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A Cox process NCox directed by a stationary random measure ξ has second moment
var NCox(0, t] = E(ξ(0, t]) + var ξ(0, t], where by stationarity E(ξ(0, t]) = (const.)t =
E(NCox(0, t]), so long-range dependence (LRD) properties of NCox coincide with LRD
properties of the random measure ξ. When ξ(A) = ∫ AνJ(u)du is determined by a den-
sity that depends on rate parameters νi (i∈ X) and the current state J(·) of an X-valued
stationary irreducible Markov renewal process (MRP) for some countable state space
X (so J(t) is a stationary semi-Markov process on X), the random measure is LRD if
and only if each (and then by irreducibility, every) generic return time Yj j ( j ∈ X) of
the process for entries to state j has infinite second moment, for which a necessary
and sufficient condition when X is finite is that at least one generic holding time Xj in
state j, with distribution function (DF) Hj , say, has infinite second moment (a sim-
ple example shows that this condition is not necessary when X is countably infinite).
Then, NCox has the same Hurst index as the MRP NMRP that counts the jumps of J(·),
while as t→∞, for finite X, var NMRP(0, t] ∼ 2λ2∫ t

0�(u)du, var NCox(0, t] ∼ 2
∫ t

0

∑
i∈X(νi

− ν)2�i�i(t)du, where ν =∑ i�iνi = E[ξ(0,1]], �j = Pr{J(t) = j},1/λ =∑ j p̌ jμ j , μj =
E(Xj), { p̌ j} is the stationary distribution for the embedded jump process of the MRP,

� j(t) = μ−1
i

∫ ∞
0 min(u, t)[1 − Hj(u)]du, and �(t) ∼ ∫ t0 min(u, t)[1 − Gj j(u)]du/mj j ∼∑

i�i�i(t) where Gj j is the DF and mj j the mean of the generic return time Yj j of the
MRP between successive entries to the state j. These two variances are of similar order
for t→∞ only when each �i(t)/�(t) converges to some [0,∞]-valued constant, say, γi,
for t→∞.

Copyright © 2007 D. J. Daley et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

This paper is a sequel to Daley [1] which arose from wanting to decide whether the de-
tailed long-range dependent (LRD) behavior of a Cox process NCox directed by the ON
phases of a stationary ON/OFF alternating renewal process N is the same as the LRD
behavior of N . It was shown that both processes have the same Hurst index but that the
ratio varNCox(0, t]/varN(0, t] need not converge for t→∞.

Here, we examine the nature of these two variance functions for the case of a Cox pro-
cess whose instantaneous rate νi is determined by the state i∈ X, with X being countable
(sometimes it must be finite), of a LRD stationary Markov renewal process (MRP), of
which our earlier example of an alternating renewal process (ARP) is the simplest. MRPs
have long been an interest of Jeff Hunter (e.g., Hunter [2]), and it is a pleasure to con-
tribute this paper to a volume that marks his contributions to the academic community
both inside New Zealand and further afield where D. Daley in particular has enjoyed his
company many times since first meeting him in Chapel Hill, NC, and T. Rolski at Cornell
University.

In Section 2, we introduce the necessary notation and recall known results that are
relevant to the problem at hand. Section 3 develops formulae for univariate and bivariate
marginal probabilities for MRPs that take us into the realm of Markov renewal equations
which enable us to address the questions we raise when X is finite. We conclude in Sec-
tion 4 with remarks on the case where X is countably infinite. In the appendix, we prove
an asymptotic convergence result due originally, we believe, to Sgibnev [3].

2. The setting and known results

A Cox process NCox driven by the random measure ξ is a point process which, conditional
on the realization ξ, is a Poisson process with parameter measure ξ (e.g., Daley and Vere-
Jones [4, Section 6.2]). Then, when NCox and ξ are located in the half-line R+, for Borel
subsets A of R+,

E
[
NCox(A)

]= E
[
ξ(A)

]
, varNCox(A)= E

[
ξ(A)

]
+ varξ(A) (2.1)

[4, Proposition 6.2.II]. A stationary point process or random measure ξ on R is LRD
when

limsup
t→∞

varξ(0, t]
t

=∞ (2.2)

[4, Section 12.7], and its Hurst index H is defined by

H = inf
{
h : limsup

t→∞
varξ(0, t]

t2h
<∞

}
. (2.3)

It follows from (2.1) and (2.2) that a Cox process is LRD if and only if the random mea-
sure driving it is LRD, and that they both have the same Hurst index (this is Daley [1,
Proposition 1]).

We choose to describe a Markov renewal process (see, e.g., Çinlar [5] or Kulkarni [6]
for a textbook account) both in terms of the sequence {(Xn, Jn)} of successive intervals
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Xn between jumps of a Markov chain {Jn} on a countable state space X with one-step
transition probabilities (pi j , i, j ∈ X), and the X-valued semi-Markov process {J(t) : t ∈
R} which can be related via the time epochs Tn = T0 +X1 + ···+Xn subsequent to some
initial epoch T0, as Jn+1 = J(Tn+) and

J(t)= Jn
(
Tn−1 ≤ t < Tn, n= 1,2, . . .

)

=
∞∑

n=1

JnITn−1≤t<Tn(t).
(2.4)

We use the random measure

ξ(A)≡
∫

A
νJ(u)du, (2.5)

where {νi} is a family of nonnegative constants defined over X, as the driving measure
of the Cox process NCox that we consider. This means that if σi(0, t] is the (Lebesgue)
measure of that part of the interval (0, t] during which J(u)= i for i∈ X (mnemonically,
the sojourn time in i during (0, t]), then

ξ(0, t]=
∑

i∈X
νiσi(0, t]

(
t ∈R+

)
, (2.6)

and NCox consists of points evolving as a Poisson process at rate νi on the disjoint sets of
support of σi for i∈ X. Equation (2.1) shows that in order to evaluate the variance of the
Cox process, we must find

varξ(0, t]=
∑

i, j∈X
νiν j cov

(
σi(0, t],σj(0, t]

)
. (2.7)

When X is a finite set, the finiteness conditions we impose are automatically satisfied,
but for the sake of completeness, we allow the countably infinite case of X except where
we know of proof only in the finite case (see (2.20) and Section 4). For NCox to be well
defined, we want ξ(0, t] <∞ a.s. for finite t > 0, which is the case when ν≡∑i∈X νi�i <∞,
where for stationary J(·), we set

�i = Pr
{
J(t)= i

}= E
[
σi(0,1]

]
(all t). (2.8)

Then, E[ξ(0, t]] = νt for all t > 0. Assuming (as we must for the conditions of station-
arity to hold) that the chain {Jn} is irreducible and has a stationary distribution { p̌i}
(so p̌ j =

∑
i∈X p̌i pi j), this is related to the distribution {�i} via the mean holding times

μi =
∫∞

0 Hi(u)du = E(Xn | Jn = i) as at (2.9). When Fi j(t) = Pr{Xn ≤ t | Jn = i, Jn+1 = j},
the process of termination of sojourns in state i is governed by the (in general) dishonest
DFs Qij(t) = pi jFi j(t) but such that the holding time DFs Hi(t) =

∑
j Qi j(t) are honest.

We make the simplifying assumption that pii = 0 (all i).
Assume that the point process defined by such an MRP (i.e., the sequence of epochs

{Tn}) can and does exist in a stationary state; in which case, its intensity λ is given by
λ−1 =∑i∈X p̌iμi, and

�i = λp̌iμi = Pr
{
J(t)= i

}
(all t), (2.9)
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with the semi-Markov process J(·) here being stationary also. Since the rate of entry
epochs into state i equals λp̌i, it follows that the mean time mii between successive en-
tries into state i is given by

mii = 1
λp̌i

= μi
�i

(i∈ X). (2.10)

We assume that our MRP is irreducible (i.e., the Markov chain {Jn} is irreducible),
and therefore it can be studied via first passage distributions Gij(·) (it is here that the
assumption pii = 0 simplifies the discussion); define for every i ∈ X and j ∈ X except
j = i

Gji(t)= Pr
{

entry to i occurs in (0, t] | state j �= i entered at 0
}

,

Gii(t)= Pr
{

second entry to i occurs in (0, t] | state i entered at 0
}
.

(2.11)

Then, for example,

Gii(t)=
∑

k∈X\{i}
pik

∫ t

0
Fik(du)Gki(t−u)=

∑

k

(
Qik ∗Gki

)
(t), (2.12)

where our convention in writing the convolution (A∗ B)(t) of a nonnegative function
B(·) (like Gki) with respect to a measure A(·) (like Qik) is that (A∗B)(t)= ∫ t0 A(du)B(t−
u), or in vector algebra notation when A= (Aij(·)) and B= (Bij(·)) are compatible,

(
(A∗B)(t)

)
i j =

∑

k∈X

∫ t

0
Aik(du)Bk j(t−u). (2.13)

When we consider only the point process NMRP of epochs where entrances into states
occur, for which we should count the number of entries Ni into state i and therefore have
NMRP =

∑
i∈XNi, Sgibnev [7] has shown (under the condition of irreducibility) that there

is a solidarity result; it implies that m−2
ii varNi(0, t] ∼m−2

11 varN1(0, t] as t→∞ when the
number of visits to any one state has LRD behavior (and hence, that the point process
of visits to any other given state is LRD also, and moreover the asymptotic behavior of
the variance function m−2

ii varNi(0, t] is the same irrespective of the state i). Given this
solidarity property, it is seemingly extraordinary that the variance of the amount of time
spent in the various states need not have the same asymptotic behavior. The major aim
now in considering a Cox process directed by a stationary MRP is to show that this as-
ymptotic behavior is determined, as in the ARP case, by a linear mixture of integrals of
certain functions that are crucial in Sgibnev [3, 7] (see also Appendix A), namely,

�i(t)≡ 1
μi

∫∞

0
min(u, t)Hi(u)du. (2.14)

We also write H̃i(t)= (1/μi)
∫ t

0 Hi(u)du; this equals �′
i (t). Write ���(t) and H̃(t) for vectors

with components �i(t) and H̃i(t), respectively.
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Recall (2.7) writing alternatively

V(t)≡ varξ(0, t]=
∑

i, j∈X
2νiν j

∫ t

0
(t−u)

[
�ij(u)−�i�j

]
du, (2.15)

where�ij(u)= Pr{J(0+)= i, J(u)= j} for u > 0 (stationarity of J(·) is assumed as around
(2.9)). In terms of the distribution of J(·), only the uni- and bivariate distributions {�i}
and �ij(u) are involved in (2.15), and LRD behavior is therefore associated with the inte-
gral of �ij(u)−�i�j over large intervals. Since these bivariate probabilities are those of a
semi-Markov process, each �ij(·) has a representation as a convolution involving DFs of
lifetimes on the state space X, and this leads to renewal function representations and use
of asymptotics of renewal functions as we shall demonstrate.

Write Uij(t) = E(Nj[0, t] | state i entered at 0) = δi j +
∑

k∈X
∫ t

0 Qik(du)Ukj(t − u).
Then, Ui(x) =∑ j∈XUij(x) satisfies the same backwards equation with δi j and Ukj re-
placed by 1 and Uk. Writing Q= (Qij)i, j∈X, define

U= (Uij(t)
)
i, j∈X = I + Q + Q2∗ + ···

= I + Q∗U= I + U∗Q
(2.16)

(note that Uij(t) = E[Nj(0, t] | i entered at 0] for j �= i, while for j = i, since the Nj are
orderly, Ni[0, t] = 1 +Ni(0, t]). Since Ui = UT

i e, where Ui is the vector over j ∈ X of Uij

(all vectors are column vectors unless transposed as, e.g., UT
i ),

UMRP(t)= p̌TUe= E
(
NMRP[0, t] | jump at 0 of stationary J(·)). (2.17)

Now, substitute in the standard formula (e.g., Daley and Vere-Jones [4, page 62]) to give
varNMRP(0, t] for the stationary point process generated by the jumps of a stationary
MRP:

varNMRP(0, t]= λ
∫ t

0

(
2
[
UMRP(u)− λu

]− 1
)
du, (2.18)

where in terms of the respective vectors p̌ and μ of the stationary jump distribution { p̌i}
and mean sojourn times {μi} of the states i∈ X, 1/λ= p̌Tμ=∑i∈X p̌iμi as around (2.9).
The integrand at (2.18) has uniformly bounded increments because UMRP(t) ∼ λt (t →
∞) and it is subadditive (see Appendix B), like the renewal function (e.g., Daley and
Vere-Jones [4, Exercise 4.4.5(b)]).

Let Gkk be the return time DF for some given state k ∈ X. Sgibnev [7] showed that for
t→∞ and all other i, j ∈ X for the stationary irreducible LRD MRP,

mj jUi j(t)− t ∼�(t)= 1
mkk

∫∞

0
min(t,u)Gkk(u)du. (2.19)

Then from (2.17), at least for a finite state space X, it follows that

UMRP(t)− λt =
∑

i∈X

∑

j∈X
p̌i
(
Uij(t)− λp̌ j t

)∼
∑

i∈X

∑

j∈X
p̌i · λp̌ j ·�(t)= λ�(t), (2.20)
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and hence that

varNMRP(t)∼ 2λ2
∫ t

0
�(u)du. (2.21)

Whether (2.21) holds for countably infinite state space remains a question for another
place; the discussion in Section 4 is relevant to the nature of the return time distribution
Gkk in (2.19).

3. Recurrence relations for bivariate probabilities and asymptotics

In this section, we establish the result that extends the simpler conclusion of Daley [1]
from an alternating renewal process to a Markov renewal process on a finite state space X.
So far, we do not know the nature of any extension to the case that X is countably infinite.

Theorem 3.1. Let the Cox process NCox be driven by a long-range dependent random mea-
sure ξ(A)= ∫A νJ(u)du determined by a stationary semi-Markov process J(·) on a finite state
space X. Then, NCox has the same Hurst index as the Markov renewal process NMRP un-
derlying J(·). Both varNCox(0,x] and varNMRP(0,x] are asymptotically determined by the
holding time DFs {Hi(·) : i∈ X} in the MRP, at least one of which must have infinite second
moment. Under these conditions, for t→∞,

varNCox(0, t]∼ 2
∫ t

0

∑

i∈X

(
νi− ν

)2
�i�i(u)du, (3.1)

while varNMRP(0, t] is given by (2.21) in which

�(u)∼
∑

i∈X
�i�i(u) (u−→∞), (3.2)

where {�i} is the stationary distribution for J(·) and the truncated second moment functions
�i(·) and �(·) are given by (2.14) and (2.19).

In general, varNMRP(0, t] ∼ λ2
∫ t

0 �(u)du �∼ (const.)varNCox(0, t], but if for some j, all
the ratios �i(t)/� j(t) (i∈ X \ { j}) converge as t→∞ to limits in [0,∞], then

varNMRP(0, t]∼ (const.)varNCox(0, t] (t −→∞). (3.3)

Proof. If all holding time DFs Hi have finite second moments, then because X is finite, so
do all return time DFs Gkk, and the MRP cannot be LRD.

The last part of the theorem, given (3.1)–(3.2), is proved in the same way as the analo-
gous statement for the alternating renewal case, so for the rest, we concentrate on demon-
strating (3.1)–(3.2).

We develop expressions involving the bivariate probabilities �ij(t) (see around (2.15))
for the stationary irreducible semi-Markov process J(·). The variance function V(t) =
varξ(0, t] at (2.15) describes the variance of the Cox process via (2.1). Equation (2.15)
shows that V(·) is differentiable, with derivative

V ′(t)= d
dt

varξ(0, t]=
∑

i, j∈X
2νiν j

∫ t

0

[
�ij(u)−�i�j

]
du, (3.4)
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which is already simpler to evaluate than (2.15) itself. In particular, when ξ(·) is LRD,
V(t) is larger than O(t) for t→∞, so that when V ′(t)∼ g(t)→∞ as t→∞ for some g(·)
that is ultimately monotone, the asymptotic behavior of V(t) for large t is the same as for
∫ t

0 g(u)du.
For a stationary irreducible semi-Markov process J(·) on X as we are considering, the

joint distribution on X×X×R+ of the current state i, the state k next entered, and the
forward recurrence time x for that next entry, is determined by the density function

�iQik(x)dx
μi

(
i∈ X, k ∈ X \ {i}, 0 < x <∞). (3.5)

In (3.13), we use Q̃(t) to denote the array with elements (1/μi)
∫ t

0 Qij(u)du. Note that the

vector H̃(t) as below (2.14) satisfies H̃(t)= Q̃(t)e.
Define

Π j|i(t)=
∫ t

0
E
(
δj,J(u) | J(0+)= i

)
du, (3.6)

so that

E

[

δi,J(0)

∫ t

0
δj,J(u)du

]

= �iΠ j|i(t)=
∫ t

0
�ij(u)du. (3.7)

Setting Π(t)= (Π j|i(t))i, j∈X, it follows that (3.4) is expressible as

V ′(t)=
∑

i, j∈X
2νiν j

[
�i
(
Π j|i(t)−�jt

)]= 2νT diag(�)
(
Π(t)− e�Tt

)
ν. (3.8)

We now develop expressions for Π j|i in terms of the truncated second moment functions
at (2.14) and the related functions, discussed in Lemma 3.3,

Mij(t)= E

[∫ t

0
δj,J(u)du

∣
∣
∣ state i entered at 0

]

. (3.9)

Lemma 3.2

Π j|i(t)= δji�i(t) +
∑

k∈X

∫ t

0

Qik(v)
μi

Mk j(t− v)dv, (3.10a)

equivalently, with M(t)= (Mij(t))i, j∈X,

Π(t)= diag
(
���(t)

)
+ (Q̃∗M)(t). (3.10b)

Proof. For j �= i, we use the joint distribution at (3.5) and a backwards decomposition to
write

Π j|i(t)=
∑

k∈X

∫ t

0

Qik(x)
μi

dxMk j(t− x), (3.11)
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which is (3.10a) for j �= i. For j = i,

Πi|i(t)=
∑

k∈X
t
∫∞

t

Qik(x)
μi

dx+
∑

k∈X

∫ t

0

Qik(x)
μi

[x+Mki(t− x)]dx. (3.12)

Grouping terms according to whether they involve any Mki(·) or not leads to (3.10). �

Lemma 3.3 (Recurrence relations for Mij(·))

Mij(t)= δji

∫ t

0
Hi(u)du+

∑

k∈X

∫ t

0
Qik(du)Mkj(t−u) (i, j ∈ X), (3.13)

hence M(t)= diag(H̃(t))diag(μ) + (Q∗M)(t), so

Mij(t)=
(

U∗diag(H̃)diag(μ)(t)
)
i j =

∫ t

0
H j(u)Uij(t−u)du. (3.14)

Proof. Equation (3.13) is established by a standard backwards decomposition. The equa-
tion is written more usefully in the form of a generalized Markov renewal equation as
shown, from which the rest of the lemma follows. �

In the second term of (3.10b), substituting for M from (3.14) yields

(Q̃∗M)(t)= (Q̃∗U∗diag(H̃)
)
(t). (3.15)

Since Uij(t)≤ Uj j(t) for all t > 0 and all i, j ∈ X, a dominated convergence argument
involving Uij(t− u)/Uj j(t) in (3.14) implies that limt→∞Mij(t)/Uj j(t) =

∫∞
0 H j(u) du =

μj , and since Uj j(t)∼ λp̌ j t for t→∞, this implies, with (2.9), that

Mij(t)∼
(
λp̌ jμj

)
t = �jt (all i). (3.16)

The same arguments applied to (3.10a) show that Π j|i(t) ∼ �jt for every i so that
every element of Π(t)− e�Tt in (3.8) is at most o(t) for t →∞. We now find the exact
asymptotics of these elements.

The components of (Q̃∗M)(t) in (3.10b) can be written as

(
(Q̃∗M)(t)

)
i j =

∑

k∈X

∫ t

0

Qik(u)
μi

Mk j(t−u)du

=
∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du+

∑

k∈X

∫ t

0

Qik(u)
μi

�j(t−u)du.

(3.17)

The last term equals

�j

∫ t

0

Hi(u)
μi

(t−u)du= �j

∫∞

0

Hi(u)
μi

(t−u)+du. (3.18)
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Consequently, from (3.10a), Π j|i(t)−�jt equals

δji�i(t) +
∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du−�j

∫∞

0

Hi(u)
μi

(
t− (t−u)+

)
du,

(3.19)

and the last term equals �j�i(t); so finally

Π j|i(t)−�jt =
(
δji−�j

)
�i(t) +

∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du. (3.20)

In vector algebra notation, writing L(t)= t+, this reads

Π(t)− e�Tt = diag
(
���(t)

)−���(t)�T +
(

Q̃∗ (M− e�TL
))

(t). (3.21)

This is not quite of the form we want; the first two terms on the right-hand side are
expressed in terms of the truncated second moments of the sojourn time DFs Hi as at
(2.14); it remains to consider the last term. Start by using the expression below (3.13) in
writing

((
M− e�TL

)
(t)
)
i j

= ((U∗diag(H̃)diag(μ)
)
(t)
)
i j −�jt

=
∫ t

0
Uij(du)

∫ t−u

0
H j(v)dv−�jt

=
∫ t

0
Uij(u)H j(t−u)du−�jt

=
∫ t

0

[
Uij(u)− u

mj j

]
H j(t−u)du+

1
mj j

∫ t

0
(t− v)H j(v)dv−�jt

=
∫ t

0

[
Uij(u)− λp̌ ju

]
H j(t−u)du+

�j

μj

∫∞

0
(t− v)+H j(v)dv−�jt

∫∞

0

H j(v)

μj
dv

=
∫ t

0

[
Uij(u)− λp̌ ju

]
H j(t−u)du−�j� j(t).

(3.22)

By (2.19), the integral here ∼ μj�(t)/mj j = �j�(t), so

(
M− e�TL

)
(t)∼ e�T�(t)− e�T diag

(
���(t)

)
. (3.23)

But in (3.21), Q̃ is a stochastic kernel, so the last term there has this same asymptotic
behavior and

Π(t)− e�Tt ∼ diag
(
���(t)

)−���(t)�T + e�T
(

I�(t)−diag
(
���(t)

))
, (3.24)
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at least in the case of a finite state space X. Finally then (cf. (3.8)),

V ′(t)∼ 2
∑

i∈X

∑

j∈X
νiν j�i

(
δji�i(t) +�j

[−�i(t) + �(t)−� j(t)
])

= 2

(
∑

i∈X
ν2
i �i�i(t)− 2ν

∑

i

νi�i�i(t) + (ν)2�(t)

)

= 2
∑

i∈X
(νi− ν)2�i�i(t) + 2(ν)2

(

�(t)−
∑

i∈X
�i�i(t)

)

(t→∞).

(3.25)

This establishes (3.1) except for showing that the coefficient of (ν)2 vanishes asymptoti-
cally, that is, (3.2) holds.

Recall (see above (2.16)) the function Ui(x)= E(NMRP[0,x] | state i entered at 0). Just
as the functions Mij(·) satisfy generalized Markov renewal equations (see Lemma 3.3), so
too do the functions Ui(x)− λx. Using a backwards decomposition, we have

Ui(x)= 1 +
∑

k∈X

∫ x

0
Qik(du)Uk(x−u), (3.26)

and therefore

Ui(x)− λx = 1− λx+
∑

k∈X

∫ x

0
Qik(du)

[
Uk(x−u)− λ(x−u)

]
+ λ
∫ x

0
(x−u)Hi(du)

=
∑

k∈X

∫ x

0
Qik(du)

(
Uk(x−u)− λ(x−u)

)
+ 1− λx+ λ

∫ x

0
Hi(u)du

= 1− λμi + λ
∫∞

x
Hi(v)dv+

∑

k∈X

∫ x

0
Qik(du)

(
Uk(x−u)− λ(x−u)

)
.

(3.27)

Write Z(x) and z(x) for the vectors with respective components Ui(x)− λx and 1− λμi +
λ
∫∞
x Hi(v)dv (i∈ X). Then, Z= z + Q∗Z is a generalized Markov renewal equation, and

therefore it has solution (under the condition that it is unique, which is the case when X
is finite) Z(x)= (U∗ z)(x). In terms of the components, this gives

Ui(x)− λx =
∑

j∈X

∫ x

0
Uij(du)

[

1− λμj + λ
∫∞

x−u
H j(v)dv

]

=Ui(x)− λx−
∑

j∈X
λμj
[
Uij(x)− λp̌ jx

]
+ λ

∑

j∈X

∫ x

0
Uij(du)

∫∞

x−u
H j(v)dv,

(3.28)

that is,

∑

j∈X

λμj

mj j

(
mj jUi j(x)− x

)= λ
∑

j∈X

∫ x

0
Uij(du)

∫∞

x−u
H j(v)dv. (3.29)

Now, our MRP is LRD, so by (2.10) and Sgibnev’s [7] solidarity result quoted at (2.19),
the left-hand side here ∼∑ j λ�j�(x) = λ�(x). For the right-hand side, we can apply
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the asymptotic convergence lemma in Sgibnev [3] (see Appendix A), because Uij(x) ∼
x/mj j = λp̌ jx (x→∞), to deduce that the right-hand side of (3.29) ∼ λ2

∑
j∈X p̌ jμ j� j(x)

= λ
∑

j∈X�j� j(x); so (3.2) holds. �

In the setting in Daley [1] for the case of an alternating renewal process, we should have
in our general notation above that ν1 = 1 for the ON state, 1, say, and ν0 = 0 for the OFF
state, ν= � = �1 = E(X1)/E(Y), where Y = X1 +X0 is a generic cycle time, p̌0 = p̌1 = 1/2,
and �0 = 1−�. An ARP can be studied via cycle times (with generic duration Y), with
return time distribution G(x) = Pr{Y ≤ x} for which �(·) emerges naturally for (2.19)
and (3.2). The right-hand side of (3.1) equals (1−�)2��1(t) +�2(1−�)�0(t), so our
theorem above is consistent with Daley [1].

4. Discussion

Our proof of the asymptotic relation at (2.21) for the behavior of varNMRP(0, t] when
the MRP is LRD depends on Sgibnev’s [7] solidarity result and, lacking any uniform
convergence result over the state spaceX, it is confined to the case thatX is finite. Whether
or not a relation like (2.21) persists in the countable case is not clear. We indicate one
difficulty.

Consider a realization of our MRP. Let a “tour” consist of the successive states { jn}
visited on a path starting from j0 = k until a first return to k, consisting of say, Ntour

transitions in all, so jNtour = k and jn �= k for n= 1, . . . ,Ntour− 1; for such a path, represent
the first return time Ykk, with DF Gkk, and in self-evident notation, as

Ykk =
∑

{ jn}
X tour

jn, jn+1
=

Ntour−1∑

n=0

X tour
jn, jn+1

. (4.1)

Then, Ykk has infinite second moment if and only if either (or both) of some Xij and
Ntour has infinite second moment. For a Markov chain in discrete time, only the latter is
possible (because whenever pi j > 0, Xij = 1 a.s.). Trivially, a Markov chain in discrete time
is also a Markov renewal process, and thus, in a LRD MRP with all holding times being
equal to 1, say, a relation like (3.2) would be impossible because the left-hand side would
be infinite but the right-hand side would be finite.

Appendices

A. An asymptotic convergence lemma

The result given below is the essence of Sgibnev [3, Theorem 4], used to establish the
asymptotic behavior of the difference between a renewal function U(t) and its asymptote
λt when a generic lifetime r.v. has infinite second moment. Sgibnev’s proof assumes that
U(·) is a renewal function, but this is not needed in our proof below.

Lemma A.1. Let the nonnegative function z(x) (x > 0) be monotonic decreasing and such
that L(t) ≡ ∫ t0 z(u)du→∞ for t →∞. Let the monotonic increasing nonnegative function
U(t) have uniformly bounded increments U(x+ 1)−U(x)≤ K <∞ (all x > 0) and let it be
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asymptotically linear, so that U(t)∼ λt (t→∞) for some finite positive λ. Then,

L1(t)≡ (U ∗ z)(t)≡
∫ t

0
z(t−u)U(du)∼ λL(t) (t −→∞). (A.1)

Proof. Given ε > 0, the asymptotic linearity of U(·) implies that there exists finite positive
tε such that

∣
∣U(t)− λt

∣
∣≤ εt (

all t ≥ tε
)
. (A.2)

Write

L1(t)=
∫ t

0

[

z(t) +
∫ t

t−u

∣
∣dz(v)

∣
∣
]

U(du)

= [U(t)−U(0+)
]
z(t) +

∫ t

0

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣

= [U(t)−U(0+)
]
z(t) +

(∫ tε

0
+
∫ t

tε

)∫ t

0

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣

= [U(t)−U(0+)
]
z(t) +Aε(t) +

∫ t

tε

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣,

(A.3)

where 0 < Aε(t)≤ [z(0)− z(tε)]Ktε, uniformly in t. Then,

L1(t)−Aε(t)=U(t)z(tε)−U(0+)z(t)−
∫ t

tε
U(t− v)

∣
∣dz(v)

∣
∣. (A.4)

For t > 2tε, this integral equals (
∫ t−tε
tε +

∫ t
t−tε)U(t− v)|dz(v)|, in which the latter integral,

Bε(t), say, satisfies

0≤ Bε(t)≡
∫ t

t−tε
U(t− v)

∣
∣dz(v)

∣
∣≤U

(
tε
)
z
(
t− tε

)≤ (λ+ ε)tεz
(
t− tε

)
, (A.5)

which for a given ε is uniformly bounded, independently of t. The integral that remains
equals

∫ t−tε
tε U(t− v)|dz(v)| which by (A.1) is bounded above and below by

(λ± ε)
∫ t−tε

tε
(t− v)

∣
∣dz(v)

∣
∣= (λ± ε)

∫ t−tε

tε

∣
∣dz(v)

∣
∣
∫ t−v

0
dw

= (λ± ε)
∫ t−tε

0
dw
∫min(t−w,t−tε)

tε

∣
∣dz(v)

∣
∣

= (λ± ε)
∫ t−tε

0

[
z
(
tε
)− z

(
min

(
t−w, t− tε

))]
dw

= (λ± ε)
∫ t

tε

[
z
(
tε
)− z

(
min

(
w, t− tε

))]
dw.

(A.6)
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Using the upper bound, we can therefore write

L1(t)−Aε(t)−Bε(t) +U(0+)z(t)

<
[
U(t)− (λ+ ε)

(
t− tε

)]
z
(
tε
)

+ (λ+ ε)
∫ t

tε
z
(

min
(
w, t− tε

))
dw

≤ (λ+ ε)tεz
(
tε
)

+ (λ+ ε)
∫ t

tε
z
(

min
(
w, t− tε

))
dw,

(A.7)

in which the second inequality comes from (A.1) because t > tε. Divide each extreme of
this inequality by L(t), and observe that in the limit t→∞, the only term on the left-hand
side that does not vanish is L1(t)/L(t), while the right-hand side (after division) converges
to λ+ ε. It then follows that, because ε is arbitrary, limsupt→∞L1(t)/L(t)≤ λ.

Using the lower bound at (A.6) leads instead to

L1(t)−Aε(t)−Bε(t) +U(0+)z(t)≥ (λ− ε)tεz(tε) + (λ− ε)
∫ t

tε
z
(

min(w, t− tε)
)
dw,

(A.8)

and a similar argument as in using the upper bound gives liminf t→∞L1(t)/L(t)≥ λ. �

B. Subadditivity of the renewal function UMRP(·)

Lemma B.1. The renewal function UMRP(·) defined on jump epochs of a stationary MRP is
subadditive.

Proof. For a stationary MRP on state space X, recall the Palm expectations (see around
(2.16) and (3.26) above)

Ui(x)= E
(
NMRP[0,x] | state i entered at 0

)=
∑

j

Ui j(x), (B.1)

UMRP(x)=
∑

i

p̌iUi(x). (B.2)

For a stationary MRP, the stationary distribution { p̌i} for the embedded jump process
{Jn} satisfies both p̌ j =

∑
i∈X p̌i pi j and the equation for the state probability at the epoch

of the first jump after any fixed time interval thereafter, that is, the semi-Markov process
J(t) satisfies p̌k = Pr{first jump of J(x+ t) in t > 0 is to k | J(·) has jump at 0}, namely,

p̌k =
∑

i

p̌i
∑

j

∫ x

0
Uij(du)H j(x−u)

∫∞

0

Qjk(x−u+ dz)

H j(x−u)
=
∑

i

p̌i
∑

j

∫ x

0
Uij(du)

∫∞

x−u
Qjk(dz).

(B.3)
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Now,

Ui(x+ y)−Ui(x)= E
(
N(x,x+ y] | state i entered at 0

)

=
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(x+ y−u− z)

≤
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(y),

(B.4)

because every Ui(·) is nondecreasing and every Qjk(·) is a measure, and then, again be-
cause every Qjk(·) is a measure and using (B.2), UMRP(x+ y)−UMRP(x) equals

∑

i

p̌i
[
Ui(x+ y)−Ui(x)

]≤
∑

i

p̌i
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(y)

≤
∑

k

Uk(y)
∑

i

p̌i
∑

j

∫ x

0
Uij(du)

∫∞

x−u
Qjk(dz)

=
∑

k

Uk(y) p̌k =UMRP(y).

(B.5)

�
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