc) (sin0(inc) coso(i’C),sinO(inc) sino(in), cos 0(inc)). (4)

Without loss of generality let us assume that the incident wave propagates
from above. The problem has been studied by many authors7. We shall
employ respective even and odd parts of the potentials of the scattered field
as derived in Achenbach et al. r,

f A+e () iu+iT()lzld

ei" f A[()/""(x) sgn()---- +.------;e
{ P, if t 0,

a= S, if =1,2,3, (5)

where a total potential component is ’e (x) (x)+[ (x).
The descriptor (can) refers to the canonical problem; the projection of the
incident wave-vector kP(inc) onto the x-axis is r/= kP(inc)= Equations (5)
represent potentials as integrals over plane waves exp(ik x) with complex
wave vectors

k (,-,gn()()), (O)
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so that we have ,a() v/k2 /2 2. The functions A() are regular
in the upper half -plane and are given in Appendix A. The corresponding
scalar and vector potentials involve combinations

At() A+()+sgn (z) "Y() AT() .(7)s
where et ex,% or ez for 1,2 or 3 respectively. Using (3) the
respective displacements involve vectors

3

AP()nP(’) A()nP()’ AS()n()= ZAt()nS() et, (8)

where As and n are both defined by the above formula. The functions
have a pole

_inc _kP(inc) (9)

The integration contour in (5) passes it from above. The other critical
points are

ff + z" (l)

The descriptor (GTD) in (10) is justified below. For simplicity of presen-
tation, we consider the scattered field only in the upper half-space z > 0.

If the observation point in the upper half-space is such that the pole (9)
and the phe stationary points (10) are isolated from each other, we get
two contributions:

Applying to (5) the standard formulae for the pole contribution (orovikov9
1994, Sec. 1.6) and using (3), the leding order tems are

k(re]) /ka(l)’x, (11)

where H(x) is a Heaviside nction, the reflected wave vector is

P(inc) k-() ((,),.. (()): (())). ()

Above, the unit reflected wave vector is na(reI) (sin Oa(eI) cos(eI),
sin 0a(e) sin (reI), cos 0a(eI)); Rp and Rs are standard reflection coefficients
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and the respective polarisation vectors pP(ref) llP(ref) and pX(ref)
n(ref), with the unit vector of S-displacement being nS(ref) (- cos 0s(ref) cos o(tel)

-cos0s(ref) sin(rel),sin0S(rel)). Combining (4) and (12) it follows that
the above angles are defined by

ka sin 0a(ref) kp sin 0(inc), o(ref) (13)

Let us now consider a point xa(rel) (xa(reI), ya(reJ:), 0) lying in the plane
of the crack, such that we have

kok"(s) d-()(x x()), (14)

where distance da(rel) Ix- xa(reI) I. This vector equation results in two
scalar equations in two unknowns, Xa(re]) and ya(reI). It follows that we
have

k(tel) k(ref)
d,(rel) z

x(ref) x Zk(e)’z Y(I) y Zk(f)’z COS (re)
()

It is clear that if y zk(reI)/k(reI), we get y(reI) 0, that is x
lies on the crack edge. Thus, the argument of the Heaviside function in
(11) is positive when xa(e/) lies on the crack, and negative when it lies
in the same plane , but outside, the crack; in both ces the formula
applies only when the observation point lies far from the edge. Note that
using (12) and (14), the total phe may be decomposed into incident and
reflected follows:

ka(rl) x kP(inc) -xa(rel) + kada(rel). (16)

Thus, the incident ray that hits this point gives rise to the reflected ray
which reaches x. In the geometrical acoustics such points are called spec-
ular.

It follows that the formula (11) describes the well-known main reflected
c-beams, and their geometrical shadows. The beams obey the Shell’s law
(13). Note also that neither the position of xa(ref) nor the contribution
(11) depend on the position or orientation of the crack edge, and (11)
constitutes an exact solution of the problem of reflection from an infinite
plane.
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To simplify the formulae below, let us introduce instead of (r, ,0), the
spherical coordinates (r, , ) corresponding to the Cartesian system (e, ez, ex).
Applying to (5) the standard asymptotic formula of the stationary phase
method (Borovikov9, 1994, Sec. 1.2) and using (3), to the leading order in
ksr we obtain

Da "pa(GTD)’eika(GTD)’xTir/4 [y-cot Zga(ref)’Z[ > O,u(GTD)(x)
x/kja

\

where ka(GTD) (kP(’c)x ks sin 2(vTD) cos , ks sin 2(GTD) sin #)
\ !

is the angle between wave vector k and the x-axis; and the gradient of the
geometrical a-shadow boundary is given by cot #(re]) k(rel)/kz(el)"
It follows that we have

ks cost(GTD) kp cosP(inc) (18)

Note that using (10) and (12), we also have

-k ()

The conditions in (17) are refined below in the section on the penumbral
contribution. To continue, the diffraction coefficients in (17) are

D A(--k(GTD))
(20)V/sin t(GTD coS t( f COS c)

the geometrical spreading is

ja V/y2 + z2 sina(GTD); (21)

and the respective polarisation vectors are pP(GTD) IIP(GTD) and pS(GTD)
nS(reI) (_k(eTD))_k

Let us now consider a point Xa(GTD) (Xa(GTD), 0, 0) lying on the edge
of the crack, such that we have

ka(GTD
da(GTD (X Xa(GTD)). (22)

The above vector equation results in one scalar equation for Xa(GTD). Thus,
we have

xa(GTD) x- V/y2 d- z2 cot a(GTD), da(GTD) V/Y + z2
sina(eTD). (23)
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Thus, an incident ray that hits this point gives rise to a family of diffracted
rays lying on the surface of a cone with the tip at xa(GTD} the axis running
along the x-axis and half-angle a(GTD) which are related to P(inc) by
the Snell’s law of diffraction (18). In GTD such points are known as flash
points. Note also that the total phase may be decomposed into incident
and diffracted as follows:

k(GTD) x kP(inc) xa(GTD) -k kad(GTD). (24)

It follows that (17) describes the well-known in GTD edge diffracted waves.

To summarise, in the geometrical regions the high-frequency asymptotics
of the scattered field are represented by a sum of the first terms in the GE
and GTD ray series

uo(x) u(x) + ur(x),
where ua(GE)(x), zero in the shadows, is independent of the the location
and orientation of the edge and U(GTD)(x) is a term of a higher order in
dimensionless frequency.

When the observation point is such that the pole (9) and the phase station-
ary point in (10) coalesce, applying to (5) the corresponding asymptotic
formula of the stationary phase method (Borovikov9, 1994, Eq. (2.28)),
the leading order contribution is

Ua(pen)(x F(Va)Ua(GE)(x + pa(GTD)eik(GTD).x+ir/25)
v/ka J

where (va)2 _< r, the first term in the right-hand side is expressed as usual
via the Fresnel integral f(v) (rci) -’/2f exp (it2)dt with

va sgn[v Oa(ref) v/(ka(GTD) ka(ref)) x;

and the modified diffraction coefficients /a as in the formulae (20) but
with At(a) replaced by At(a) At(-inc). It is clear that v2a is the dif-
ference between the phases of the diffracted edge and reflected ray reach-
ing the observation point x. The coalescence of the pole (9) with the
phase stationary point (10), that is the coalescence of the corresponding
specular and flash point occurs when the observation point x crosses a
geometrical a-shadow boundary and thus the reflected ray coalesces with
the diffracted ray to form the so-called marginal ray, (ref), on the



172 L.J. FRADKIN, V. ZALIPAEV AND D. GRIDIN

diffraction cone. The transition zone (boundary layer) surrounding this
boundary is known as penumbra. As usual, it is defined by (va)2 _< , so
that inside it the phase difference is less than r and the exponential factor
in (5) ceases to be rapidly oscillating. To find the boundary of penum-
bral region we note that using (18) ka(ref) can be re-written as ka(ref)

(kc cos a(GTD), k( sin a(GTD) COS a(ref), k( sin -a(GTD) sin 9((ref)). There-
fore,
combining the above formula with (12), the equation of the penumbra
boundary becomes 2ka v/Y2 + z2 sinfa(GTD) sin2(--4a(re/))/2 7r, which
is the equation of a parabolic cylindrical surface surrounding the plane ge-
ometrical a-shadow boundary. The corresponding conditions in (11), (17)
and (25) may be refined accordingly to specify that these formulae apply
inside or outside the penumbral region respectively.

Evaluating asymptotics of (25) when va --+ c we obtain the behaviour
which is entirely consistent with the expected physical picture: the GE
reflected and edge diffracted P and S waves in the main beam zone and
just edge diffracted P and S waves in the geometrical shadow zone.

To summarise, in the penumbra the high-frequency asymptotics of the scat-
tered field may be represented by the first two terms of the penumbral
series, ua(pen) (x).

2.2 Scattering of a plane P wave from a planar crack with an
elliptic edge

Let us now consider scattering from an elliptic crack. Let the new Cartesian
coordinate system be (x, y, z), with the origin at the ellipse centre, the x-
axis running along the crack major semi-axis and the y-axis, along its minor
axis. Let the corresponding spherical polar system be again (r, , 8). The
parametric equations of the elliptic crack edge are x’(a) acosa, y’(a)
b sin a, with the semi-axes a >_ b and parameter a E [0, 27r].
We proceed by deriving the radiating near field asymptotics (r >> (kp) -1
and r << kpab.) We start by writing the decoupled form of the classical
Green’s formula

/ 0 / OG (x,x’)/(x’)dx’dy’t+(x)- G+(x,x’)-z,(X’)dx’dy’ /(x)--
D D

where the region D is the crack face; O/Oz is a derivative with respect to
the outward normal to the crack face; el(x) and G(x, x’) are even and
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isotropic solid
Z

uP(inc) I
x

Figure 2. Scattering from an elliptic crack.

odd combinations related to Ce(x) and Ga(x,x’) respectively, namely we
have

(x) (’’ z) + (,, -z)

a(x, x’) a.(, u, ; ’, ’, ’) +/- a.(,,-; ’, u’, z’); (9.8)
and the free space Green’s function is

eiko, d’
aa(x;x’)

47rd’
(29)

with distance d’ Ix- x’ I. In the leading order in ko, d’, we have

ikazeik, d’0; (x, x’) (30)Oz’ 27rd’2

Let us evaluate (26) by using the two-tier asymptotics1.

2.2.1 First tier

In order to build the first tier asymptotics, we first note that in the canon-
ical case, when the pole inc is isolated, and hence the specular points
xa(ref) are far from the edge, on substituting (5) into (26) the resulting
integrals may be approximated by contributions of xa(rel) and the crack
edge. These contributions may be obtained using a separation of unity
{X1, X2, X3}, where the neutraliser Xx has support in the neighbourhood of
xa(el); X2, in the neighbourhood of the crack edge, and X3 1 X1
Therefore, when scattering from the elliptic crack, we can use
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Assumption 1- When a specular point xa(Spec) is far from the ellipse
edge, the potentials may be approximated as follows

(x) (x) + (x), (31)

and, when the specular point is near the ellipse edge, we have

cat(x dilI)(x). (32)

Since, the expreions in (11) do not depend on the position or location of
the crack boundary either, VE) are such that we have

(())u(O)(x) HI1- Rp(rI)ek"(’I) .x.(33
a2 b2

We remind the reader that in this paper we present results only for z > 0.
On the other hand, the modified diffracted fields in (31) and (32) are to
the leading order in kar, contributions to the following integrals

D

Oa
D

where D is the elliptic crack.The contributions implied in (al) and
are different, since hey depend on the position of he specular point. We
evMuate them approimately with the help of often used

Assumption (The localisation principle): In the high-frequency
approximation we sume that near the crack edge, to the leading order
in kPpmin, the leMing terms of the scattered field are the same in the
corresponding canonical problem, with the edge of the semi-infinite crack
tangent to the elliptic crack edge at this point.

For convenience, in the neighbourhood of the edge we employ local coordi-
nates (o, u), where u is the distance Mong the internal normal to the edge
along, with the two unit vectors er(o) and e() tgent and normal
the ellipse edge correspondingly. Below we do not mention -dependance
unless absolutely necessary. Then we can approximate the crack values of
the potentials () by suming that at each point x’ (, u) the phe of
each plane wave in the superposition may be decomposed into incident and
scattered, ke( -x’(e)-(u, where x’() is projection of x’ onto he crack
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edge. Then on the irradiated crack side we have

0, (’ 1 . e,

+
keike(’"’x’()

f A[(k)e-i(dZ(,.1
2 +(1 (35)

where we assume the pole of the integrand to be

-(o) _e(. (o). ()

Note that in this approximation the components 0t+/Oz’ (o, n) and- (a, n)
are given when applicable in the local base (er(a), e(a), ez). The non-zero
elements of the transition matrix T from this base to {ex, ey, ez } are given

Tll T22 er(a) e, T12 -T21 er(a) -e,, T33 1. (37)

By substituting (35) into (34), we obtain the following triple integral

0 0

where he matrix T, is extended to 4x4 matrix, with the only new non-
ero element Too 1; ()= (asine) + (bcose); and [1- u/0()] is
the Jacobian of the transformation from (,
2.2.2 Second Tier

The critical points in (38) are an amplitude pole, PSP and boundary critical
points of the second kindl. Let us consider their contributions in turn.

Co’ibulm o] th isohted bou points: GTD edcje diructedm
The PSPs of the double integral in (u, (:) in (38) are

(x x’(a)) eu=O, "=- d’
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where d’ V/(X x’(a))2 / (y y’(a))2 + z2. Let a critical point like this
be isolated. Then applying stationary phase method (SPM), we get the
Edge Integral

2r

Ia(GTD)(x) --e’k’d’(-) do’, (39)
o

where k,d(t) kP(i’c) x’(a) + kad; and the diffracted directivity pat-
terns are

Ba(a
q(a) A(k,(a)) pa(a (40)e [-() ()].()

with the polarisation vectors pP n(a) and pS n(a). McMakens

derived an analogous edge integral for normal incidence of plane P-wave
on a penny-shaped crack.

The boundary critical points, a,, in (38) are PSPs of the Edge Integral
which may be found numerically. Their number M may be 2 to 4. Let all
a, be isolated. Then applying SPM to the Edge Integral, we have

()
where, a(TD) are each described by a formula similar to (17), with all ()

The above formula is in agreement withquantities evaluated at a am.
GTD. Inside each a-geometrical region, the a-component of the scattered

M ,(GTD)field is u(c) u() + m:-m

A formula similar to (25) can be re-derived in the framework of the two-tier

appraoch, with the result that k(GTD) is replaced by k?(GTD), pa(GTD)
by p?(GTD) etc. The coalescence of the specular point xa(rel) with one

of the flash points X?(GTD) corresponds to observation point x crossing a
geometrical shadow boundary. Inside each c-penumbra, the c-component

M (GTD)of the scattered field is ua(sca’) u(Pe") + rn-2

Let a and a in Edge Integral coalesce. Applying USPM9’, we have

()-{CAi[-k/3]+cAi’[-k/3]}ed (42)u,
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Figure 3. Asymptotic solution (solid line) vs numerical solution (dashed line), 0(reI)

30 o(rey) 45 a 4mm, b 2mm, r 5mm, o 45 (a) P wave, (b) S wave.

1/4:cwhere Ai(v)

B 1/4 d (tot) da(tot)(a:
{/a.
[d(O(a)- d(t)(a)]}2/a. The coalescence of a and a corresponds
to the observation point x crossing a surface, such that inside, each x is
reached by four edge scattered rays, and outside by two. This type of sur-

3/2face is known a smooth caustic. Note that kava is proportional to the
phe difference between two coalescing edge scattered rays. As usual, the
Airy function Ai of-a a describes the smooth caustic contribution. In-
side a smooth -caustic boundary layer, the a-component of the scattered
field is ua(scae) ua(v)ua(caus) 4 a(GTD)

,2 +m=3 The boundary layers
coalesce maysurrounding non-smooth parts of the caustics where three

be described via the Pearcey integral or using numerical integration.

3. Numerical results

The code based on the time-harmonic asymptotic formulae has been fully
tested against a numerical code based on the boundary integral equation
method (Fig. 3). There is a good agreement for the range of parameters
for which the applicability regions of both approaches overlap.

The time-harmonic asymptotics may be used to model the propagation of
pulses by means of harmonic synthesis. Let us consider the following model
parameters: the wave speeds cp 5840 m/s, cs 3170 m/s, the solid
density 7770 kg/m3, and the pressure amplitude P0 1 MPa. For
simplicity of presentation, let the pressure input be a narrow band pulse,
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Figure 4. Representative velocity pulse trains,/?(re/) 30o, (re/) 45o, a 10mm,
b= 5ram,

r 15ram, o= 45 (a) O= 30 (b) O 75 (c) O 52 (d)
0 56.
one cycle of sin(27rft), f 5 MHz. Typical pulse trains are presented in
Fig. 4. In Fig. 4a the observation point with lies inside both P and S wave
caustic surfaces. In Fig. 4b the observation point lies outside both P and
S caustics.

4. Conclusions

High-frequency asymptotic models for simulating ultrasonic pulse propa-
gation and scattering in the transducer near have been developed. The
models elucidate the physics of the problem and give explicit dependence
on model parameters, thus allowing an easy prediction of pulse amplitudes
and shapes. The corresponding asymptotic codes are at least hundred times
faster than direct numerical codes, and practically just as accurate.
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Appendix

The Fourier Amplitudes in the Canonical Problem

The Fourier transforms in (5) involve analytical functions in the upper
half-plane which are given by the following formulas from Achenbach7 (Sec.
5.3) where somewhat different notations are used:
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K()K(-)
2((ks)2 (kp)2)[Ts()2 (r12 + 2)]2 + 4(2 + O2)2[p()[S()]/,,/R().

Also, when the crack is elliptic the underlying coordinate system is local
rather than Cartesian.


