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1. Introduction

Cluster analysis is a statistical tool to classify a set of objects into groups so that objects
within a group are “similar” and objects in different groups are “dissimilar.” The purpose
of clustering is to discover “natural” structure hidden in a data set. Regression clustering
technique is often used to classify the data and recover the underlying structure, when
the data set is believed to be a random sample from a population comprising of a fixed,
but unknown, number of subpopulations, each of which is characterized by a distinct
regression model. Regression clustering is one of the most commonly used model-based
clustering techniques. It has been studied by Bock [1], Quandt and Ramsey [2], and Späth
[3] among others, and has applications in a variety of disciplines, for example, in market
segmentation by DeSarbo and Cron [4] and quality control systems by Lou et al. [5].

A fundamental problem, as well as a preliminary step in regression clustering, is to
determine the underlying “true” number of regression models in a data set. Shao and Wu
[6] proposed an information-based criterion (named criterion “LS-C” in the sequel) to
tackle this problem. The limiting behavior of LS-C is given in their paper.

However, it is well known that the least squares (LS) method is very sensitive to outliers
and violation of the normality assumption of the data. This instability also exists in the
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LS-based procedures for both selecting the number of regression models and classifying
the data in the context of regression clustering.

During the past three decades, numerous efforts have been made for developing ro-
bust statistical procedures for statistical inferences. Among them, procedures based on
M-estimators, which are maximum likelihood-type estimators (Hampel et al. [7] and
Huber [8]), play an important role. The M-estimation-based model selection criteria are
considered by Konishi and Kitagawa [9], Machado [10], and Wu and Zen [11] among
others.

To overcome the instability of the LS-based procedures in regression clustering, we
propose an M-estimation-based procedure for determining the number of regression
models, which is an extension of M-estimation-based information criterion for linear
model selection developed by Wu and Zen [11]. Its asymptotic behavior will be investi-
gated.

The structure of this paper is arranged as follows. In Section 2, we build a probabilistic
framework for our problem and introduce some notations used in this paper. Section 3
lists all the assumptions needed for our study. In Section 4, we study the limiting behavior
of the proposed criterion. Some ancillary results required for our proofs are presented in
the appendix.

2. Notation and preliminaries

We consider the clustering problem for n objects �(n) = {1, . . . ,n}, where for each object

j, (x j , yj) has been recorded, where x j = (x(1)
j , . . . ,x

(p)
j )′ ∈Rp is a nonrandom explanatory

p-vector and yj ∈R is a random response variable. The set of these n objects is a random
sample from a structured population as specified below.

Suppose that there exists an underlying partition Π(n)
k0
= {�(n)

1 , . . . ,�(n)
k0
} for these n ob-

jects, and each component �(n)
i � {i1, . . . , ini} ⊆ �(n) is characterized by a linear regression

model:

yj,�i = x′j,�i
β0i + ej,�i , j = i1, . . . , ini , (2.1)

where ni = |�i| is the number of observations in the ith component �i, i= 1, . . . ,k0, and
∑k0

i=1ni = n. Note that �i and �(n)
i are used interchangeably to denote the ith component

of the underlying partition Π(n)
k0

. (x j,�i , yj,�i) ( j = i1, . . . , ini , i= 1, . . . ,k0) is a relabeled ob-
servation (x j , yj) ( j = 1, . . . ,n) to represent the jth object in the ith component �i of

the true partition Π(n)
k0

. We will use this double-index notation for any object (x j , yj)
throughout this paper to identify the component to which it belongs. β0i ∈ Rp are k0

pairwise distinct p-vectors of unknown regression parameters, and ej,�i , j = i1, . . . , ini , are
independently and identically distributed random errors for i= 1, . . . ,k0.

However, this underlying structure (2.1) is not observable. What we observe is just a
random sample of n objects with the data values (x j , yj) for each of the p + 1 variables
associated with each object. Our task is then to reconstruct the hidden structure (2.1)
from the observed data by first estimating the number of regression models k0 and then
classifying the data and estimating the regression parameters in each regression model
accordingly.
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Consider any possible classification of these n objects: Π(n)
k = {�(n)

1 , . . . ,�(n)
k }, where

k ≤ K is a positive integer. For this partitioning, we fit k M-estimator-based linear regres-

sion models and obtain kM-estimates β̂s, s = 1, . . . ,k, separately. Then the M-estimator-
based criterion for estimating the number of regression models is given as follows: let
q(k) be a strictly increasing function of k and let An be a sequence of constants. We define

Rn
(
Π(n)
k

)=
k∑

s=1

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)

+ q(k)An, (2.2)

where ρ is a convex discrepancy function. As an example, ρ can be chosen as Huber’s
discrepancy function

ρc(t)=

⎧
⎪⎪⎨

⎪⎪⎩

1
2
t2, |t| < c,

c|t|− 1
2
c2, |t| ≥ c.

(2.3)

Also, in (2.2),
∑

j∈�s
stands for the summation made over all the observations in the class

�s and β̂s is the M-estimator in the sth class such that
∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)=min

βs

∑

j∈�s

ρ
(
yj,�s − x′j,�s

βs
)
. (2.4)

Again, �s and �(n)
s are used interchangeably in the above equations to denote the sth class

in the partition Π(n)
k . We will continue this convenient usage without further explanation

in the sequel. It can be seen that in (2.2), the first term is a generalization of a minimum
negative log-likelihood function and the second term is the penalty for over-fitting.

Then the estimate of the underlying number of regression models k0, k̂n is obtained by
minimizing the criterion (2.2), that is,

k̂n = arg min
1≤k≤K

min
Π(n)
k

Rn
(
Π(n)
k

)
. (2.5)

We will call this criterion MR-C, which stands for the M-estimator-based regression clus-
tering. Moreover, criterion MR-C in (2.5) shows that it actually determines the optimal
number of regression models and the associated partitioning simultaneously.

3. Assumptions

Let �l = {l1, . . . , lnl} be any component or a subset of a component associated with the

underlying true partition Π(n)
k0

of �(n), and nl = |�l|. If we let Xnl = (xl1,�l , . . . ,xlnl ,�l)
′ be

the design matrix in �l, then Wnl = X ′nlXnl , d2
nl =max1≤ j≤nl x′j,�l

W−1
nl x j,�l .

To facilitate the study on the limiting behavior of the criterion MR-C, we need the
following assumptions.

(A) For the true partition Π(n)
k0
= {�1, . . . ,�k0} and ni = |�i|, there exists a fixed con-

stant a0 > 0 such that

a0n≤ ni ≤ n ∀i= 1, . . . ,k0. (3.1)
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Remark 3.1. This assumption is equivalent to the explicit assumption that the population
comprises k0 subpopulations with proportions π1, . . . ,πk0 where 0 < πi < 1, i = 1, . . . ,k0,
∑k0

i=1πi = 1. Then a0 =min1≤i≤k0 πi would satisfy (3.1).

(B1) ρ(·) is a convex function on R1.
(B2) E[ρ(ej,�i)] is finite for all j ∈ �i and i= 1, . . . ,k0.
(B3) For any β and observations in �l,

liminf
nl→∞

1
nl

∑

j∈�l

E
[
ρ
(
ej,�l − x′j,�l

β
)− ρ(ej,�l

)]≥ g(β), (3.2)

where g(·) is a nonnegative convex function and is strictly convex in a neighborhood of
0.

If ρ has a first-order derivative, in order to find M-estimator of βs in the sth-class,
one may first find all first-order partial derivatives of

∑
j∈�s

ρ(yj,�s − x′j,�s
βs) and then

set them to be equal to zeros. The simultaneous solutions of these equations give the M-
estimator of βs. However in some cases, ρ does not have a first-order derivative. Note that
for any convex function, it always has subgradients, which are just partial derivatives if
they do exist (see Rockafellar [12]). Let ψ(·) be any choice of the subgradient of ρ(·) and
denote by � the set of discontinuity points of ψ, which is the same for all choices of ψ.

(C1) The common distribution function F of ej,�i , j ∈ �i, is unimodal and satisfies
F(�)= 0. E[ψ(ej,�i)]= 0, E[ψ2(ej,�i)]= σ2

i <∞ for any i= 1, . . . ,k0, and

E
[
ψ
(
ej,�i +u

)]= aiu+ o
(|u|), as u−→ 0, (3.3)

where ai, i= 1, . . . ,k0, are finite positive constants.
(C2) There exist positive constants ζ and h0 such that for any h∈ [0,h0] and any u,

ψ(u+h)−ψ(u)≤ ζ. (3.4)

(C3) The moment generating function Mi(t) = E[exp{tψ(ej,�i)}] exists for |t| ≤ Δ,
where i= 1, . . . ,k0.

(C4) E[|ψ(ej,�i)|3] <∞, j ∈ �i, i= 1, . . . ,k0.
Denote the eigenvalues of a symmetric matrix B of order p by λ1(B)≥ ··· ≥ λp(B).
(X) There are constants a1 and a2 such that

0 < a1nl ≤ λp
(
Wnl

)≤ λ1
(
Wnl

)≤ a2nl for large enough nl. (3.5)

The following three assumptions are on dnl . Recall that d2
nl =max1≤ j≤nl x′j,�l

W−1
nl x j,�l .

(X1) dnl(loglognl)1/2 → 0 as nl →∞.
(X2) dnl(lognl)1+ι =O(1), where ι > 0 is a constant.
(X3) When nl is large enough, there exists a constant ω > 0 such that dnl ≤ ωnl−1/2.

Remark 3.2. Assumptions (X) and (X1)–(X3) describe essentially the behavior of the
explanatory variables. Assumptions (X1)–(X3) are imposed so that dnl converges to 0 at
certain rates. It can be seen that Assumption (X) is satisfied almost surely if xi, i= 1,2, . . . ,
are independently and identically distributed observations of a random vector X with
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strictly positive definite covariance matrix. If we further assume that |X| is finite, then
(X1)–(X3) are met almost surely.

(Z) The sequence {An} satisfies

An
n
−→ 0,

An
loglogn

−→∞. (3.6)

Excluding Assumption (A), all other assumptions are ordinarily used in the study of
limiting behavior of an M-estimator. The only difference is that we now require them to
hold in any sth-class, 1≤ s≤ k.

4. Limiting behavior of the criterion MR-C

Suppose that (B1)–(B3), (C1)–(C3), (X), (X1), and (Z) hold.
Let Π(n)

k0
be the true underlying partition of the n objects with the model structure

(2.1). Observe that the true partition Π(n)
k0

is a sequence of naturally nested classifications
as n increases, that is,

�(n)
i ⊆ �(n+1)

i , i= 1, . . . ,k0, for large n. (4.1)

Consider a given sequence of classifications with k clusters Π(n)
k = {�(n)

1 , . . . ,�(n)
k } of

�(n) such that

�(n)
s ⊆�(n+1)

s , s= 1, . . . ,k, for large n, (4.2)

when n increases. For simplicity, when no confusion appears, nwill be suppressed inΠ(n)
k0

,

Π(n)
k , �(n)

i , 1≤ i≤ k0, and �(n)
s , 1≤ s≤ k.

Consider the following two cases.

Case 1. k0 < k < K , where K <∞ is a fixed constant:

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)−

k0∑

i=1

∑

j∈�i

ρ
(
yj,�i − x′j,�i

β̂0i

)
+
(
q(k)− q(k0

))
An,

(4.3)

where

β̂s = argmin
β

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β
)
, (4.4)

β̂0i = argmin
β

∑

j∈�i

ρ
(
yj,�i − x′j,�i

β
)
. (4.5)

Since we have k0 < k < K <∞, the number of possible intersection sets �s ∩�i is finite,
and

�(n) =∪k0
i=1�i =∪k

s=1�s =∪k
s=1∪k0

i=1

(
�s∩�i

)
. (4.6)
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Hence

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0i

)]
+
(
q(k)− q(k0

))
An

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An,

(4.7)

where β̂0si is the M-estimator defined by

β̂0si = argmin
β

∑

j∈�s∩�i

ρ
(
yj,�s∩�i − x′j,�s∩�i

β
)
. (4.8)

By (4.4) and (4.8), we have

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]≥ 0. (4.9)

By (A.3) of Lemma A.2, (4.5), (4.8), and the fact that �s∩�i is a subset of the true class
�i, we have that

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(ej,�s∩�i

)]=O(loglogn),

k0∑

i=1

∑

j∈�i

[
ρ
(
yj,�i − x′j,�i

β̂0i

)− ρ(ej,�i

)]=O(loglogn).

(4.10)

Note that
⋃k
s=1

⋃
i∈k0

⋃
j∈�s∩�i

{ej,�s∩�i} is the same as
⋃k0
i=1

⋃
j∈�i
{ej,�i}. Hence we have

that

k0∑

i=1

∑

j∈�i

ρ
(
ej,�i

)≡
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

ρ
(
ej,�s∩�i

)
. (4.11)
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We further have

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(ej,�s∩�i

)]

−
k0∑

i=1

∑

j∈�i

[
ρ
(
yj,�i − x′j,�i

β̂0i

)− ρ(ej,�i

)]=O(loglogn).

(4.12)

Therefore, by (4.9), (4.12), Assumption (Z), and the fact that q(k)− q(k0) > 0, we obtain
that

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)
> 0, a.s. (4.13)

for n large enough.

Case 2. k < k0.
By [6, Lemma 3.1] for any partition Π(n)

k = {�1, . . . ,�k} of �(n), there exist one class in

Π(n)
k and two distinct components in the true partitionΠ(n)

k0
= {�1, . . . ,�k0}, say �1 ∈Π(n)

k

and �1,�2 ∈Π(n)
k0

such that

b0n <
∣
∣�1∩�1

∣
∣ < n, b0n <

∣
∣�1∩�2

∣
∣ < n, (4.14)

where b0 = a0/k0 > 0 is a constant.

Let d0 =min1≤i =l≤k0 |β0i−β0l|. Then d0 > 0 is a fixed constant. Consider

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)
,

∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̂1

)
, (4.15)

where β̂1 is the M-estimator in �1 defined in (4.4) with s = 1. Then in view of the con-
vexity of ρ(·), by (4.4), (4.14), and the fact that β01, β02 are two distinct underlying true
parameter vectors in the model structure (2.1), at least one of the following two inequal-
ities must hold:

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)

>
∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃
) ∀β̃ :

∣
∣β̃−β01

∣
∣≤ d0

4
,

(4.16)

∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̂1

)

>
∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̃
)
, ∀β̃ :

∣
∣β̃−β02

∣
∣≤ d0

4
.

(4.17)
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Without loss of generality, we assume that (4.16) holds. Now let us focus our discussion
on the set �1 ∩�1. Let n11 = |�1 ∩�1| be the number of objects in the set �1 ∩�1. We
intend to find the order of

∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)] def= T (4.18)

in terms of n as n increases to infinity. In the above expression for T , β̂01 is the M-

estimator in �1 defined in (4.5) with i= 1 and β̂011 is the M-estimator in �1∩�1 defined
as follows:

β̂011 = argmin
β

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β
)
. (4.19)

�1 ∩ �1 is a subset of �1 ∈ Π(n)
k0

which is the underlying true classification of �(n). By

(A.4), Lemma A.2, with probability one, |β̂011 − β01| < d0/4 for n11 large enough, where

β̂011 is defined in (4.19). Let D
def= {β̃ : |β̃−β01| = d0/4}. Then by (4.16), it is certain that

there exists a point β̃D ∈D such that

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)
>

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)
. (4.20)

Hence

T >
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)− ρ(yj,�1∩�1 − x′j,�1∩�1

β̂011

)]

=
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)−E

(
ρ
(
ej,�1∩�1

))]

−
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂011

)−E
(
ρ
(
ej,�1∩�1

))] def= T1 +T2.

(4.21)

By (A.6), Lemma A.3, there exists a constant δ > 0 such that

T1 ≥ δn11 + o
(
n11
)
, a.s. (4.22)

Write T2 = T21 +T22 with

T21 =
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂011

)− ρ(ej,�1∩�1

)]
,

T22 =
∑

j∈�1∩�1

[
ρ
(
ej,�1∩�1

)−E
(
ρ
(
ej,�1∩�1

))]
.

(4.23)

By (A.3), Lemma A.2, and (4.2), we have

T21 =O
(

loglogn11
)
, a.s. (4.24)
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By (B2), (4.2), and the strong law of large numbers, we obtain

T22 = o
(
n11
)
, a.s. (4.25)

Hence, by (4.24) and (4.25), we have

T2 = o
(
n11
)
, a.s. (4.26)

In view of (4.21), (4.22), and (4.26), it follows that

∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)]
> δn11 + o

(
n11
)
, a.s.

(4.27)

By (4.9), we can express our object function as follows:

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An

≥
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An,

(4.28)

where β̂s, 1≤ s≤ k, and β̂0i, 1≤ i≤ k0, are defined in (4.4) and (4.5). By the same argu-
ment as used in Case 1, we have

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

=O(loglogn)= o(n).

(4.29)

Therefore, by (3.6), (4.14), (4.27), and (4.29), we have

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

> δn11 + o
(
n11
)

+ o(n) +
[
q(k)− q(k0

)]
An

≥ δb0n+ o(n) +
[
q(k)− q(k0

)]
An > 0, a.s.

(4.30)

for n large enough.
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Table 5.1. Parameter values used in the simulation study of regression clustering.

Case k0 Regression coefficients No. of obs.

1 1 β0 =
(

1
6

)
n= 120

2 2 β01 =
(

20
9

)
, β02 =

(
1
6

) n1 = 70

n2 = 50

3 3 β01 =
(

30
9

)
, β02 =

(
12
8

)
, β03 =

(
−2
9

) n1 = 35

n2 = 35

n3 = 50

Therefore, combining the results from (4.13) in Case 1 and (4.30) in Case 2, we have
showed that the true classification is attained when n increases to infinity.

Remark 4.1. In the above discussion, the set of the conditions (B1)–(B3), (C1)–(C3), (X),
(X1), and (Z) can be replaced by any set of the following conditions:

(a) (A), (B1)–(B3), (C1)-(C2), (C4), (X), (X2), and (Z);
(b) (A), (B1)-(B2), (C1)-(C2), (C4), (X), (X3), and (Z);
(c) (A), (B1)-(B2), (C1)–(C3), (X), (X3), and (Z).

Remark 4.2. Hannan and Quinn [13] show that An = c loglogn is sufficient for strong
consistency in a classical estimation procedure for the order of an autoregression. By
computing the upper bound in our proofs carefully, we can show that An = c loglogn
also works here.

Remark 4.3. The above study is not feasible when all possible classifications are consid-
ered simultaneously. For simplicity, we consider the quadratic ρ function, that is, ρ(t)=
t2. Let Dn = {all nonempty subsets of �}, then for any l ∈ {1,2, . . . , p},

max
d∈Dn

∣
∣
∣
∣
∣

∑

j∈d
x(l)
j e j

∣
∣
∣
∣
∣
≥max

(
∑

j:x(l)
j e j>0

x(l)
j e j ,

∑

j:x(l)
j e j<0

(− x(l)
j e j

)
)

≥ 1
2

n∑

j=1

∣
∣
∣x(l)

j e j
∣
∣
∣. (4.31)

Note that in general,
∑n

j=1 |x(l)
j e j| =O(n) for any l ∈ {1,2, . . . , p}. Hence the key equation

(A.2), Lemma A.2 does not hold uniformly for all possible subsets of �= {1,2, . . . ,n}.

5. A simulation study

In this section, we present a simulation study for the finite sample performance of the
criterion MR-C. In this simulation, q(k) = 3k(p + 3), where p is the known number of
regression coefficients in the model structure (2.1) and k is the number of clusters we
consider. Since limt→0[(logn)t − 1]/t = loglogn holds, by Remark 4.2 in Section 4, we let

A(i)
n = (1/λi)((logn)λi)− 1, with λ1 = 1.6, λ2 = 1.8, λ3 = 2.0, and λ4 = 2.2 employed in the

simulation.
We consider one cluster, two cluster and three cluster cases, respectively. In all cases,

the covariate is generated fromN(0,1). The parameter values used for each case are given
in Table 5.1. N(0,1) and Cauchy(0, 1) random error terms are used to generate the data
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Figure 5.1. Plots of simulated data for one homogeneous cluster.
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Figure 5.2. Plots of simulated data for two separated linear patterns.

for each of the above three cases, respectively. Therefore, in all, we actually consider six
models. We use a shorthand notation to identify them:

(i) N1C1 (C1C1) Case 1, one single line, normal (Cauchy) errors;
(ii) N1C2 (C1C2) Case 2, two separated lines, normal (Cauchy) errors;

(iii) N1C3 (C1C3) Case 3, three separated lines, normal (Cauchy) errors.
The ρ functions we employed for M-estimator are (1) ρ1(u) = u2 (LS); (2) ρ2(u) =

0.5u2 if |u| ≤ 1.345 and ρ2(u)= 1.345|u| − 0.5× 1.3452 otherwise (Huber ρ). When ρ is
the quadratic discrepancy function, MR-C coincides with LS-C. In the following, MR-
C stands for the M-estimator-based regression clustering procedure with Huber’s ρ. In
order to keep the same scale between LS-C and MR-C, the actual LS-C implemented
in this simulation study is to minimize

∑k
s=1

∑
j∈�s

(yj,�s − x′j,�s
β̂s)

2/2 + q(k)An over all
possible partitions. It is clear that this slight modification does not affect the asymptotic
property of LS-C.

Figures 5.1, 5.2, and 5.3 give us an intuitive idea of what the data look like for Cases
1, 2, and 3 with N(0,1) and Cauchy(0, 1) errors, respectively. These figures show that the
groupings of linear patterns are quite apparent and clear in each case for the normal error
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Figure 5.3. Plots of simulated data for three separated linear patterns.

Table 5.2. Relative frequencies of selecting k based on 500 simulations (Case 1).

ej ∼ N(0,1), N1C1

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C1

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.588 0.772 0.860 0.926

k = 2 0.160 0.170 0.186 0.216 0.150 0.076 0.042 0.010

k = 3 0.368 0.392 0.412 0.432 0.130 0.078 0.054 0.042

k = 4 0.472 0.438 0.402 0.352 0.132 0.074 0.044 0.022
† The true number of clusters k0 = 1.

models while there are some outliers far away from the whole pattern for each case with
Cauchy errors.

For each of the aforementioned six models, we generate the data by the model struc-
ture (2.1), we then use LS-C and MR-C to select the number of clusters and classify the
data. This process is then repeated 500 times separately. To reduce the computation bur-
den, we only fit models with possible numbers of clusters as 1, 2, 3, 4 when the true
number of clusters k0 is 1 or 2; and we only consider possible cluster size of 1, 2, 3, 4, and
5, when k0 is 3.

In the simulation study, LS-C and MR-C are used to select the best k, respectively.
Tables 5.2, 5.3, and 5.4 display the relative frequencies of selecting k for each of the six
models using LS-C and MR-C separately. It is apparent that both Huber ρ and LS func-
tions perform extremely well for these models with normal errors. However, as shown in
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Table 5.3. Relative frequencies of selecting k based on 500 simulations (Case 2).

ej ∼ N(0,1), N1C2

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C2

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.086 0.088 0.098 0.114 0.898 0.924 0.956 0.970

k = 3 0.278 0.294 0.318 0.346 0.054 0.036 0.022 0.018

k = 4 0.636 0.618 0.584 0.540 0.048 0.040 0.022 0.012
† The true number of clusters k0 = 2.

Table 5.4. Relative frequencies of selecting k based on 500 simulations (Case 3).

ej ∼ N(0,1), N1C3

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C3

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.052 0.052 0.052 0.052 0.000 0.000 0.000 0.000

k = 3 0.148 0.174 0.196 0.214 0.932 0.950 0.958 0.972

k = 4 0.370 0.382 0.396 0.394 0.056 0.040 0.034 0.022

k = 5 0.430 0.392 0.356 0.340 0.012 0.010 0.008 0.006
† The true number of clusters k0 = 3.

these tables, in contrast to the nearly perfect performance of both criteria in the normal
error models, when the random errors used to generate the data in each case are from
Cauchy(0, 1), MR-C with Huber ρ function still selects the underlying true numbers of
clusters with promising high proportions of correctness while LS-C loses the power of
detecting the underlying numbers of clusters significantly.
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Appendix

Let �l be any component or a subset of a component of the underlying true partition

Π(n)
k0
= {�(n)

1 , . . . ,�(n)
k0
} of the n objects �(n). Let nl = |�l|. The following lemmas hold in �l

and can be proved similarly as by Wu and Zen [11].

Lemma A.1. Suppose that (B1), (C1)-(C2), (X), and (X1) hold. Then,

1
nl

∑

j∈�l

[
γj −E

(
γj
)]−→ 0, a.s., (A.1)

where γj = ρ(yj,�l − x′j,�l
β)− ρ(ej,�l) + x′j,�l

(β−β0l)ψ(ej,�l) if |β−β0l| > 0.

Lemma A.2. Suppose that the Assumptions (B1)–(B3), (C1)–(C3), (X), and (X1) hold.
Then

∑

j∈�l

x j,�l ψ
(
ej,�l

)=O
((
nl loglognl

)1/2
)

, a.s. (A.2)

∑

j∈�l

[
ρ
(
yj,�l − x′j,�l

β̂0l

)− ρ(ej,�l

)]=O( loglognl
)
, a.s. (A.3)

β̂0l = β0l +O
((

loglognl/nl
)1/2

)
, a.s., (A.4)

where

β̂0l = argmin
β

∑

j∈�l

ρ
(
yj,�l − x′j,�l

β
)
. (A.5)

Lemma A.3. Suppose that the Assumptions (B1), (B2), (B3), (C2), (X), and (X1) hold. Then
there exists a constant δ > 0 such that

∑

j∈�l

[
ρ
(
yj,�l − x′j,�l

β∗
)−E

(
ρ
(
ej,�l

))]≥ δnl + o
(
nl
)
, a.s. (A.6)

holds for all β∗ ∈� and nl large enough, where � is defined in the preceding lemma.

Acknowledgments

The authors would like to thank the referees for comments and suggestions that improved
the presentation of this paper. The research was partially supported by the Natural Sci-
ences and Engineering Research Council of Canada.



C. R. Rao et al. 15

References

[1] H.-H. Bock, “Probability models and hypotheses testing in partitioning cluster analysis,” in Clus-
tering and Classification, P. Arabie, L. J. Hubert, and G. De Soete, Eds., pp. 377–453, World Sci-
entific, River Edge, NJ, USA, 1996.

[2] R. E. Quandt and J. B. Ramsey, “Estimating mixtures of normal distributions and switching
regressions,” Journal of the American Statistical Association, vol. 73, no. 364, pp. 730–752, 1978.
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