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We have derived the analytical kernels of the pricing formulae of the CEV knockout options with
time-dependent parameters for a parametric class of moving barriers. By a series of similarity
transformations and changing variables, we are able to reduce the pricing equation to one which
is reducible to the Bessel equation with constant parameters. These results enable us to develop
a simple and efficient method for computing accurate estimates of the CEV single-barrier option
prices as well as their upper and lower bounds when the model parameters are time-dependent.
By means of the multistage approximation scheme, the upper and lower bounds for the exact
barrier option prices can be efficiently improved in a systematic manner. It is also natural
that this new approach can be easily applied to capture the valuation of other standard CEV
options with specified moving knockout barriers. In view of the CEV model being empirically
considered to be a better candidate in equity option pricing than the traditional Black-Scholes
model, more comparative pricing and precise risk management in equity options can be achieved
by incorporating term structures of interest rates, volatility, and dividend into the CEV option
valuation model.
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1. Introduction

In recent years European barrier options have become extremely popular in world markets.
Unlike standard options, a barrier option is a path dependent option in which the existence
of the option depends upon whether the underlying asset price has touched a critical value,
called the barrier, during the option’s lifetime. Should the price of the underlying asset
breach this barrier before option expiration, the option will be extinguished immediately.
An advantage of trading barrier options is that they provide more flexibility in tailoring
the portfolio returns while lowering the cost of option premiums. The pricing of barrier
options has been studied in many literatures assuming the underlying asset price to follow
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a lognormal diffusion process, that is, the Black-Scholes environment [1]. Merton [2] was
the first to derive a closed-form solution for a down-and-out European call option. Other
closed-form pricing formulae of single-barrier options were published in [3–8]. The analytical
valuation of double-barrier options was discussed in [9–14].

The Black-Scholes option pricing model is a member of the class of constant elasticity
of variance (CEV) option pricing models. The diffusion process of stock price S in a CEV
model can be expressed as

dS = μSdt + σSβ/2dZ, 0 ≤ β < 2 (1.1)

where μ is the instantaneous mean, σSβ/2 is the instantaneous variance of the stock price, dZ
is a Weiner process, and β is the elasticity factor. The equation shows that the instantaneous
variance of the percentage price change is equal to σ2/S2−β and is a direct inverse function of
the stock price. In the limiting case β = 2, the CEV model returns to the conventional Black-
Scholes model in which the variance rate is independent of the stock price. In another case
β = 0, it is the Ornstein-Uhlenbeck model. Several theoretical arguments imply an association
between stock price and volatility. Black [15] and Christie [16] consider the effects of financial
leverage on the variance of the stock. A fall in the stock price increases the debt-equity ratio
of the firm; therefore, both the risk and the variance of the stock increase. Black also proposes
that a downturn in the business cycle might lead to an increase in the stock price volatility
and hence to a fall in the stock prices.

Empirical evidence has shown that the CEV process may be a better description of
stock behavior than the more commonly used lognormal model because the CEV process
allows for a nonzero elasticity of return variance with respect to prices. Schmalensee and
Trippi [17] find a strong negative relationship between stock price changes and changes in
implied volatility after examining over a year of weekly data on six stocks. By applying the
trading profits approach on 19000 daily warrant price observations, Hauser and Lauterbach
[18] find that the CEV model roughly doubles the trading excess returns of the Black-
Scholes model. The superiority of the CEV model is strongest in out-of-the-money and longer
time to expiration warrants. The results are consistent with the findings in Lauterbach and
Schultz [19]. If the relationship between the variance and the stock price is deduced from
the empirical data, an option pricing formula based on the CEV model could fit the actual
market option prices better than the Black-Scholes model. Beckers [20] finds thirty-seven out
of forty-seven stocks in a year daily data set to have estimated β to be less than two and
concludes that the CEV diffusion process could be a better candidate of describing the actual
stock price behavior than the Black-Scholes model.

In addition to providing a better description of stock behavior, the CEV process can
be employed in the contingent-claims approach to valuing defaultable bonds. For example,
in a valuation model of defaultable bonds proposed by Cathcart and El-Jahel [21] recently,
default occurs when some signaling process hits some constant default barrier (i.e., the option
to default can be considered as a barrier option). The model assumes the signaling process for
each firm that determines the occurrence of default rather than the value of the assets of the
firm. The signaling process can capture factors that can affect the probability of default. The
use of the signaling process is also appropriate for entities such as sovereign issuers that issue
defaultable debts but do not have an identifiable collection of assets. The signaling process
could follow diffusion processes such as lognormal, Ornstein-Uhlenbeck, or CEV processes.
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The derivation of the CEV option pricing formula with β = 1 (commonly known as the
“square-root process”) was first presented by Cox and Ross [22] as an alternative diffusion
process for valuation of options. Cox [23] also derived the option pricing formula for β < 2.
All these derivations assume the model parameters such as volatility, interest rate, and
dividend yield are constant. However, the model parameters are actually time-dependent
in market. The time-dependent term structures of interest rates and volatility which can
be implied from the money market and the option market, respectively, are expressed as
time-dependent stepwise functions. The term structures can also be expressed as analytical
functions to reflect expectation and dynamics of market factors. Only recently Lo et al. [24]
succeeded in introducing time-dependent parameters into the CEV process, and obtaining
the closed-form option pricing formula explicitly.

The valuation of European CEV barrier options with time-dependent model param-
eters is not a trivial extension. So far as we know, no simple and accurate approximation
scheme is available yet. In a recent paper Lo and Hui [25] generalize the Lie-algebraic
technique of Lo et al. [24] to derive the analytical kernels of the pricing formulae of the CEV
knockout options with time-dependent parameters for a parametric class of moving barriers.
By best fitting the fixed barrier by these parametric moving barriers, they also provide a
simple method for computing tight upper and lower bounds of the prices of the single-
barrier options (both call and put options). In this paper we try to provide an alternative
derivation of the analytical pricing kernels via a more systematic approach, which involves
a series of similarity transformations and changing variables so as to convert the pricing
equation into one reducible to the Bessel equation with constant parameters. The solution of
the resultant equation subject to absorbing boundary conditions is well known and discussed
in most standard textbooks on partial differential equations. Then very tight upper and lower
bounds of the exact barrier option prices can be calculated efficiently using the multistage
approximation, and these bounds can also be systematically impoved in a straightforward
manner.

The remainder of this paper is structured as follows. In the next section we present
the derivation of the analytical kernels of the pricing formulae of the CEV knockout options
with time-dependent parameters for a parametric class of moving barriers, and describe our
formulation for evaluating accurate approximation of the value of a single-barrier European
CEV option with time-dependent parameters. Section 3 presents some illustrative examples
and examines the accuracy and efficiency of our approximate approach. Tight upper and
lower bounds of the exact barrier option prices are also calculated. In Section 4 the multistage
approximation scheme is proposed to systematically tighten the upper and lower bounds. It
is found that even a rather low-order approximation can yield very tight bounds of the exact
barrier option prices. Numerical results are discussed in detail. In Section 5, we apply the
multistage approximation scheme to valuate barrier options with time-dependent volatilities.
In Section 6 we summarize our investigation and provide suggestions for future research.

2. CEV Single-Barrier Options

The CEV model with time-dependent model parameters for a standard European option is
described by the partial differential equation [23]

∂P(S, τ)
∂τ

=
1
2
σ(τ)2Sβ

∂2P(S, τ)
∂S2

+ [r(τ) − d(τ)]S∂P(S, τ)
∂S

− r(τ)P(S, τ) (2.1)
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for 0 ≤ β < 2. Here P is the option value, S is the underlying asset price, τ is the time to
maturity, σ is the volatility, r is the risk-free interest rate, and d is the dividend. Introducing
a simple change of variables: x =

√
S(2−β), (2.1) can be recast in the following form:

∂u(x, τ)
∂τ

=
1
8
σ̃(τ)2 ∂

2u(x, τ)
∂x2

+
1
2

[

μ̃(τ)x −
(
4 − β

)
σ̃(τ)2

4
(
2 − β

)
x

]
∂u(x, τ)
∂x

+

[(
4 − β

)
σ̃(τ)2

8
(
2 − β

)
x2
− r(τ) −

μ̃(τ)
2

]

u(x, τ)

≡ H(τ)u(x, τ),

(2.2)

where σ̃(τ) = (2 − β)σ(τ), μ̃(τ) = (2 − β)[r(τ) − d(τ)] and u(x, τ) = xP(S, τ). This equation
represents a generalization of the Fokker-Planck equation associated with the well-known
Rayleigh process [26]. It is not difficult to show that the operator H(τ) can be rewritten as
follows:

H(τ) = a1(τ)K+ + a2(τ)K0 + a3(τ)K− + b(τ), (2.3)

where

K− =
1
2

[
∂2

∂x2
−

4 − β
(
2 − β

)
x

∂

∂x
+

4 − β
(
2 − β

)
x2

]

,

K0 =
1
2

(
x
∂

∂x
− 1

2 − β

)
, K+ =

1
2
x2,

a3(τ) =
1
4
σ̃(τ)2, a2(τ) = μ̃(τ),

a1(τ) = 0, b(τ) = −
1 − β

2
(
2 − β

) μ̃(τ) − r(τ).

(2.4)

The operators K+, K0, and K− are the generators of the Lie algebra su(1,1) [27]:

[K+, K−] = −2K0, [K0, K±] = ±K±. (2.5)

Without loss of generality we first assume the solution of (2.2) takes the form

u(x, τ) = exp
{
ϕ(τ) − 1

2
Γ(τ)x2

}
ũ(x, τ), ϕ(τ) =

∫ τ

0
dτ ′b

(
τ ′
)
. (2.6)
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Substituting (2.6) into (2.2) yields

∂ũ(x, τ)
∂τ

=
{[

dΓ(τ)
dτ

+ a3(τ)Γ2(τ) − a2(τ)Γ(τ)
]
K+

+[a2(τ) − 2a3(τ)Γ(τ)]K0 + a3(τ)K−
}
ũ(x, τ).

(2.7)

Then we set the coefficient associated with K+ in (2.7) equal to zero and obtain

dΓ(τ)
dτ

= −a3(τ)Γ2(τ) + a2(τ)Γ(τ)

=⇒ d

dτ

{
Γ(τ) exp[−c2(τ)]

}
= −dc3(τ)

dτ

{
Γ(τ) exp[−c2(τ)]

}2

=⇒ Γ(τ) =
γ exp[c2(τ)]

1 + γc3(τ)
,

(2.8)

where γ is an arbitrary real constant and the ci(τ) are defined by

c2(τ) =
∫ τ

0
a2
(
τ ′
)
dτ ′,

c3(τ) =
∫ τ

0
a3
(
τ ′
)

exp
[
c2
(
τ ′
)]
dτ ′.

(2.9)

Next, we perform the time-dependent similarity transformation

S1 = exp
{[
c2(τ) − 2 ln

∣∣1 + γc3(τ)
∣∣]K0

}
(2.10)

to (2.7) so that it becomes

∂u(x, τ)
∂τ

=
a3(τ) exp[c2(τ)]
[
1 + γc3(τ)

]2
K−u(x, τ) =⇒

∂u(x,Ω)
∂Ω

= K−u(x,Ω), (2.11)

where u(x, τ) = S−1
1 ũ(x, τ) and

Ω(τ) =
∫ τ

0

a3(τ ′) exp[c2(τ ′)]
[
1 + γc3(τ ′)

]2
dτ ′ =

c3(τ)
1 + γc3(τ)

. (2.12)

Assuming that u(x,Ω) = x(α+1)/2v(x,Ω), where α = (4 − β)/(2 − β), (2.11) is reduced to

∂v(x,Ω)
∂Ω

=
1
2

[
∂2

∂x2
+

1
x

∂

∂x
− (α − 1)2

4x2

]

v(x,Ω), (2.13)
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whose formal solution is given by

v(x,Ω) = exp

{
Ω
2

[
∂2

∂x2
+

1
x

∂

∂x
− (α − 1)2

4x2

]}

v(x, 0). (2.14)

It should be noted that (2.13) is reducible to the Bessel equation of order (α − 1)/2 by
the separation of variables, and detailed analysis of its solutions for different boundary
conditions are well documented in most standard textbooks on partial differential equations
[28–30].

2.1. Up-and-Out Moving Barrier Options

Now we try to solve (2.13) for 0 � x � L and τ � 0 with absorbing boundary conditions.
Without loss of generality, we assume that v(x, 0) is defined in terms of the Fourier-Bessel
integral [28]:

v(x, 0) =
∞∑

n=1

2Jω(xωn(x/L))
L2J2

ω+1(xωn)

∫L

0
dy y Jω

(
xωn

y

L

)
v
(
y, 0

)
, (2.15)

for ω = (α − 1)/2 > −1. Here xωn denotes the nth zero of the Bessel function Jω of the first
kind of order ω. Then, making use of the fact that

{
∂2

∂x2
+

1
x

∂

∂x
− ω

2

x2

}

Jω
(
xωn

x

L

)
= −

(xωn
L

)2
Jω

(
xωn

x

L

)
, (2.16)

it is not difficult to show that

v(x,Ω) =
∞∑

n=1

2Jω(xωnx/L)
L2J2

ω+1(xωn)
exp

(

−
Ωx2

ωn

2L2

)∫L

0
dy y Jω

(
xωn

y

L

)
v
(
y, 0

)
. (2.17)

As a result, the price of the corresponding up-and-out option is given by

Pup-and-out(S, τ) =
u(x, τ)
x

=
1
x

∫L

0
dyK

(
x, τ ;y, 0

)
u
(
y, 0

)
, (2.18)
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where

K
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x, τ ;y, 0

)
=
∞∑

n=1

2y

L2J2
ω+1(xωn)

(
x

y

)ω+1 exp
[
c2(τ)/2 +
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0dτ

′b(τ ′)
]
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∣1 + γc3(τ)

∣
∣

× exp

{

−
γ exp[c2(τ)]
2
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1 + γc3(τ)

]x2

}

exp

{

− c3(τ)
2
[
1 + γc3(τ)

]
L2
x2
ωn

}

× Jω

(

xωn
exp[c2(τ)/2]
∣
∣1 + γc3(τ)

∣
∣

x

L

)

Jω
(
xωn

y

L

)
exp

[
1
2
γy2

]
.

(2.19)

In the above derivation we have made use of the well-known relation

exp
(
ηx

∂

∂x

)
f(x) = f

(
x exp

(
η
))
. (2.20)

It can be easily seen that at time τ � 0 the kernel K(x, τ ;y, 0) vanishes at x = x∗(τ) = L|1 +
γc3(τ)| exp[−c2(τ)/2]. That is, we have derived the kernel of the pricing equation in (2.2)
with an up-and-out barrier belonging to the class of trajectories:

S∗(τ) = [x∗(τ)]2/(2−β) =
{
L
∣∣1 + γc3(τ)

∣∣ exp
[
−1

2
c2(τ)

]}2/(2−β)
(2.21)

parametrized by the real adjustable parameter γ .

2.2. Down-and-Out Moving Barrier Options

On the other hand, for a down-and-out option with the barrier following the trajectory
defined by (2.21), we would suppose that v(x, 0) is defined in terms of the Weber transform
[29]:

v(x, 0) =
∫∞

0
dξ
Jω(xξ)Yω(ξL) − Yω(xξ)Jω(ξL)

J2
ω(ξL) + Y 2

ω(ξL)
ξ

×
∫∞

L

dy
[
Jω

(
yξ

)
Yω(ξL) − Yω

(
yξ

)
Jω(ξL)

]
y v

(
y, 0

)
(2.22)

for L � x <∞. Then, it is straightforward to show that u(x, τ) is simply given by

u(x, τ) =
∫∞

L

dy G
(
x, τ ;y, 0

)
u
(
y, 0

)
, (2.23)
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where
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ω(ξL) + Y 2

ω(ξL)

(2.24)

is the kernel of the pricing equation in (2.2) associated with a down-and-out barrier moving
along the trajectory given in (2.21). Here Yω denotes the Bessel function of the second kind of
order ω. It should also be noted that the Gaussian decaying factor of the integrand ensures
the rapid convergence of the integration over ξ. Accordingly, the price of the corresponding
down-and-out moving barrier option is found to be

Pdown-and-out(S, τ) =
u(x, τ)
x

=
1
x

∫∞

L

dy G
(
x, τ ;y, 0

)
u
(
y, 0

)
. (2.25)

Furthermore, it is not difficult to see that in the special case of L = 0, that is, no barrier, the
kernel in (2.24) is reduced to the one obtained by Lo et al. [24] which has a Gaussian decaying
factor in the variable y. By the maximum principle for the parabolic partial differential equation
[30], we can thus conclude that the kernel in (2.24) must have a decaying factor in the variable
y, which decays at least as fast as the Gaussian decaying factor in the special case of L = 0.

2.3. Illustrative Applications

If we take a closer look at the trajectory of the moving barrier defined in (2.21), we would
immediately realize that the special case of a fixed barrier does not belong to the class of
parametric barriers. In order to simulate a fixed barrier, we will thus choose an optimal value
of the adjustable parameter γ in such a way that the integral

∫T

0
[x∗(τ) − L]2dτ (2.26)

is minimum. In other words, we try to minimize the deviation from the fixed barrier by
varying the parameter γ . Here T denotes the time at which the option price is evaluated.
An illustrative example of such an optimal fluctuating barrier (represented by the dashed
line) is shown in Figure 1. It is clear that the approximation is indeed very good. Within the
framework of the new approach, we can also determine the upper and lower bounds for
the exact barrier option prices. It is not difficult to show that for an up-and-out option the
upper bound can be provided by the option price associated with a moving barrier whose
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γ = 0.208333

γ = 0.206596

γ = 0.205729

Fixed barrier’s track

0 0.2 0.4 0.6 0.8 1

Maturity time

Figure 1: Barrier tracks for the bounds and barrier option price estimate within the single-stage
approximation scheme. Upper bound’s track (solid line), lower bound’s track (long dashed line) and
barrer option price estimate’s track (dashed line). Time to maturity is equal to one. Other input parameters
are β = 1.0, So = 26, X = 20, σ2

BS = 0.02, d = 0 and r = 0.05. The values of γ for the barrier tracks are shown
along the tracks.

x∗(τ) is greater than or equal to L for the duration of interest. (The proof is based upon the
maximum principle for the parabolic partial differential equation [30].) Similarly, the option
price associated with a moving barrier whose x∗(τ) is less than or equal to L for the duration
of interest can serve as the desired lower bound. In this example, the best lower bound can
be obtained by choosing an appropriate value of γ such that x∗(τ = 0) = x∗(τ = T) = L.
That is, at time τ = T the moving barrier will return to its initial position and merge with
the fixed barrier. In Figure 1 an example of such a barrier movement is denoted by the long-
dashed line. On the other hand, the best upper bound can be obtained by choosing a γ value
which satisfies the requirement that dx∗(τ)/dτ = 0 at τ = 0. That is, the instantaneous rate of
change of x∗(τ) is required to be zero at time τ = 0. An example of such a barrier movement
is represented by the solid line in Figure 1. On the contrary, for a down-and-out option we can
simply switch the above two choices of barrier movement in order to determine the upper
and lower bounds of the option price.

3. Illustrative Examples

For illustration, we apply the approximate method to a “β = 1”-CEV up-and-out call option
with constant model parameters: σ2

BS = 0.02, r = 0.05, d = 0. (Note that the value of σ to be
used for the CEV model is adjusted to be σ = σBSS(2−β)/2.) The strike priceX and the knockout
barrier S0 are set equal to 20 and 26, respectively. We now try to evaluate the barrier option
price P(S, τ) associated with the current underlying asset price S = 24 at time τ = 1.

First of all, we determine the optimal value of the adjustable parameter γ :

γopt = 0.206596. (3.1)

Then an estimate of the exact up-and-out barrier option price can be evaluated by numerically
computing the integral in (2.18) (with, e.g., Mathematica):

P(S = 24, τ = 1) = 0.71396. (3.2)
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Since the exact value of the barrier option price is found to be [8]

Pexact(S = 24, τ = 1) = 0.71401, (3.3)

the approximate estimate is indeed very close to the exact result with a percentage error of
−0.00658% only. The numerical results for the corresponding upper and lower bounds are
determined as follows:

Upper bound = 0.71641
(
percentage error = 0.33613%

)
,

Lower bound = 0.71274
(
percentage error = −0.17843%

)
.

(3.4)

The barrier tracks for the estimate and bounds of the option price are shown in Figure 1.
Clearly, the new approach is able to yield very tight upper and lower bounds for the exact
barrier option price. To further illustrate the accuracy of the new approach, we also calculate
the estimates and bounds of the option prices corresponding to some other underlying asset
prices, namely, S = 16, 18, 20, and 22. The numerical results are listed in Tables 1(a) and 1(b).
It is clear that the estimates and bounds are remarkedly good; all of them have a percentage
error of less than 0.1 percent above or below the exact option value.

In order to assess the efficiency of the new approach, we also perform Monte Carlo
simulations to evaluate the option prices. As shown in Tables 1(a) and 1(b), using a
time-step of 10−5 and a sample of 105 random paths of the underlying asset price, the
Monte Carlo method gives much poorer estimates in comparison with the new approach.
Furthermore, to examine the robustness of the new approach, we carry out the same kind of
investigations for up-and-out call options in different CEV environments too. The numerical
results corresponding to different β values, namely, β = 0.5 and 1.5, are tabulated in Tables
2 and 3, respectively. Beyond question, the advantages of the new approach are clearly
demonstrated by these data.

4. Systematic Multistage Approximation

As the time to maturity increases beyond one year, that is, τ > 1, or the model parameters
have more dramatic term structures, the accuracy of the estimates and bounds of the
approximate method decreases. To obtain the same accuracy as before, we can approximate
the fixed barrier by a continuous and piecewise smooth barrier, leading to the multistage
approximation scheme. For simplicity, we will concentrate on the up-and-out options to
demonstrate the multistage approximation in the following. Generalization to the down-and-
out options should be very straightforward. First of all, we consider the estimate of the lower
bound and perform the evaluation in two stages.

Stage 1 (the time interval [0, T/2]). Following the same procedure as that discussed in
Section 3, we choose an appropriate value of the parameter γ , denoted by γL1, such that
x∗(τ = 0) = x∗(τ = T/2) = 0. This determines the movement of the barrier within the time
interval [0, T/2]. The corresponding price function is given by the integral in (2.18) with
the kernel K associated with γL1. One can efficiently calculate the integral numerically using
either the Mathematica or the Gauss quadrature method.
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Table 1: Comparison of estimates and bounds of option prices with the analytical results from Lo et al.,
“Pricing barrier options with square root process,” International Journal of Theoretical and Applied Finance,
4(5):805-818 (2001). Percentage error is defined as (estimate - analytical result)/analytical result ×100%.
Other input parameters are β = 1.0, S0 = 26, X = 20, σ2

BS = 0.02, d = 0, and r = 0.05. In the Monte Carlo
simulation Δt = 0.00001 and number of ensembles = 100000.

(a) CEV up-and-out call option with β = 1.0.

S P ’s estimate γopt
% error of
estimate

Analytical
result of P

Monte-
Carlo

method

% error of
MC

Lower
bound of

P
γL

% error of
lower
bound

16 0.10494 0.30900 0.00000 0.10494 0.10573 0.75281 0.10494 0.30859 0.00000
18 0.51902 0.27546 −0.00578 0.51905 0.51713 −0.36991 0.51900 0.27431 −0.00963
20 1.11794 0.24792 −0.01699 1.11813 1.12344 0.47490 1.11777 0.24688 −0.03220
22 1.25156 0.22538 −0.03435 1.25199 1.27467 1.81152 1.25096 0.22443 −0.08227
24 0.71396 0.20660 −0.00658 0.71401 0.73651 3.15122 0.71274 0.20573 −0.17843

(b) CEV up-and-out call option with β = 1.0.

Upper
bound of
P

γU
% error of

upper
bound

Improved
lower

bound of
P by a

two-stage
scheme

% error of
improved

lower
bound of
P by

two-stage
scheme

Improved
upper

bound of
P by a

two-stage
scheme

% error of
improved

upper
bound of
P by

two-stage
scheme

0.10494 0.31250 0.00000 0.10494 0.00000 0.10494 0.00000
0.51906 0.27778 0.00212 0.51903 −0.00385 0.51907 0.00385
1.11827 0.25000 0.01252 1.11802 −0.00984 1.11824 0.00984
1.25277 0.22727 0.06230 1.25172 −0.02157 1.25243 0.03514
0.71641 0.20833 0.33613 0.71368 −0.04622 0.71458 0.07983

Table 2: CEV up-and-out call option with β = 0.5. Comparison of estimates and bounds of option prices
with numerical results by Monte-Carlo (MC) method. Other input parameters are β = 0.5, S0 = 26, X = 20,
σ2
BS = 0.02, d = 0, and r = 0.05. In the Monte Carlo simulation �t = 0.00001 and number of ensembles

= 100000.

S P ’s estimate γopt
Monte-
Carlo
result

Lower
boun of P

γL
Upper

boun of P
γU

Improved
lower

bound of
p by a

two-stage
scheme

Improved
upper

bound of
p by a

two-stage
scheme

16 0.09542 0.05143 0.09744 0.09542 0.05111 0.09542 0.05208 0.09542 0.09542
18 0.52449 0.04310 0.52401 0.52447 0.04283 0.52454 0.04365 0.52450 0.52454
20 1.16472 0.03680 1.17240 1.16448 0.03657 1.16521 0.03727 1.16484 1.16519
22 1.28880 0.31899 1.30895 1.28788 0.03170 1.29065 0.03230 1.28904 1.29019
24 0.71159 0.27996 0.72594 0.70974 0.02782 0.71527 0.02835 0.71116 0.71254

Stage 2 (the time interval [T/2, T]). We repeat the procedure in Stage 1 such that x∗(τ =
T/2) = x∗(τ = T) = 0. This will give us another value of γ , denoted by γL2, and determine
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Table 3: CEV up-and-out call option with β = 1.5. Comparison of estimates and bounds of option prices
with numerical results by Monte Carlo (MC) method. Other input parameters are β = 1.5, S0 = 26, X = 20,
σ2
BS = 0.02, d = 0, and r = 0.05. In the Monte Carlo simulation, Δt = 0.00001 and number of ensembles

= 100000.

S P ’s estimate γopt

Monte
Carlo
result

Lower
bound of

P
γL

Upper
bound of

P
γU

Improved
lower

bound of
P by a

two-stage
scheme

Improved
upper

bound of
P by a

two-stage
scheme

16 0.11415 2.48958 0.11526 0.11415 2.48438 0.11415 2.5000 0.11415 0.11415
18 0.51031 2.34720 0.51011 0.51030 2.34229 0.51033 2.35702 0.51032 0.51033
20 1.07084 2.22675 1.07658 1.07075 2.22209 1.07101 2.23607 1.07088 1.07100
22 1.21585 2.12312 1.23098 1.21556 2.11868 1.21644 2.13201 1.21592 1.21628
24 0.71679 2.03274 0.73793 0.71618 2.02848 0.71801 2.04124 0.71664 0.71709

the moving barrier’s trajectory for the time interval [T/2, T]. Then, the corresponding price
function is given by

u

(
x,
T

2
≤ τ ≤ T

)
=
∫L

0
dyK̃
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T

2

)
u
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, (4.1)
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(
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(4.2)

Again, the integration in (4.1) can be efficiently evaluated using either the Mathematica or the
Gauss quadrature method.

In Figure 2 the long-dashed line gives an illustrative example of the moving barrier’s
trajectory within the two-stage approximation scheme. It is clear that the deviation from the
fixed barrier is much reduced in this two-stage approximation. The corresponding numerical
results for different CEV up-and-out call options in Tables 1–3 also demonstrate that the lower
bounds are dramatically improved. Apparently, one can further improve the lower bounds
by splitting the evaluation process into more stages instead.
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Figure 2: Barrier tracks for the bounds improved by a two-stage approximation scheme.Upper bound’s
track under a two-stage scheme (solid line) and lower bound’s track under a two-stage scheme (long
dashed line). Time to maturity is equal to one. Other input parameters are β = 1.0, So = 26, X = 20,
σ2
BS = 0.02, d = 0 and r = 0.05. The values of γ for the barrier tracks are shown along the tracks.

Next, we discuss how to implement the multistage approximation scheme to improve
the upper bound. For the two-stage approximation, the γU in the single-stage approximation
is used for the time interval [0, T/2], that is, we set γU1 = γU. At τ = T/2, another value of
γ , denoted by γU2, is selected so that the moving barrier will then start moving back to its
initial position and merge with the fixed barrier at τ = T . As a result, the corresponding price
function is given by (i) the integral in (2.18) with the kernel K associated with the parameter
γU1 for 0 ≤ τ ≤ T/2, and (ii) the following expression:
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(4.4)

for T/2 ≤ τ ≤ T . All the convolution integrals can be numerically evaluated using either
the Mathematica or the Gauss quadrature method. Further improvement in the estimation
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Figure 3: Barrier tracks for the bounds improved by a three-stage approximation scheme. Upper bound’s
track (solid line) and lower bound’s track (long dashed line). Time to maturity is equal to one. Other input
parameters are β = 1.0, So = 26, X = 20, σ2

BS = 0.02, d = 0 and r = 0.05. The values of γ for the barrier
tracks are shown along the tracks.

of the upper bound can be easily achieved by the approximation involving more stages.
In Figure 2 the solid line gives an example of the moving barrier’s trajectory for the two-
stage approximation. The numerical results in Tables 1–3 show that the upper bounds are
significantly improved.

As expected, the multistage approximation for both the upper and lower bounds
becomes better and better as the number of stages increases; in fact, the gap between the
bounds is asymptotically reduced to zero. In practice even a rather low-order approximation
can yield very tight upper and lower bounds to the exact option price function. It should
be pointed out that the above multistage approximation can be applied to an up-and-out put
option in a similar manner as well.

5. Barrier Options with Time-Dependent Volatilities

Now, we apply the multistage approximation method to the case of a time-dependent
volatility with the term structure.

σ2
BS = σ2

0

{

1 + a0 exp

[

− (τ − τ0)2

b0

]}

, (5.1)

where σ0 = 0.2, a0 = 1, b0 = 0.01, and τ0 = 0.5. This term structure can be interpreted as
a pulse of surge or drop (depending upon the sign of a0) in market volatility. The centre
of the pulse is at time τ0, and the width of the pulse is determined by b0. Other input
parameters remain unchanged. In this example the three-stage approximation is used, and
Figure 3 shows a couple of the typical barrier tracks. Because of the term structure of the
volatility, the barrier movement is a little bit more complicated than those cases with constant
volatilities. However, the spirit of the approximation scheme remains the same. Numerical
results of the bounds of the barrier option prices for β = 0.5, 1.0, and 1.5 are shown in Table 4.
For comparison, we also include the numerical data generated by Monte Carlo simulations
using a time step of 10−5 and a sample of 105 random paths of the underlying asset price. It
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Table 4: CEV up-and-out call option with time-dependent volatility. We extend our model to the time-
dependent case with the volatility term structure expressed as: σBS(τ)

2 = σ2
0{1 + a0 exp[−(τ − τ0)

2/b0]}
where σ0 = 0.2, a0 = 1, b0 = 0.01, and τ0 = 0.5. Other input parameters are S0 = 26, X = 20, d = 0, and
r = 0.05. In the Monte Carlo simulation, Δt = 0.00001 and number of ensembles = 100000.

β S Lower bound of P Upper bound of P Monte-Carlo result

1.5

16 0.27326 0.27458 0.27240
18 0.51040 0.51414 0.51468
20 0.62600 0.63327 0.63608
22 0.52915 0.53918 0.53809
24 0.27824 0.28684 0.29050

1.0

16 0.28462 0.28602 0.28539
18 0.55640 0.56046 0.56073
20 0.67566 0.68348 0.68740
22 0.55016 0.56068 0.56887
24 0.27571 0.28432 0.28782

0.5

16 0.29076 0.29228 0.29136
18 0.60248 0.60683 0.60574
20 0.72862 0.73700 0.73813
22 0.57272 0.58380 0.58778
24 0.27361 0.28224 0.28672

Table 5: CEV down-and-out put option with time-dependent volatility. We extend our model to the time-
dependent case with the volatility term structure expressed as σBS(τ)

2 = σ2
0{1 + a0 exp[−(τ − τ0)

2/b0]}
where σ0 = 0.2, a0 = 1, b0 = 0.01, and τ0 = 0.5. Other input parameters are S0 = 14, X = 20, d = 0 and,
r = 0.05. In the Monte Carlo simulation, Δt = 0.00001 and number of ensembles = 100000.

β S Lower bound of P Upper bound of P Monte-Carlo result

1.5

16 0.80290 0.81341 0.82993
18 0.93028 0.93662 0.95328
20 0.73071 0.73371 0.74182
22 0.47491 0.47632 0.47829
24 0.27759 0.27822 0.27923

1.0

16 0.79012 0.80025 0.81260
18 0.87756 0.88452 0.89777
20 0.67388 0.67754 0.68690
22 0.44145 0.44324 0.44091
24 0.26678 0.26764 0.26970

0.5

16 0.77761 0.78771 0.79748
18 0.82329 0.83014 0.84160
20 0.61817 0.62192 0.62888
22 0.40516 0.40728 0.40804
24 0.25092 0.25193 0.25603

can be seen that the bounds are indeed very tight whereas the Monte Carlo simulations give
rather poor estimates. Furthermore, even though the approximation involves three stages,
the convergence of the calculations is still very rapid for it takes less than two minutes to give
one estimate of the barrier option value.
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Finally, we generalize the multistage approximation scheme to the CEV down-and-
out options. Table 5 shows the results of a down-and-out put option with time-dependent
volatility. It should be noted that although we need to evaluate a double integral in this
case, our proposed method works very well in evaluating the option prices, in terms of both
accuracy and efficiency.

6. Conclusion

By a series of similarity transformations and changing variables, we have derived the
analytical kernels of the pricing formulae of the CEV knockout options with time-dependent
parameters for a parametric class of moving barriers. These results enable us to develop a
simple and efficient method for computing accurate estimates of the single-barrier option
prices (both call and put options) as well as their upper and lower bounds in the CEV model
environment when the model parameters are time-dependent. By means of the multistage
approximation scheme, the upper and lower bounds for the exact barrier option prices can
be efficiently improved in a systematic manner. In view of the CEV model being empirically
considered to be a better candidate in equity option pricing than the traditional Black-Scholes
model, more comparative pricing and precise risk management in equity options can be
achieved by incorporating term structures of interest rates, volatility, and dividend into the
CEV option valuation model. Extension to the CEV double-knockout options with time-
dependent parameters can also be straightforwardly achieved by solving (2.13) for L1 � x �
L2 and τ � 0 with absorbing boundary conditions at both endpoints. Such a boundary value
problem is well documented in most standard textbooks on partial differential equations, but
the solution will involve explicit searching for eigenvalues numerically. Moreover, it is natural
that this new approach can be easily applied to capture the valuation of standard CEV options
with specified moving knockout barriers. Finally, we would like to point out that the results
for the down-and-out CEV option can be generalized to price the CEV American put option
and lookback options with time-dependent parameters too. This research is now in progress
and results will be published elsewhere.
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