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Abstract. Operations Research techniques are usually presented as distinct models.
Difficult as it may often be, achieving linkage between these models could reveal their
interdependency and make them easier for the user to understand. In this article three
different models, namely Markov Chain, Dynamic Programming, and Markov Sequential
Decision Processes, are used to solve an inventory problem based on the periodic review
system. We show how the three models converge to the same (s, S) policy and we provide
a numerical example to illustrate such a convergence.
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1. Introduction

Operations Research is usually perceived as a set of models each of which is
applicable to a specific type of problems. Operations Research textbooks
often fail to establish linkage between these models and deal with them
as “unrelated” topics. Such linkage is essential to ensure the integrity of
Operations Research. The present article aims at linking three different Op-
erations Research models, namely Markov Chain, Dynamic Programming,
and Markov Sequential Decision Processes, by applying each of them to
the same inventory control problem. The article seeks to explain how a so-
lution is obtained by each of the three models and how the three solutions
are equivalent even though they may look quite different.
† Requests for reprints should be sent to O. Ben-Ayed, Department of Business Ad-
ministration, College of Administrative Sciences, King Saud University, PO Box 2459,
Riyadh 11451, Kingdom of Saudi Arabia.
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2. The Problem and the (s, S) Policy Solution

Let us consider a hypothetical company estimating the distribution of de-
mand D for one of the items it is producing by P [D = j] = pj , for
j ∈ {m, . . . ,M}; where P [D = j] is the probability of having a level of
demand equal to j, and pj the value of such a probability. The demand
for any period n can be satisfied by the quantity xn produced during pe-
riod n and/or the quantity in available in inventory at the beginning of
n. A holding cost ch is incurred for every unit stored from one period to
another, and a stockout cost cu is incurred for every unit unavailable when
requested (lost sale). The production cost cg(xn), expressed as a function
of the quantity produced xn, is assumed to be zero when xn equals zero
and is concave for xn > 0.

Since no specific inventory policy has been adopted, the management of the
company is now interested in developing a process control system whereby
reorder decisions are automatically generated according to a production
policy δn that associates to each inventory level in, at the beginning of the
period n, a fixed production quantity δn(in) chosen from the set of possible
production quantities {xn}.

Scarf [1] proved the existence, for each period n, of an optimal produc-
tion policy δ∗n that brings the inventory level to a target level S∗n whenever
the initial inventory position in for the item is lower than (or equal to) a
determined value s∗n. One important feature of our problem is that cost
functions, demand distribution, as well as possible levels of initial inven-
tory, are the same for all periods. This implies the existence of a steady
state so that for any possible value of initial inventory i corresponds one
optimal policy δ∗(i) independently of the period n. Therefore, our concern
is to find that optimal decision policy δ∗ that associates to each inventory
position i the production quantity δ∗(i) that minimizes the total produc-
tion, holding and stockout costs, for an infinite horizon. Such a policy is
determined by the two optimal values s∗ and S∗ of the two variables s and
S, respectively:

δ(i) =
{
S − i if i ≤ s
0 if i > s

(1)

Further, the values of i can never exceed S (the highest possible level)
minus m (the lowest possible demand):

i ∈ {0, 1, . . . , S−m} (2)

Constraints (1) and (2) implicitly require that:
S > s and S ≥ m (3)
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Moreover, we assume an inventory capacity restriction of K units:

i+δ(i) ≤ K ⇒ S ≤ K (4)

3. The Markov Chain Model

The inventory level In at the beginning of each period n is a discrete-time
stochastic process whose possible values are {0, 1, . . . , S− m}, as stated
in (2). Since In is always equal to In−1 plus production minus sales, its
probability distribution depends on the inventory level In−1 and not on the
states the stochastic process passed through on the way to In−1. For all
states i and k and all periods n, the probability that the system is in state i
at the beginning of period n−1 will be in state k at the beginning of period n,
does not depend of n, but does so on the specified policy (s, S). Therefore,
the transition probabilities can be written as P [In=k | In−1 = i] = qsSik .

Let y and z be two natural numbers verifying 0 ≤ y ≤M and m ≤ z ≤ S,
the transition matrix QsS from the states i = 0, 1, . . . s, s+ 1, . . . ,M −
y, . . . , S−z, . . . , S−m to the states k = 0, 1, . . . ,M−y, . . . , S−z, . . . , S−m
can be represented as shown below, where pj = 0 for all j < 0 (e.g.,
pm−z = 0 if z > m) and

∑y
i=x pi = 0 for all y < x (e.g.,

∑M
i=S pi = 0 if

S > M). At optimality, we must have s < M for if we have enough stock
to satisfy all the demand of the period, there will be no need to order and
incur unnecessary holding cost [2]. However, as we are uncertain whether
M < S or M > S, we include the two parameters y and z.

QsS =
State 0 . . . State M−y . . . State S−z . . . State S−m∑M

i=S
pi · · · pS−M+y · · · pz · · · pm State 0∑M

i=S
pi · · · pS−M+y · · · pz · · · pm State 1

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.∑M

i=S
pi · · · pS−M+y · · · pz · · · pm State s∑M

i=s+1
pi · · · ps+1−M+y · · · ps+1−S+z · · · ps+1−S+m State s+1

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.∑M

i=M−y
pi · · · p0 · · · pM−y−S+z · · · pM−y−S+m State M−y

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.∑M

i=S−z
pi · · · pS−z−M+y · · · p0 · · · pm−z State S−z

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.∑M

i=S−m
pi · · · pS−m−M+y · · · pz−m · · · p0 State S−m

As none of the states in the chain is transient or periodic, and since all of
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them communicate with each other, we can conclude that the chain is er-
godic [3], [4]. Therefore, there exists a steady-state distribution πsS =
[πsS0 , πsS1 , . . . , πsSS−m] for the chain that can be calculated by solving the
system:{

πsSQsS = πsS

1πsS = 1; where : 1 = [1, 1, . . . , 1] (5)

Let us call g(s, S), h(s, S) and u(s, S) the expected per period production,
holding and stockout costs, respectively, as functions of reorder point s and
target level S:

g(s, S) =
s∑
i=0

πsSi cg(S − i) (6)

h(s, S) = ch×
[ s∑
i=0

πsSi

M∑
j=m

max(0, S − j)pj

+
S−m∑
i=s+1

πsSi

M∑
j=m

max(0, i− j)pj
]

(7)

u(s, S) = cu×
[ s∑
i=0

πsSi

M∑
j=m

max(0, j − S)pj+

S−m∑
i=s+1

πsSi

M∑
j=m

max(0, j − i)pj
]

(8)

Let w(s, S) be the expected total cost, equal to the sum of the three func-
tions (6)–(8). The optimal values s∗ and S∗ can be obtained by minimizing
w(s, S) = g(s, S) + h(s, S) + u(s, S) subject to (4):

min w(s, S) = g(s, S) + h(s, S) + u(s, S),
S.T. s < S and S ∈ {m,m+1, . . . ,K} (9)

4. The Dynamic Programming Model

Let the period n be the phase and the inventory level in at the beginning
of the period n the state. The process evolves from state in to state in+1

as:

in+1 = max
(
0, in + δn(in)− j

)
(10)
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where j belongs to the set {m, . . . ,M} and δn(in) is the quantity to pro-
duce during period n according to the policy δn as a function of the initial
inventory level in. Let v

(
in, δn(in)

)
denote the expected total cost of pro-

duction, holding, and stockout, for any period n having an initial inventory
of in units and a production of δn(in) units:

v
(
in, δn(in)

)
= cg

(
δn(in)

)
+

M∑
j=m

pj×
[
ch max(0, in + δn(in)

−j) + cu max
(
0, j − in − δn(in)

)]
(11)

The objective is to minimize the expected total cost for the periods 1, 2,
. . . , given that the inventory level is initially i1. If we denote the objective
function by f1(i1), we can generate a more general function fn(in) defined
as the minimal expected total costs for the periods n, n+1, . . ., given that in
units are initially available in inventory. The recurrence relation between
fn(in) and fn+1(in+1) can be expressed as:

fn(in) = min
δn(in)

[
v
(
in, δn(in)

)
+

M∑
j=m

pjfn+1(in+1)
]
, for n = 1, 2, . . .

(12)

However, dynamic programming models require a finite horizon [5], [6]
since fn(in) in (12) cannot be computed before fn+1(in+1). This imposes
a last period N as the starting point of the recurrence relation. N could be
chosen large enough to enable the process to reach a steady state. For the
first periods, one optimal policy δ∗(i) corresponds to any possible value of
initial inventory i, independently of the period n. However, the last periods
could be different, as they may carry on the effect of the introduction
of the “dummy” last period N . The solution of the dynamic program
is achieved first by minimizing v

(
iN , δn(in)

)
to obtain δ∗N (i). Then, we

use the recursivity in (12) to find δ∗N−1(i), δ∗N−2(i), . . . and so on until
the procedure reaches a period N − L verifying δ∗N−L(i) = δ∗N−L−1(i) =
δ∗N−L−2(i) = . . . = δ∗1(i) = δ∗(i), thereby solving the problem for the last
L periods only:

fN (i) = min
δN (i)

{
v
(
i, δN (i)

)}
(13)

fn(i) = min
δn(i)

{
v
(
i, δn(i)

)
+

M∑
j=m

pjfn+1

(
max

(
0, i+δn(i)−j

))}
,
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for n=N−1,. . . ,N−L (14)

fn(i) = min
δ(i)

{
v
(
i, δ(i)

)
+

M∑
j=m

pjfn+1

(
max

(
0, i+δ(i)−j

))}
,

for n=N−L−1,. . . , 1 (15)

i ∈ {0, 1, . . . ,K−m} andδ(i), δn(i), δN (i) ∈ {0, 1, . . . ,K − i} (16)

The first part of (16) is justified exactly in the same way as (2): i can never
exceed the highest possible level (K) minus the lowest possible demand (m).
The second part is directly obtained from (4).

5. The Markov Sequential Decision Processes Model

A Markov sequential decision process can be defined as an infinite horizon
probabilistic dynamic program. It can also be defined as a Markov process
with a finite number of states and with an economic value structure asso-
ciated with the transitions from one state to another [3], [7]. In our case,
the state will continue to be the initial inventory of the period. Let fδ(i)
be the expected cost incurred during an infinite number of periods, given
that, at the beginning of period 1, the state is i and stationary policy δ is
followed:

fδ(i) = v
(
i, δ(i)

)
+

M∑
j=m

pjfδ

(
max

(
0, i+ δ(i)− j

))
(17)

where v
(
i, δ(i)

)
is the expected cost incurred during the current period,

as defined in (10). The horizon being infinite, fδ(i) will also be infinite.
To cope with the problem, we can use the expected discounted total cost.
We assume that a $1 paid the next period will have the same value as a
cost of β dollars paid during the current period. Let Vδ(i) be the expected
discounted cost incurred during an infinite number of periods, given that, at
the beginning of period 1, the state is i and stationary policy δ is followed:

Vδ(i) = v
(
i, δ(i)

)
+ β

M∑
j=m

pjVδ

(
max

(
0, i+ δ(i)− j

))
(18)

where
∑M
j=m pjVδ

(
max

(
0, i + δ(i) − j

))
is the expected cost, discounted

back to the beginning of period 2 and incurred from the beginning of pe-
riod 2 onward. The smallest value of Vδ(i), that we denote by V (i), is the
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expected discounted cost incurred during an infinite number of periods,
provided that the state at the beginning of period 1 is i and the optimal
stationary policy δ∗ is followed:

V (i) = Vδ∗(i) = min
δ
Vδ(i) for all possible values of i (19)

Using (16) and (18), equality (19) can be equivalently written as:

For i = 0, . . . ,K−m : (20)

V (i) = min
δ(i)=0,...,K−i

{
v
(
i, δ(i)

)
+ β

M∑
j=m

pjV
(

max
(
0, i+ δ(i)− j

))}
This can be transformed into the following K−m linear programs:

max V (i); for i = 0, . . . ,K−m (21)

S.T. (22)

V (i) ≤ v
(
i, δ(i)

)
+ β

M∑
j=m

pjV
(

max
(
0, i+ δ(i)− j

))
δ(i) = 0, . . . ,K−i

It can be shown [8] that the solutions of the K inter-dependent linear pro-
grams (21)–(22) are achieved simply by taking the sum of all the objectives,
thus obtaining a single-objective linear program:

max
K−m∑
i=0

V (i) (23)

S.T. (24)

V (i) ≤ v
(
i, δ(i)

)
+ β

M∑
j=m

pjV
(

max
(
0, i+ δ(i)− j

))
i=0,. . .,K−m; δ(i)=0,. . .,K−i

6. Linking the Models

First we show the link between the last two models, then between the first
and the last ones.
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6.1. Linking the Dynamic Programming Model and the Markov
Decision Process Model

The solution of the dynamic program is that of (15)–(16). However, as
the horizon is initially infinite, we can choose n sufficiently large so that
fn(i) = fn+1(i) = f(i). This allows the writing of (15)–(16) as:

For i = 0, . . . ,K−m : (25)

f(i) = min
δ(i)=0,...,K−i

{
v
(
i, δ(i)

)
+

M∑
j=m

pjf
(

max
(
0, i+ δ(i)− j

))}
The same equality can be obtained when giving β the value of 1 in (20):

For i = 0, . . . ,K−m : (26)

V (i) = min
δ(i)=0,...,K−i

{
v
(
i, δ(i)

)
+

M∑
j=m

pjV
(

max
(
0, i+ δ(i)− j

))}
Therefore, both (15)–(16) and (20) are obtained from (25). The two

models diverged when dealing with the problem of the infinite value of the
function (25). In (15)–(16) a finite number of periods was fixed and in (20)
the expected cost was discounted.

6.2. Linking the Markov Decision Process Model and the Markov
Chain Model

Let us focus on (17), which was the starting point of the Markov sequential
decision processes model. To simplify the representation, we assume that
the state evolves from i0 to ij0 , then ij1 , ij2 , ij3 . . . This means that we
denote max

(
0, i+ δ(i)− jk

)
by ijk :

fδ(i0) = v
(
i0, δ(i0)

)
+

M∑
j0=m

pj0fδ(ij0)

= v
(
i0, δ(i0)

)
+

M∑
j0=m

pj0

[
v
(
ij0 , δ(ij0)

)
+

M∑
j1=m

pj1fδ(ij1)
]

= v
(
i0, δ(i0)

)
+

M∑
j0=m

pj0v
(
ij0 , δ(ij0)

)
+

M∑
j0=m

pj0

M∑
j1=m

pj1v
(
ij1 , δ(ij1)

)
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+ . . .+
M∑

j0=m

pj0

M∑
j1=m

pj1

M∑
j2=m

pj2 . . .
M∑

jk=m

pjkv
(
ijk , δ(ijk)

)
+

M∑
j0=m

pj0

M∑
j1=m

pj1

M∑
j2=m

pj2 . . .
M∑

jk=m

pjk

M∑
jk+1=m

pjk+1fδ(ijk+1) (27)

There is no end to the sequence {ij0 , ij1 , . . . , ijk , . . .}. However, as stated
in (16), the possible values of ij0 , ij1 , . . . , ijk , . . . are finite and belong to
{0, 1, . . . ,K−m}, which can be interpreted as:

v
(
ijk , δ(ijk)

)
∈
{
v
(
0, δ(0)

)
, v
(
1, δ(1)

)
. . . , v

(
K−m, δ(K−m)

)}
,

k = 0, 1, 2, . . . (28)

The frequency of occurrence of v
(
i, δ(i)

)
in (27) varies from one strategy δ

to another. When denoting such a frequency by N δ
i , we can combine (27)

and (28) as:

fδ(i0) =
K−m∑
i=0

N δ
i v
(
i, δ(i)

)
= fδ (29)

fδ in (29), which is the same as fδ(i) in (17), is infinite because N δ
i s are

infinite. To cope with the problem, we can take the average cost per period
that we denote by f̄δ (instead of the total cost for the whole horizon fδ).
Let us denote by πδi the relative frequency of incurring the cost v

(
i, δ(i)

)
when policy δ is followed. Using (29) and (1), we can write:

f̄δ =
fδ∑K−m

i=0 N δ
i

=
K−m∑
i=0

N δ
i∑K−m

i=0 N δ
i

v
(
i, δ(i)

)
=

K−m∑
i=0

πδi v
(
i, δ(i)

)
=

K−m∑
i=0

πδi

{
cg
(
δ(i)

)
+

M∑
j=m

pj×
[
ch max(0, i+ δ(i)− j) +

cu max
(
0, j − i− δ(i)

)]}
=

s∑
i=0

πδicg
(
δ(i)

)
+

s∑
i=0

πδi

M∑
j=m

pjch max(0, i+δ(i)−j)

+
S−m∑
i=s+1

πδi

M∑
j=m

pjch max(0, i+δ(i)−j)
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+
s∑
i=0

πδi

M∑
j=m

pjcu max
(
0, j−i−δ(i)

)
+
S−m∑
i=s+1

πδi

M∑
j=m

pjcu max
(
0, j−i−δ(i)

)
+
K−m∑
i=s+1

πδicg
(
δ(i)

)
+

K−m∑
i=S−m+1

πδi

M∑
j=m

pjch max(0, i+δ(i)−j)

+
K−m∑

i=S−m+1

πδi

M∑
j=m

pjcu max
(
0, j−i−δ(i)

)
=

s∑
i=0

πδicg(S−i)+
s∑
i=0

πδi

M∑
j=m

pjch max(0, S−j)

+
S−m∑
i=s+1

πδi

M∑
j=m

pjch max(0, i−j)

+
s∑
i=0

πδi

M∑
j=m

pjcu max(0, j−S)+
S−m∑
i=s+1

πδi

M∑
j=m

pjcu max(0, j−i)

= g(s, S) + h(s, S) + u(s, S) = w(s, S) (30)

In other words, the expected total cost w(s, S) in the Markov chain model
(8) is in fact the average cost per period obtained from the expected cost
(17) in the Markov sequential decision process model, using equality (1)
from which the constraints of (8) were derived. Both models were based on
the infinite function (17). They diverged when dealing with infinity; the
Markov sequential decision process model used the expected discounted
cost while the Markov chain model used the average cost per period.

7. Numerical Application

Assume that demand is either 1 or 3 units with respective probabilities
p1 = 1

3 and p3 = 2
3 , unit holding and stockout costs are ch=$5 and cu=$8,

production costs as a function of the possible values are cg(0)=0, cg(1)=
10, cg(2) = 16, and cg(3) = 18. Accordingly, we can write: m= 1 and M =
K = 3, which means that S ∈ {1, 2, 3} (as m ≤ S ≤ K) and s ∈ {0, 1, 2}
(as s < S).
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7.1. Solution of the Markov Chain Model

Based on the possible values of S and s, we have to choose one among six
possible policies: δ01, δ02, δ03, δ12, δ13, and δ23, where δsS denotes the
policy (s, S). The corresponding QsS matrices (Q01, Q02, Q03 Q12, Q13

and Q23) will be:

Q01=[1]; Q02=
[

2
3

1
3

1 0

]
; Q03=

 2
3 0 1

3
1 0 0
2
3

1
3 0

; Q12=
[

2
3

1
3

2
3

1
3

]

Q13=

 2
3 0 1

3
2
3 0 1

3
2
3

1
3 0

; Q23=

 2
3 0 1

3
2
3 0 1

3
2
3 0 1

3


We apply (5) to get the steady state probabilities πsS for each (s, S)

policy:

π01=[1]; π02=
[
3
4

1
4

]
; π03=

[
9
13

1
13

3
13

]
; π12=

[
2
3

1
3

]
; π13=

[
2
3

1
12

1
4

]
; π23=

[
2
3 0 1

3

]
The corresponding expected total costs w(s, S), as defined in (8), are
w(0, 1)= 62

3 ; w(0, 2)= 239
12 ; w(0, 3)= 671

39 ; w(1, 2)=21; w(1, 3)= 211
12 ; and w(2, 3)=

62
3 . The lowest value being 671

39 , we conclude that (0, 3) is the best policy.

7.2. Solution of the Dynamic Programming Model

The solutions for the periods N and N−1 are provided in the following table
where i, iN−1, iN , δ(i), δN−1(i) and δN (i) are as defined in (16), v

(
i, δ(i)

)
as defined in (10) and iN is max

(
0, i+ δ(i)− j

)
as defined in (10). Based

on the last column of the table, the optimal policy is to produce 3 only
when i=0. The same solution is obtained for fN−2, fN−3, . . . (calculations
not shown), which means that (0,3) is the optimal steady state policy (as
found previously).

v
(
i, δN (i)

)
, v

(
i, δN−1(i)

)
+,

M∑
j=m

pjfN (iN ),

for δN (i) = for δN−1(i)=
i 0 1 2 3 fN(i) δ∗N(i) 0 1 2 3 fN−1(i) δ∗N−1(i)
0 56

3
62
3 23 64

3
56
3 0 112

3
118
3 39 325

9
325
9 3

1 32
3 17 58

3 – 32
3 0 88

3 33 307
9 – 88

3 0

2 7 40
3 – – 7 0 23 253

9 – – 23 0
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If we use the steady state probabilities π03 computed earlier, we can find
the same expected total cost per period:

∑2
i=0 π

03
i v
(
i, δ∗(i)

)
= 9

13×
64
3 +

1
13×

32
3 + 3

13×7 = 671
39 = w(0, 3).

7.3. Solution of the Markov Sequential Decision Processes Model

Assuming β = .985, the following Linear Program is obtained by applying
(23)–(24):

maxV (0) + V (1) + V (2)
S.T. V (0) ≤ v(0, 0) + .985

[
1
3V (0) + 2

3V (0)
]
; v(0, 0) = 56

3
V (0) ≤ v(0, 1) + .985

[
1
3V (0) + 2

3V (0)
]
; v(0, 1) = 62

3
V (0) ≤ v(0, 2) + .985

[
1
3V (1) + 2

3V (0)
]
; v(0, 2) = 23

V (0) ≤ v(0, 3) + .985
[

1
3V (2) + 2

3V (0)
]
; v(0, 3) = 64

3
V (1) ≤ v(1, 0) + .985

[
1
3V (0) + 2

3V (0)
]
; v(1, 0) = 32

3
V (1) ≤ v(1, 1) + .985

[
1
3V (1) + 2

3V (0)
]
; v(1, 1) = 17

V (1) ≤ v(1, 2) + .985
[

1
3V (2) + 2

3V (0)
]
; v(2, 0) = 58

3
V (2) ≤ v(2, 0) + .985

[
1
3V (1) + 2

3V (0)
]
; v(2, 0) = 7

V (2) ≤ v(2, 1) + .985
[

1
3V (1) + 2

3V (0)
]
; v(2, 1) = 40

3

which leads to the solution V (0) = 1150.382, V (1) = 1143.793, and V (2) =
1137.963. The discounted expected cost for the infinite horizon, that we
denote by W , can be calculated on the basis of the steady state probabili-
ties:

W =
9
13
×1150.382 +

1
13
×1143.793 +

3
13
×1137.963 = 11147.010

The same value of W could be found by dividing w(0, 3) by 1−β:

W = 11147.010 =
671
39

1− .985
=
w(0, 3)
1− β

This illustrates the convergence of the three models.

8. Conclusion

In this paper, we used three different models to solve the same problem
based on the same notation, the same data, and the same assumptions.
Despite some similarities, the three models approached the problem in dif-
ferent ways. Having different theoretical bases, the obtained formulations
showed major differences, but they all converged into the same optimal so-
lution as was illustrated by the numerical application. Such a convergence
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is justified by the fact that all three models lead to an exact solution, which
is the optimal (s, S) policy.
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