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Abstract. The global properties of the classical three-dimensional Lotka-Volterra two prey-
one predator and one prey-two predator systems, under the assumption that competition can
be neglected, are analysed with the direct Lyapunov method. It is shown that, except for a

pathological case, one species is always driven to extinction, and the system behaves asymptotically
as a two-dimensional predator-prey Lotka-Volterra system. The same approach can be easily
extended to systems with many prey species and one predator, or many predator species and one
prey, and the same conclusion holds. The situation considered is common for New Zealand wild life,
where indigenous and introduced species interact with devastating consequences for the indigenous
species. According to our results the New Zealand indigenous species are definitely driven to
extinction, not only in consequence of unsuccessful competition, but even when competition is
absent. This result leads to a better understanding of the mechanism of natural selection, and
gives a new insight into pest control practice.
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1. Introduction

One of the most commonly used models of predator-prey interaction is the classical
Lotka-Volterra predator-prey model

dx dy
ie x (a by), 1 y(-c + dr), ( -, -), (1)

where x(t), y(t) are the prey and predator population biomass at time t; a, b, c,d
are positive constants. Phase curves of (1) form the family of closed curves, given
by the first integral

U dx- clnx + by- alny,

around the neutrally-stable steady-state (c/d, a/b).
The Lotka-Volterra model indeed may be the simplest possible predator-prey

model. It has been criticised as being unrealistic--mainly for its structural insta-
bility and the assumption of the unlimited growth of the prey population x(t) in the
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absence of a predator. Nevertheless, it is a useful tool containing the basic proper-
ties of the real predator-prey systems, and serves as a robust basis from which it is
possible to develop more sophisticated models.
The model (1) can be naturally generalised for the multi-species case. The gen-

eralisation of the Lotka-Volterra model (1) for the multi-species case retains the
basic features of real ecological systems and, as will be shown, allows us to obtain
valuable results that are easy to be interpreted. For the three-species predator-prey
interaction two possibilities arise: the two prey-one predator system

1 xl (a bly), ]2 x:(a: b2y),
= y(-c + dlxl + d:x2), (3)

and a two predator-one prey system

x(a blyl b:y:),
1 Yl (--el "}" dlg), /2 = y2(--C: + d2x). (4)

Here x, x2 are prey populations, y, y2 are predator populations, and ai, bi, c{, d{
are positive constants.
The equations (3) assume that the prey populations Xl,X2 have not reached,

and are not able to reach, their media capacity because of predation or for some
other reasons, and that interspecies competition is absent or negligible. These
situations (the absence of the direct competition between two prey species having a
common predator) are not common but they are not unrealistic, and, we are sure,
have arisen repeatedly in the past in the process of evolution. As a result of the
artificial introduction of alien species there are some examples of such systems in
New Zealand. The interaction of kiwi--rabbitsastoats is an example. Occupying
different ecological niches (bush for the kiwi and open fields for rabbits), the rabbits
and kiwi do not compete. The populations of the both species are far from reaching
their media capacity as a result of predation and artificial controlling of the rabbit
population. Furthermore, both the kiwi and the rabbits have the same predators:
stoats, cats, minks, or any others. Hence, the kiwi--rabbit--stoat interaction can
be adequately described by the equations (3).
The equations (4) describe the situation when two predator species depend on a

common prey and, furthermore, these two predator species do not interact directly,
they do not fight directly (not usually, at least), do not predate one the other, and
do not depend one on the other as a food source. Such situations are not unusual,
and can arise in many different cases.
The multi-species Lotka-Volterra predator-prey systems have been studied by

many authors. In the early papers, such as [1], [2], [4], [8], [9] and others, the influ-
ence of the predation on the two competing species was studied, and showed that
the presence of a predator may stabilise the ecological system which is otherwise
unstable. In a number of recent papers, such as [3], [5], [6], [7], the stability and
the global dynamical properties of the multi-species Lotka-Volterra systems have
been studied. The most complete list of references can be found in Y.Takeuchi’s
book [7].
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The main aim of this work is to demonstrate that predation may destabilise a

comparatively stable system, and that species can be completely annihilated during
a finite time as a result of predation only, without any competition at all. Or,
in contrast, an unsuccessful predator can be driven to extinction in finite time
even without any direct competition. This result leads to a new insight into the
mechanism of natural selection.

LEMMA 1 The systems (3) and () are equivalent under inversion of time t.

The proof is straightforward with substitution of r = -t in (3) or (4). The lemma
makes it possible to apply the same methods to both systems (3) and (4).
We call the parameter Pi : alibi for the prey xi, and the parameter qi di/ci

for the predator yi, the capacity to survive, or the survival capacity.
In the regular case, provided by pl :): p for (3) and ql : qe for (4), each of the

systems (3), (4) has three equilibria: the trivial one at the origin and two others
on the coordinate planes xiy or xYi (the coexisting equilibria of the reduced two-
dimensional predator-prey systems), given by (c/dl, O, Pl), (0, c/d, p) for (3), and
by (q-[1,a/bl,O)., (ql,0, a/b2) for (4). There are no coexisting equilibria in the
regular cases. In the pathological case, provided by pl p2 for (3), or ql = q2 for
(4), both systems (3), (4) have a continuum of equilibria--the straight line given

( c-d1-1 ) ( ) for (4), in addition to the trivialby Xl, d. ,P for (3) or by q-l a-blyl.
Yl, b2

equilibrium at the origin.
The phase space of (3) is the positive octant

R3+ {(xx.x2. y) e n3lxl > O..2 > O. y >

the phase space of (4) is the positive octant

{(x, R I, > 0, > 0, > 0),

and their coordinate planes cannot be crossed by any trajectory. Hence the two-
dimensional coordinate planes in R3 are the invariant sets of the systems (3) and
(4), so a solution of (3) or (4) with positive initial value remains in the positive
octant R. forever.

2. Main results

THEOREM The solutions of (3) with positive initial values are bounded, and, if
pl > P2, then limt-+o x2 = 0. If Pl = P2 then (3) has two independent first
integrals.

Proof: For the case Pl >_ P2 consider two Lyapunov functions

d2x2 c alH dlx + + y- lnxl In (5)
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v = (6)

The function H(x 1, x2, Y) satisfies

9 (7)

The condition pl > p2 implies that /1/< 0 when x2 > 0, and/i/= 0 when x2 0.
Hence there is no flux through the coordinate plane z2 0;/:/< 0 implies that the
phase curve of (3) initiating in the positive octant R3+ remains forever in the part
of R3+ bounded by the surface H(xl,xg.,y) H(xl(O),x2(O),y(O)) and the plane
x2 = O, and is attracted by the coordinate plane x2 O.

If pl p2 then 4 O, and H(zx, z, y) is the first integral of (3).
The function V(xl, z2, y) satisfies

(/-- (a2bl -alb)V blb2(p2- pl)V AV,

which has the solution

v(t) = v(o) (8)

So the asymptotic behaviour of V(t) depends upon the sign and value of

A = (P2 Pl)bl b2.

lfp > P2, then A < O, and limto V = 0. Since the solution is bounded it implies
limt..+ x2 = 0.

If p p then O, and V(xl,x2, y) constant is the first integral of (3).
Obviously, V(xl, x2, y) and H(xl, x2, y) are independent.
This completes the proof. V1
By putting x2 = 0 into (5) then the equation H constant is equivalent to

the first integral (2) for the two-dimensional system (za(t),9(t)). The Lyapunov
function of the form (5) has been used by B.-S.Goh [3], Y.Takeuchi [7] and the
others.
In the case pl < P2 it suffices to change subscripts.
The following theorem for the system (4) is the analogue of Theorem 1. The proof

follows from Lemma 1, or two Lyapunov functions

cl bl b2 a y
G- x ’1 lnx + -Yl " "2Y2-- llnyl W = a---

may be considered.

THEOREM 2 The solutions of (4) with positive initial values are bounded, and, if
ql > q2, then limt-+c y2 = 0. If qx = q2 then () has two independent first integrals.

In the biological context there is a critical value Yi for a population xi(t) such
that the species is effectively extinct if 0 < x(t) < . (If x(t) is the number of the
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animals then { 1.) Theorems 1 and 2 imply that for the systems (3), (4) this
limit can be reached in finite extinction time tk. Equation (8) allows us to evaluate
the extinction time for the species xi(t). Assuming pl > p2 then for the system
(3) limt_+ x2(t) = 0. If the initial values Xl(0),x2(0) are given, and assuming
xl (tk) x (0), and x2(tk) = 2 then, according to (8),

1 V(tk) In x2(0) ln2
tk - In

V(O) (Pi p2)b2

3. Generalisation for n + x-dimensional systems

The system with n prey and one predator, with the assumption that the interactions
between the prey species are negligible, may be described by the equations

Xl (al bly) in(an buy),
,9- +

The order of the subscripts for (9) is chosen so that pl > p2 >_ > pn, where
pi a{/b{ is the survival capacity of x{. The following extension of Theorem 1
holds for (9).

THEOREM 3 The solutions of (9) with positive initial values are bounded, and, if
pl p2 ...- Pm > max(pm+l,...,pn), then 9) has m- 1 independent first
integrals, and limt_+ xi 0 for all > m + 1.

If pl > max(p2,...,pn), then limt_+ x{ 0 for all >_ 2.

Proofi Define a Lyapunov function

a{ c aiH(x,...,x,,y) Z -i xi "4- y- -l lnxl l lny.
i--1

The derivative of H along a solution of (9) satisfies

[--I i lib{ albl dixi (Pi pl)dixi. (10)
i-1

If Pl P2 Pm > max(p,+x,...,p) then /2/ < 0 until xi 0 for all
>_ m. Since there is no flux through the coordinate planes zi O, 1,..., n

then the equation (10) implies that the phase curve of (9) with a positive initial
value remains forever in the area of R_]_+1 bounded by the surface H(xl,..., x,, y)
H(Xl(0),..., x.(0), y(0)), and the n-m coordinate planes zi 0, i- m+ 1,...,n.

If m n (that is pl p2 Pn), then the equation H(Xl,...,x,y)
constant is the first integral of (9).
Define further n(n- 1)/2 Lyapunov functions
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bj

where < j. For every j we have

ij (aj bi ai bj j bi bj (pj pi Vii Aijj. (11)

Consequently

Vii(t) Vii(O)exp(AO t).

Since Pl --P2 --.----Pm > max(pro+t,...,p,), (12)implies that if/<_ m, j > m,
then limt--,oo ldj 0. Consequently, since the solutions are bounded, this implies
that limt-+oo xj (t) 0.
Since pl P2 -..-- Pro, all m(m-1)/2 equations /j(Xi, Xj) constant, where
< j _< m, are the first integrals of (9). It is easy to show that m- 1 independent

first integrals, for instance VU(x xj), j 2,..., n, may be chosen among them.
This completes the proof. [B

The system with one prey and n predators, and with the assumption that direct
interspecies competition between the predators is negligible, may be described by
the equations

E,L 
)1 Yl (--Cl + dlx) 9n Yn (--Cn "t- dnx). (13)

The order of the subscripts for (13) is chosen so that q _< q2 _< _< q, where
qi di/ci is the survival capacity of yi. Then the extension of Lemma 1 holds for
(9) and (13).

LEMMA 2 The systems (9) and (13) are equivalent under inversion of time

The proof is straightforward, and we omit it here.
The following extension of Theorem 2 to the system (13) is the direct consequence

of Theorem 3 and Lemma 2.

THEOREM 4 The solutions of (13) with positive initial values are bounded, and, if
q, q,-I =...= q,-m+l > max(q1,..., qn-m), then (13) has m- 1 independent
first integrals, and limt._, yi 0 for all <_ n- m.

If qn > max(q,..., q_), then limt-+oo yi 0 for all < n.

The proof is analogous to that of Theorem 3.

4. Discussion

The results of this paper demonstrate that, under the assumptions made, a bio-
logical species may be eliminated (effectively in finite time). A herbivorous species
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can be eliminated by predation if there is another herbivorous species with a higher
survival capacity and which provides a predator with a permanent food base, even
if there is no direct competition between these two herbivorous species. An un-
successful predator will be eliminated in finite time if there is another predator
with higher survival capacity. The results lead to the conclusion that predation,
not competition only, is responsible for extinction of some species in the process of
evolution.

It has been mentioned already that, as a consequence of the artificial introduction
of alien species into New Zealand, there are some examples of the systems considered
in this paper. Our results lead to the unfavourable conclusion that the New Zealand
indigenous species are definitely driven to extinction, not only in consequence of
unsuccessful competition, but even when competition is absent. For example, in the
above-mentioned case (kiwi--rabbits--stoats system) the kiwi may be completely
eliminated in finite time by predation alone.
The results in this paper suggest a new approach to a problem of a pest control.

Usually biological pest control requires the introduction of a predator decreasing
the pest population to an acceptable level. This approach provides only a short
term result as after some time this predator-prey system has reached its coexisting
equilibrium. According to our results, pest control would be much more effective
if, simultaneously with the introduction of predators, a prey species is introduced
to provide the predators with a long-term food base. It is not necessary for the
introduced prey to compete with the pest for resources. It is even better if they do
not compete, as the resources can be the subject of protection. But the introduced
prey species must have a higher survival capacity than the pest has. Under these
circumstances, the original pest species will be completely annihilated in finite time.
Of course, the introduced alternative prey should be harmless or less harmful than
the original one.

Though the analysis in this paper uses the simplest predator-prey model an in-
teresting biological result have been derived. Consequently, it will be worthwhile
to examine the robustness of this result in more detailed models.
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