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We consider the problem of minimizing a convex separable logarithmic function over a
region defined by a convex inequality constraint or linear equality constraint, and two-
sided bounds on the variables (box constraints). Such problems are interesting from both
theoretical and practical point of view because they arise in some mathematical program-
ming problems as well as in various practical problems such as problems of production
planning and scheduling, allocation of resources, decision making, facility location prob-
lems, and so forth. Polynomial algorithms are proposed for solving problems of this form
and their convergence is proved. Some examples and results of numerical experiments are
also presented.
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1. Introduction

Consider the following problem of minimizing a convex separable logarithmic function
subject to a strictly convex inequality constraint and bounded variables:
(CSL)

min

{
c(x)≡

∑
j∈J

c j
(
xj
)≡∑

j∈J

(− s j lnmjxj
)}

(1.1)

subject to

∑
j∈J

d j
(
xj
)≡∑

j∈J
d jx

p
j ≤ α, (1.2)

aj ≤ xj ≤ bj , j ∈ J , (1.3)

where s j > 0,mj > 0, xj > 0, d′j(xj) > 0, j ∈ J , p ≥ 1, x=(xj) j∈J , and J
def= {1, . . . ,n}.

Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2006, Article ID 89307, Pages 1–19
DOI 10.1155/JAMDS/2006/89307

http://dx.doi.org/10.1155/S1173912606893077
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Since c′′j (xj) = s j /x
2
j > 0, then cj(xj), j ∈ J , are convex functions defined for xj > 0,

mj > 0, j ∈ J , and since c′j(xj)=−s j /xj < 0 under the assumptions, then functions cj(xj),
j ∈ J , are decreasing.

As it is known, dj(xj)= djx
p
j , j ∈ J , are convex functions with dj ≥ 0, p ≥ 1 and xj ≥ 0,

and strictly convex functions for dj > 0, p > 1 and xj > 0. Since d′j(xj)= pdjx
p−1
j and since

dj ≥ 0, p ≥ 1, then the requirement d′j(xj) > 0 becomes dj > 0, xj > 0, j ∈ J . In particular,
since xj > 0, j ∈ J , then aj > 0, bj > 0, j ∈ J .

Similarly, consider the problem of minimizing a convex separable logarithmic function
subject to a linear equality constraint and bounded variables:
(CSLE)

min

{
c(x)≡

∑
j∈J

c j
(
xj
)≡∑

j∈J

(
− s j ln

(
1 +mjxj

))}
(1.4)

subject to

∑
j∈J

d jxj = α, (1.5)

aj ≤ xj ≤ bj , j ∈ J , (1.6)

where s j > 0, mj > 0, dj > 0, xj > −1/mj , j ∈ J . Using that c′′j (xj) = s jm
2
j /(1 +

mjxj)2 > 0, it follows that cj(xj) are strictly convex functions. Since c′j(xj) =
−s jmj/(1 + mjxj) < 0 under the assumptions, then functions cj(xj), j ∈ J , are
decreasing.

Problems (CSL) and (CSLE) are convex separable programming problems because the
objective functions and constraint functions are convex (or strictly convex), and separa-
ble, that is, these functions can be expressed as the sums of single-variable functions.

It turns out that some problems, arising in production planning and scheduling, in
allocation of resources [2, 6, 7, 14], in decision making [2, 7, 10, 12, 14], in the theory
of search, in subgradient optimization, in facility location [10, 12, 13], and so forth, can
be described mathematically by using problems like (CSL) and (CSLE), defined by (1.1)–
(1.3) and (1.4)–(1.6), respectively. That is why, in order to solve such practical problems,
we need some results and methods for solving (CSL) and (CSLE).

Problems like (CSL) and (CSLE) are subject of intensive study. Related problems and
methods for them are considered, for example, in [1–14].

Algorithms for resource allocation problems are proposed in [2, 6, 7, 14]. Algorithms
for facility location problems are suggested in [10, 12], and so forth. Singly constrained
quadratic programs with bounded variables are considered in [3, 5]. Some separable pro-
grams are considered and methods for solving them are suggested in [11–13], and so
forth.

Theory of nonlinear programming and, in particular, convex programming, is con-
sidered, for example, in [8, 9]. Numerical methods for solving optimization problems are
widely discussed, for example, in [1, 4].
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This paper is devoted to development of new efficient polynomial algorithms for solv-
ing problems (CSL) and (CSLE). The paper is organized as follows. In Section 2, charac-
terization theorems (necessary and sufficient conditions) for the optimal solutions to the
considered problems are proved. In Section 3, new algorithms of polynomial complexity
are suggested and their convergence is proved. In Section 4, we consider some theoretical
and numerical aspects of implementation of the algorithms and give some extensions of
both characterization theorems and algorithms. In Section 5, we present results of some
numerical experiments.

2. Characterization theorems

2.1. Problem (CSL). First consider problem (CSL) defined by (1.1)–(1.3).
Suppose that following assumptions are satisfied.
(1.a) aj ≤ bj for all j ∈ J . If ak = bk for some k ∈ J then the value xk := ak = bk is

determined a priori.
(1.b)

∑
j∈J d ja

p
j ≤ α. Otherwise the constraints (1.2)-(1.3) are inconsistent andX≤ =∅

where X≤ is defined by (1.2)-(1.3). In addition to this assumption we suppose
that α≤∑ j∈J d jb

p
j in some cases which are specified below.

The Lagrangian for problem (CSL) is

L(x,u,v,λ)=−
∑
j∈J

s j lnmjxj + λ

(∑
j∈J

d jx
p
j −α

)
+
∑
j∈J

uj
(
aj − xj

)
+
∑
j∈J

v j
(
xj − bj

)
,

(2.1)

where λ∈ R1
+; u, v ∈ Rn

+, and Rn
+ consists of all vectors with n real nonnegative compo-

nents.
The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions for

the minimum solution x∗ = (x∗j ) j∈J are

− s j
x∗j

+ λpdj
(
x∗j
)p−1−uj + vj = 0, j ∈ J , (2.2)

uj
(
aj − x∗j

)= 0, j ∈ J , (2.3)

vj
(
x∗j − bj

)= 0, j ∈ J , (2.4)

λ

(∑
j∈J

d j
(
x∗j
)p−α

)
= 0, λ∈R1

+, (2.5)

∑
j∈J

d j
(
x∗j
)p ≤ α, (2.6)

aj ≤ x∗j ≤ bj , j ∈ J , (2.7)

uj ∈R1
+, vj ∈R1

+, j ∈ J , (2.8)

where λ, uj , vj , j ∈ J , are the Lagrange multipliers associated with the constraints (1.2),
aj ≤ xj , xj ≤ bj , j ∈ J , respectively. If aj =−∞ or bj = +∞ for some j, we do not consider
the corresponding condition (2.3) [(2.4)] and Lagrange multiplier uj [vj , resp.]



4 Minimizing a convex separable logarithmic function

According to conditions (2.2)–(2.8), λ ≥ 0, uj ≥ 0, vj ≥ 0, j ∈ J , and complementary
conditions (2.3), (2.4), (2.5) must be satisfied. In order to find x∗j , j ∈ J , from system
(2.2)–(2.8), we have to consider all possible cases for λ, uj , vj : all λ, uj , vj equal to 0; all λ,
uj , vj different from 0; some of them equal to 0, and some of them different from 0. The
number of these cases is 22n+1, where 2n+ 1 is the number of all λ, uj , vj , j ∈ J , |J| = n.
This is an enormous number of cases, especially for large-scale problems. For example,
when n = 1500, we have 23001 ≈ 10900 cases. Moreover, in each case we have to solve a
large-scale system of (nonlinear) equations in x∗j , λ, uj , vj , j ∈ J . Therefore the direct
application of KKT theorem, using explicit enumeration of all possible cases, for solving
large-scale problems of the considered form, would not give a result and we need efficient
methods to solve the problems under consideration.

The following Theorem 2.1 gives a characterization of the optimal solution to problem
(CSL). Its proof, of course, is based on the KKT theorem. As we will see in Section 5,
by using Theorem 2.1 and the algorithm based on it, we can solve problem (CSL) with
n= 1500 variables for a hundredth of a second on a personal computer.

Theorem 2.1 (characterization of the optimal solution to problem (CSL)). A feasible
solution x∗ = (x∗j ) j∈J ∈ X≤, where X≤ is defined by (1.2)-(1.3), is the optimal solution to
problem (CSL) if and only if there exists some λ∈R1

+ such that

x∗j = aj , j ∈ Jλa
def=
{
j ∈ J : λ≥ s j

pdja
p
j

}
, (2.9)

x∗j = bj , j ∈ Jλb
def=
{
j ∈ J : λ≤ s j

pdjb
p
j

}
, (2.10)

x∗j = p

√
s j

pλdj
, j ∈ Jλ

def=
{
j ∈ J :

s j

pdjb
p
j

< λ <
sj

pdja
p
j

}
. (2.11)

We will show below that λ > 0 strictly, so that the expressions of x∗j , j ∈ Jλ, in (2.11)
(especially expressions under the radical sign) are correct.

Proof

Necessity. Let x∗ = (x∗j ) j∈J be the optimal solution to (CSL). Then there exist constants
λ, uj , vj , j ∈ J , such that KKT conditions (2.2)–(2.8) are satisfied. Consider both possible
cases for λ.

(1) Let λ > 0. Then system (2.2)–(2.8) becomes (2.2), (2.3), (2.4), (2.7), (2.8) and

∑
j∈J

d j
(
x∗j
)p = α, (2.12)

that is, the inequality constraint (1.2) is satisfied with an equality for x∗j , j ∈ J , in
this case.
(a) If x∗j = aj then uj ≥ 0, and vj = 0 according to (2.4). Therefore (2.2) implies

−s j /x∗j = uj − λpdj(x∗j )p−1 ≥−λpdj(x∗j )p−1. Since dj > 0, x∗j > 0, j ∈ J , p ≥ 1
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then

λ≥ s j

pdj
(
x∗j
)p ≡ s j

pdja
p
j

. (2.13)

(b) If x∗j = bj then uj = 0 according to (2.3), and vj ≥ 0. Therefore (2.2) implies
−s j /x∗j =−vj − λpdj(x∗j )p−1 ≤−λpdj(x∗j )p−1. Hence

λ≤ s j

pdj
(
x∗j
)p ≡ s j

pdjb
p
j

. (2.14)

(c) If aj < x∗j < bj then uj = vj = 0 according to (2.3) and (2.4). Therefore (2.2)

implies s j /x
∗
j = λpdj(x∗j )p−1. Hence λ = s j /pdj(x∗j )p, and x∗j = p

√
s j /pλdj .

Since s j > 0, dj > 0, x∗j > 0, j ∈ J , p ≥ 1, λ > 0 by the assumption and bj >x
∗
j ,

x∗j >aj , it follows that λ= s j /pdj(x∗j )p <sj/pdja
p
j , λ= s j /pdj(x∗j )p > sj/pdjb

p
j ,

that is,

s j

pdjb
p
j

< λ <
sj

pdja
p
j

. (2.15)

(2) Let λ= 0. Then system (2.2)–(2.8) becomes

− s j
x∗j
−uj + vj = 0, j ∈ J , (2.3), (2.4), (2.6), (2.7), (2.8). (2.16)

(a) If x∗j = aj then uj ≥ 0, vj = 0. Therefore −s j /aj ≡−s j /x∗j = uj ≥ 0. Multiply-

ing both sides of this inequality by −1/pdja
p−1
j (< 0 by the assumption), we

obtain

s j

pdja
p
j

≤ 0≡ λ. (2.17)

Since s j > 0, dj > 0, aj > 0, j ∈ J , p ≥ 1, this case is impossible.
(b) If x∗j = bj then uj = 0, vj ≥ 0. Therefore −s j /bj ≡ −s j /x∗j = −vj ≤ 0. Multi-

plying this inequality by −1/pdjb
p−1
j < 0, we get

s j

pdjb
p
j

≥ 0≡ λ. (2.18)

(c) If aj < x∗j < bj then uj = vj = 0. Therefore−s j /x∗j = 0, and since s j > 0, x∗j > 0,
j ∈ J , then this case is impossible.

To describe cases (a), (b), (c) for both (1) and (2), it is convenient to introduce the
index sets Jλa , Jλb , Jλ defined by (2.9), (2.10), and (2.11), respectively. It is obvious that
Jλa ∪ Jλb ∪ Jλ = J . The “necessity” part is proved.
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Sufficiency. Conversely, let x∗∈X≤ and components of x∗ satisfy (2.9), (2.10), and (2.11),
where λ∈R1

+.
(1) Let λ > 0. Set:

λ= s j

pdj
(
x∗j
)p (> 0), obtained from

∑
j∈Jλa

dja
p
j +

∑
j∈Jλb

djb
p
j +

∑
j∈Jλ

s j
pλ
= α;

uj = vj = 0 for j ∈ Jλ;

uj =−
s j
aj

+ λpdja
p−1
j

(≥ 0 according to the definition of Jλa
)
, vj = 0 for j ∈ Jλa ;

uj = 0, vj =
s j
bj
− λpdjb

p−1
j

(≥ 0 according to the definition of Jλb
)

for j ∈ Jλb .

(2.19)

By using these expressions, it is easy to check that conditions (2.2), (2.3), (2.4),
(2.5), (2.8) are satisfied; conditions (2.6) and (2.7) are also satisfied according to
the assumption x∗ ∈ X≤.

(2) If λ= 0 then −s j /x∗j −uj + vj = 0, j ∈ Jλ according to (2.2), and

Jλ=0 =
{
j :

s j

pdjb
p
j

< 0 <
sj

pdja
p
j

}
. (2.20)

Since s j > 0, dj > 0, bj > 0, j ∈ J , p ≥ 1, then s j /pdjb
p
j > 0, and Jλ=0 =∅. Simi-

larly, Jλ=0
a =∅. Therefore J = Jλ=0

b for λ= 0.
Set:

uj = 0, vj =
s j
bj

(> 0) for j ∈ J = Jλ=0
b . (2.21)

Obviously conditions (2.2), (2.3), (2.4), (2.8) are satisfied; conditions (2.6), (2.7) are also
satisfied according to the assumption x∗ ∈ X≤, and condition (2.5) obviously is satisfied
for λ= 0.

In both cases (1) and (2) of the “sufficiency” part, x∗j , λ, uj , vj , j ∈ J , satisfy KKT con-
ditions (2.2)–(2.8) which are necessary and sufficient conditions for a feasible solution
to be an optimal solution to a convex minimization problem. Therefore x∗ is an optimal
solution to problem (CSL), and since c(x) is a strictly convex function, then this optimal
solution is unique. �

In view of the discussion above, the importance of Theorem 2.1 consists in the fact
that it describes components of the optimal solution to problem (CSL) only through the
Lagrange multiplier λ associated with the inequality constraint (1.2).
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Since we do not know the optimal value of λ from Theorem 2.1, we define an iterative
process with respect to the Lagrange multiplier λ and we prove convergence of this process
in Section 3 (The algorithms).

According to Theorem 2.1, λ ≥ 0. In fact, since pλdj(x∗j )p = s j , where dj > 0, x∗j > 0,

s j > 0, j ∈ J , p ≥ 1, then λ > 0. Since s j /pdja
p
j > 0, s j /pdjb

p
j > 0 under the assumptions,

then if λ := 0 at step (2) of Algorithm 3.1 below, obviously Jλ=0 = Jλ=0
a =∅ and it would

not be necessary to compute x∗j , j ∈ J0, using (2.11) for λ= 0, where λ is involved in the
denominator of expression (2.11) for x∗j . An analogous remark is also valid for problem
(CSLE).

Using dj > 0, s j > 0, 0 < aj ≤ bj , j ∈ J , and p ≥ 1, it follows that

ubj
def= s j

pdjb
p
j

≤ s j

pdja
p
j

def= la j , j ∈ J (2.22)

for the expressions by which we define the sets Jλa , Jλb , Jλ.
The problem how to ensure a feasible solution to problem (CSL), which is an assump-

tion of Theorem 2.1, is discussed in Section 3.3.

2.2. Problem (CSLE). Consider the problem of minimizing a convex separable logarith-
mic function subject to a linear equality constraint and box constraints (CSLE) (1.4)–
(1.6).

Assumptions:
(2.a) aj ≤ bj for all j ∈ J .
(2.b)

∑
j∈J d jaj ≤ α≤∑ j∈J d jbj . Otherwise the constraints (1.5)-(1.6) are inconsistent

and the feasible region XL, defined by (1.5)-(1.6), is empty.
The KKT conditions for problem (CSLE) are

− s jmj

1 +mjx
∗
j

+ λdj −uj + vj = 0, j ∈ J , λ∈R1,

uj
(
aj − x∗j

)= 0, j ∈ J ,

vj
(
x∗j − bj

)= 0, j ∈ J ,∑
j∈J

d jx
∗
j = α,

aj ≤ x∗j ≤ bj , j ∈ J ,

uj ∈R1
+, vj ∈R1

+, j ∈ J.

(2.23)

In this case, the following Theorem 2.2, which is similar to Theorem 2.1, holds true.

Theorem 2.2 (characterization of the optimal solution to problem (CSLE)). A feasible
solution x∗ = (x∗j ) j∈J ∈ XL, where XL is defined by (1.5)-(1.6), is the optimal solution to
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problem (CSLE) if and only if there exists some λ∈R1 such that

x∗j = aj , j ∈ Jλa
def=
{
j ∈ J : λ≥ s jmj

dj
(
1 +mjaj

)
}

, (2.24)

x∗j = bj , j ∈ Jλb
def=
{
j ∈ J : λ≤ s jmj

dj
(
1 +mjbj

)
}

, (2.25)

x∗j =
s j
λdj

− 1
mj

, j ∈ Jλ
def=
{
j ∈ J :

s jmj

dj
(
1 +mjbj

) < λ <
sjmj

dj
(
1 +mjaj

)
}
. (2.26)

It can be shown that λ > 0 strictly, so that the expressions of x∗j , j ∈ Jλ, in (2.26) are
correct.

The proof of Theorem 2.2 is omitted because it is similar to that of Theorem 2.1.

3. The algorithms

3.1. Analysis of the optimal solution to problem (CSL). Before the formal statement of
the algorithm for problem (CSL), we discuss some properties of its optimal solution.

Using (2.9), (2.10) and (2.11), condition (2.5) can be written as follows

λ

( ∑
j∈Jλa

dja
p
j +

∑
j∈Jλb

djb
p
j +

1
pλ

∑
j∈Jλ

s j −α

)
= 0, λ≥ 0. (3.1)

Since the optimal solution x∗ to problem (CSL) depends on λ, we consider components
of x∗ as functions of λ for different λ∈R1

+:

x∗j = xj(λ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aj , j ∈ Jλa

bj , j ∈ Jλb

p

√
s j

pλdj
, j ∈ Jλ.

(3.2)

Functions xj(λ), j ∈ J , are piecewise linear, monotonically nonincreasing, piecewise dif-

ferentiable functions of λ with two breakpoints at λ= s j /pdja
p
j and λ= s j /pdjb

p
j .

Let

δ(λ)
def=

∑
j∈Jλa

dja
p
j +

∑
j∈Jλb

djb
p
j +

1
pλ

∑
j∈Jλ

s j −α. (3.3)
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If we differentiate δ(λ) with respect to λ, we get

δ′(λ)≡− 1
pλ2

∑
j∈Jλ

s j < 0, (3.4)

when Jλ �= ∅, and δ′(λ) = 0 when Jλ =∅. Hence δ(λ) is a monotonically nonincreasing
function of λ ∈ R1

+, and maxλ≥0 δ(λ) is attained at the minimum admissible value of λ,
that is, at λ= 0.

Case 1. Since Jλ=0 = Jλ=0
a =∅ then

δ(0)=
∑
j∈Jλb

djb
p
j −α (3.5)

according to (3.3), and δ(0)≥ 0 in accordance with assumption (1.b). In order that (3.1)
and (2.6) ≡ (1.2) be satisfied, there exists some λ∗ > 0 such that δ(λ∗)= 0, that is,∑

j∈J
d j
(
x∗j
)p = α, (3.6)

which means that the inequality constraint (1.2) is satisfied with an equality for λ∗ in this
case.

Case 2. The case δ(0) < 0 is impossible for problem (CSL) according to above considera-
tion.

As we have seen, for the optimal value of λ we have λ ≥ 0 in all possible cases, as the
KKT condition (2.5) requires. We have shown that in Case 1 we need an algorithm for
finding λ∗, which satisfies the KKT conditions (2.2)–(2.8) and such that λ∗ satisfies (2.6)
with an equality. In order that this be fulfilled, we have required α ≤∑ j∈J d jb

p
j in some

cases in addition to the assumption
∑

j∈J d ja
p
j ≤ α (see assumption (1.b)). We have also

used this assumption in the proof of Theorem 2.1, “sufficiency” part, when λ > 0.
Using the equation δ(λ) = 0, where δ(λ) is defined by (3.3), we are able to obtain a

closed form expression for λ:

λ= 1
p

(
α−

∑
j∈Jλa

dja
p
j −

∑
j∈Jλb

djb
p
j

)−1 ∑
j∈Jλ

s j , (3.7)

because δ′(λ) < 0 according to (3.4) when Jλ �= ∅ (it is important that δ′(λ) �= 0). This
expression of λ is used in the algorithm suggested for problem (CSL). It turns out that
without loss of generality we can assume that δ′(λ) �= 0, that is, δ(λ) depends on λ, which
means that Jλ �= ∅.

At iteration k of the implementation of algorithms, denote by λ(k) the value of the
Lagrange multiplier associated with constraint (1.2) [(1.5), resp.], by α(k) the right-hand

side of (1.2) [(1.5), resp.]; by J (k), Jλ(k)
a , Jλ(k)

b , Jλ(k) the current sets J , Jλa , Jλb , Jλ, respectively.

3.2. Algorithm 3.1 (for problem (CSL)). The following algorithm for solving problem
(CSL) is based on Theorem 2.1, see Algorithm 3.1.
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(1) (Initialization) J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n, J (0) := J , Jλa :=∅, Jλb :=
∅.
If
∑

j∈J d ja
p
j ≤ α≤∑ j∈J d jb

p
j , go to (2) else go to (9).

(2) Jλ(k) := J (k). Calculate λ(k) by using the explicit expression (3.7) of λ. Go to (3).

(3) Construct the sets Jλ(k)
a , Jλ(k)

b , Jλ(k) through (2.9), (2.10), (2.11) (with j ∈ J (k)

instead of j ∈ J) and find their cardinalities |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|, respectively.
Go to (4).

(4) Calculate

δ
(
λ(k)) :=

∑
j∈Jλ(k)

a

dja
p
j +

∑
j∈Jλ(k)

b

djb
p
j +

1
pλ(k)

∑
j∈Jλ(k)

s j −α(k). (3.8)

Go to (5).
(5) If δ(λ(k)) = 0 or Jλ(k) =∅ then λ := λ(k), Jλa := Jλa ∪ Jλ(k)

a , Jλb := Jλb ∪ Jλ(k)
b , Jλ :=

Jλ(k),
go to (8)
else if δ(λ(k)) > 0 go to (6)
else if δ(λ(k)) < 0 go to (7).

(6) x∗j := aj for j ∈ Jλ(k)
a , α(k+1) := α(k)−∑ j∈Jλ(k)

a
dja

p
j , J

(k+1) := J (k) \ Jλ(k)
a ,

n(k+1) := n(k)−|Jλ(k)
a |, Jλa := Jλa ∪ Jλ(k)

a , k := k+ 1. Go to (2).

(7) x∗j := bj for j ∈ Jλ(k)
b , α(k+1) := α(k)−∑ j∈Jλ(k)

b
djb

p
j , J (k+1) := J (k) \ Jλ(k)

b ,

n(k+1) := n(k)−|Jλ(k)
b |, Jλb := Jλb ∪ Jλ(k)

b , k := k+ 1. Go to (2).

(8) x∗j := aj for j ∈ Jλa ; x∗j := bj for j ∈ Jλb ; x∗j := p
√
s j /pλdj for j ∈ Jλ. Go to (10).

(9) Problem (CSL) has no optimal solution because X≤ =∅ or there does not exist
a λ∗ > 0 satisfying Theorem 2.1.

(10) End.

Algorithm 3.1. (For problem (CSL)).

3.3. Convergence and complexity of Algorithm 3.1. The following Theorem 3.1 states
convergence of Algorithm 3.1.

Theorem 3.1. Let λ(k) be the sequence generated by Algorithm 3.1. Then
(i) if δ(λ(k)) > 0 then λ(k) ≤ λ(k+1);

(ii) if δ(λ(k)) < 0 then λ(k) ≥ λ(k+1).

Proof. Denote by x(k)
j the components of x(k) = (xj) j∈J (k) at iteration k of implementation

of Algorithm 3.1.
(i) Let δ(λ(k))>0. Using step (6) of Algorithm 3.1, which is performed when δ(λ(k))>0,

we get

∑
j∈Jλ(k+1)

dj

(
x(k)
j

)p ≡ ∑
j∈J (k+1)

dj

(
x(k)
j

)p = ∑
j∈J (k)\Jλ(k)

a

dj

(
x(k)
j

)p = α(k)−
∑

j∈Jλ(k)
a

dj

(
x(k)
j

)p
. (3.9)
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Let j ∈ Jλ(k)
a . According to definition (2.9) of Jλ(k)

a we have

s j

pdja
p
j

≤ λ(k) = s j

pdj

(
x(k)
j

)p . (3.10)

Multiplying this inequality by pdja
p
j /s j > 0 we obtain 1≤ a

p
j /(x

(k)
j )

p
. Therefore x(k)

j ≤ aj

because aj > 0, x(k)
j > 0 and p ≥ 1.

Using that dj > 0, aj ≥ x(k)
j , j ∈ Jλ(k)

a , and step (6), from (3.9) we get

∑
j∈Jλ(k+1)

dj

(
x(k)
j

)p = α(k)−
∑

j∈Jλ(k)
a

dj

(
x(k)
j

)p

≥ α(k)−
∑

j∈Jλ(k)
a

dja
p
j = α(k+1) =

∑
j∈Jλ(k+1)

dj

(
x(k+1)
j

)p
.

(3.11)

Since dj > 0, j ∈ J , then there exists at least one j0 ∈ Jλ(k+1) such that x(k)
j0 ≥ x(k+1)

j0 . Then

λ(k) = s j0

pdj0

(
x(k)
j0

)p ≤ s j0

pdj0

(
x(k+1)
j0

)p = λ(k+1). (3.12)

We have used that the relationship between λ(k) and x(k)
j is given by (2.11) for j ∈ Jλ(k)

according to step (2) of Algorithm 3.1, and λ(k) ≥ 0, dj > 0, s j > 0, j ∈ J , and p ≥ 1.
The proof of part (ii) is omitted because it is similar to that of part (i). �

Consider the feasibility of x∗ = (x∗j ) j∈J , generated by Algorithm 3.1.

Components x∗j = aj , j ∈ Jλa , and x∗j = bj , j ∈ Jλb , obviously satisfy (1.3). Using

s j

pdjb
p
j

< λ≡ s j

pdj
(
x∗j
)p <

sj

pdja
p
j

, j ∈ Jλ (3.13)

and p ≥ 1, dj > 0, s j > 0, aj > 0, bj > 0, j ∈ J , it follows that aj < x∗j < bj for j ∈ Jλ. Hence
all x∗j , j ∈ J , satisfy (1.3).

We have proved that if δ(0)≥ 0 and X≤ �= ∅ where X≤ is defined by (1.2)-(1.3), then
there exists a λ∗ ≥ 0 such that δ(λ∗) = 0. Since at step (2) we calculate λ(k) from the

equality
∑

j∈Jλ(k) dj

(
x(k)
j

)p = α(k) for each k, then (1.2) is satisfied with an equality in this
case. Otherwise, the case δ(0) < 0 is impossible (see Case 2 above).
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Therefore, Algorithm 3.1 generates x∗ which is feasible for problem (CSL), which is
an assumption of Theorem 2.1.

Remark 3.2. Theorem 3.1, definitions of Jλa (2.9), Jλb (2.10) and Jλ (2.11), and steps (6),

(7) and (8) of Algorithm 3.1 allow us to assert that Jλ(k)
a ⊆ Jλ(k+1)

a , Jλ(k)
b ⊆ Jλ(k+1)

b , and

Jλ(k) ⊇ Jλ(k+1). This means that if j belongs to current set Jλ(k)
a , then j belongs to the next

index set Jλ(k+1)
a and, therefore, to the optimal index set Jλa ; the same holds true about the

sets Jλ(k)
b and Jλb . Therefore λ(k) converges to the optimal λ of Theorem 2.1, and Jλ(k)

a , Jλ(k)
b ,

Jλ(k) “converge” to the optimal index sets Jλa , Jλb , Jλ, respectively. This means that calcu-

lation of λ, operations x∗j := aj , j ∈ Jλ(k)
a (step (6)), x∗j := bj , j ∈ Jλ(k)

b (step (7)), and the

construction of Jλa , Jλb , Jλ are in accordance with Theorem 2.1.

At each iteration Algorithm 3.1 determines the value of at least one variable (steps (6),
(7), (8)) and at each iteration we solve a problem of the form (CSL) but of less dimension
(steps (2), (3), (4), (5), (6), (7)). Therefore Algorithm 3.1 is finite and it converges with
at most n= |J| iterations, that is, the iteration complexity of Algorithm 3.1 is �(n).

Step (1) (initialization and checking whether X≤ is empty) takes time �(n). The cal-
culation of λ(k) requires constant time (step (2)). Step (3) takes �(n) time because of the

construction of Jλ(k)
a , Jλ(k)

b , Jλ(k). Step (4) also requires �(n) time and step (5) requires con-
stant time. Each of steps (6), (7) and (8) takes time which is bounded by �(n), because at
these steps we assign some of xj the final value, and since the number of all xj ’s is n, then
steps (6), (7) and (8) take time �(n). Hence Algorithm 3.1 has �(n2) running time and it
belongs to the class of strongly polynomially bounded algorithms.

Computational experiments show that the number of iterations of the algorithm per-
formance is not only at most n, but it is much, much less than n for large n. In fact, this
number does not depend on n but only on the three index sets defined by (2.9), (2.10),
(2.11). In practice, Algorithm 3.1 has �(n) running time.

3.4. Algorithm 3.2 (for problem (CSLE)) and its convergence. After analysis of the op-
timal solution to problem (CSLE), similar to that to problem (CSL), we suggest the fol-
lowing algorithm for solving problem (CSLE).

To avoid a possible “endless loop” in programming Algorithms 3.1 and 3.2, the cri-
terion of step (5) to go to step (8) at iteration k usually is not δ(λ(k)) = 0, but δ(λ(k)) ∈
[−ε,ε], where ε > 0 is some (given or chosen) tolerance value up to which the equality
δ(λ∗)= 0 may (for Algorithm 3.1) or must (for Algorithm 3.2) be satisfied.

A theorem analogous to Theorem 3.1 holds for Algorithm 3.2, which guarantees the

“convergence” of λ(k), Jλ(k), Jλ(k)
a , Jλ(k)

b to the optimal λ, Jλ, Jλa , Jλb , respectively.

Theorem 3.3. Let λ(k) be the sequence generated by Algorithm 3.2. Then
(i) if δ(λ(k)) > 0 then λ(k) ≤ λ(k+1);

(ii) if δ(λ(k)) < 0 then λ(k) ≥ λ(k+1).

The proof of Theorem 3.3 is omitted because it is similar to that of Theorem 3.1.
It can be proved that Algorithm 3.2 has �(n2) running time, and point x∗ = (x∗j ) j∈J

generated by this algorithm is feasible for problem (CSLE), which is an assumption of
Theorem 2.2.
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(1) (Initialization) J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n, J (0) := J , Jλa :=∅, Jλb :=
∅.
If
∑

j∈J d jaj ≤ α≤∑ j∈J d jbj , go to (2) else go to (9).
(2) Jλ(k) := J (k). Calculate λ(k) by using the explicit expression

λ(k) =
(
α(k) +

∑
j∈Jλ(k)

dj

mj

)−1 ∑
j∈Jλ(k)

s j . (3.14)

Go to (3).
(3) Construct the sets Jλ(k)

a , Jλ(k)
b , Jλ(k) through (2.24), (2.25), (2.26) (with j ∈ J (k)

instead of j ∈ J) and find their cardinalities |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|. Go to (4).
(4) Calculate

δ
(
λ(k)) :=

∑
j∈Jλ(k)

a

djaj +
∑

j∈Jλ(k)
b

djbj +
1
λ(k)

∑
j∈Jλ(k)

s j −
∑

j∈Jλ(k)

dj

mj
−α(k). (3.15)

Go to (5).
(5) If δ(λ(k)) = 0 or Jλ(k) =∅ then λ := λ(k), Jλa := Jλa ∪ Jλ(k)

a , Jλb := Jλb ∪ Jλ(k)
b , Jλ :=

Jλ(k),
go to (8)
else if δ

(
λ(k)

)
> 0 go to (6)

else if δ
(
λ(k)

)
< 0 go to (7).

(6) x∗j := aj for j ∈ Jλ(k)
a , α(k+1) := α(k)−∑ j∈Jλ(k)

a
djaj , J (k+1) := J (k) \ Jλ(k)

a ,

n(k+1) := n(k)−|Jλ(k)
a |, Jλa := Jλa ∪ Jλ(k)

a , k := k+ 1. Go to (2).

(7) x∗j := bj for j ∈ Jλ(k)
b , α(k+1) := α(k)−∑ j∈Jλ(k)

b
djbj , J (k+1) := J (k) \ Jλ(k)

b ,

n(k+1) := n(k)−|Jλ(k)
b |, Jλb := Jλb ∪ Jλ(k)

b , k := k+ 1. Go to (2).
(8) x∗j := aj for j ∈ Jλa ; x∗j := bj for j ∈ Jλb ; x∗j := s j /λdj − 1/mj for j ∈ Jλ. Go to

(10).
(9) Problem (CSLE) has no optimal solution because the feasible set XL, defined by

(1.5)-(1.6), is empty.
(10) End.

Algorithm 3.2. (For problem (CSLE)).

4. Extensions

4.1. Theoretical aspects. Up to now we required dj > 0, j ∈ J , in (1.2) and (1.5) of
problems (CSL) and (CSLE), respectively. However, if it is allowed dj = 0 for some j in
problems (CSL) and (CSLE), then for such indices j we cannot construct the expressions
s j /pdja

p
j and s j /pdjb

p
j for problem (CSL), and s jmj/dj(1 +mjaj) and s jmj/dj(1 +mjbj)

for problem (CSLE), by means of which we define sets Jλa , Jλb , Jλ for the corresponding
problem. In such cases, xj ’s are not involved in (1.2) [in (1.5), resp.] for such indices j.
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It turns out that we can avoid this difficulty and solve problems (CSL) and (CSLE) with
dj = 0 for some j’s.

Denote

Z0= { j ∈ J : dj = 0
}
. (4.1)

Here “0” means the “computer zero.” In particular, when J = Z0 and α= 0, then X≤ (XL,
resp.) is defined only by (1.3) (by (1.6), resp.).

Theorem 4.1 (characterization of the optimal solution to problem (CSL): an extended
version). Problem (CSL) can be decomposed into two subproblems: (CSL1) for j ∈ Z0 and
(CSL2) for j ∈ J \Z0.

The optimal solution to (CSL1) is

x∗j = bj , j ∈ Z0, (4.2)

that is, subproblem (CSL1) itself is decomposed into n0 ≡ |Z0| independent problems. The
optimal solution to (CSL2) is given by (2.9), (2.10), (2.11) with J := J \Z0.

Proof

Necessity. Let x∗ = (x∗j ) j∈J be the optimal solution to (CSL).
(1) Let j ∈ Z0, that is, dj = 0 for this j. The KKT conditions are

− s j
x∗j
−uj + vj = 0, j ∈ Z0, (2.3)–(2.8). (4.3)

(a) If x∗j = aj , then uj ≥ 0, vj = 0. Using (4.3), it follows that −s j /x∗j = uj ≥ 0,
which is impossible because s j > 0, x∗j > 0.

(b) If x∗j = bj , then uj = 0, vj ≥ 0. Therefore −s j /x∗j = −vj ≤ 0, which is always
satisfied for s j > 0, x∗j > 0.

(c) If aj < x∗j < bj , then uj = vj = 0. Therefore −s j /x∗j = 0, that is, s j = 0, which
is impossible according to the assumption s j > 0.

As we have observed, only case (b) is possible for j ∈ Z0.
(2) Components of the optimal solution to (CSL2) are obtained by using the same

approach as that of the proof of “necessity” part of Theorem 2.1, but with the
reduced index set J := J \Z0.

Sufficiency. Conversely, let x∗ ∈ X≤ and components of x∗ satisfy: (4.2) for j ∈ Z0, and
(2.9), (2.10), (2.11) for J := J \Z0. Set:

uj = 0, vj =
s j
bj

(> 0) for j ∈ Z0. (4.4)
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If λ > 0, set:

λ= s j

pdj
(
x∗j
)p = λ

(
x∗
)

(> 0) from (2.11);

uj = vj = 0 for aj < x∗j < bj , j ∈ J \Z0;

uj =−
s j
aj

+ λpdja
p−1
j (≥ 0), vj = 0 for x∗j = aj , j ∈ J \Z0;

uj = 0, vj =
s j
bj
− λpdjb

p−1
j (≥ 0) for x∗j = bj , j ∈ J \Z0.

(4.5)

If λ= 0, set:

uj = 0, vj =
s j
bj

(> 0) for j ∈ J \Z0. (4.6)

As in the proof of Theorem 2.1, Jλ=0
a = Jλ=0 =∅.

It can be verified that x∗, λ, uj , vj , j ∈ J , satisfy the KKT conditions (2.2)–(2.8). Then
x∗ with components: (4.2) for j ∈ Z0, and (2.9), (2.10), (2.11) with J := J \ Z0, is the
optimal solution to problem (CSL) = (CSL1) ∪ (CSL2). �

An analogous result holds for problem (CSLE).

Theorem 4.2 (characterization of the optimal solution to problem (CSLE): an extended
version). Problem (CSLE) can be decomposed into two subproblems: (CSLE1) for j ∈ Z0
and (CSLE2) for j ∈ J \Z0.

The optimal solution to (CSLE1) is also given by (4.2). The optimal solution to (CSLE2)
is given by (2.24), (2.25), (2.26) with J := J \Z0.

The proof of Theorem 4.2 is omitted because it repeats in part the proofs of Theorems
2.1 and 4.1.

Thus, with the use of Theorems 4.1 and 4.2 we can express components of the opti-
mal solutions to problems (CSL) and (CSLE) without the necessity of constructing the
expressions s j /pdja

p
j , s j /pdjb

p
j , s jmj/dj(1 +mjaj), and s jmj/dj(1 +mjbj) with dj = 0.

4.2. Computational aspects. Algorithms 3.1 and 3.2 are also applicable in cases when
aj =−∞ for some j ∈ J and/or bj =∞ for some j ∈ J . However, if we use the computer
values of −∞ and +∞ at step (1) of the algorithms to check whether the corresponding
feasible region is empty or nonempty, and at step (3) in the expressions s j /pdjx

p
j and

s jmj/dj(1 +mjxj) with xj = −∞ and/or xj = +∞, by means of which we construct sets
Jλa , Jλb , Jλ, this could sometimes lead to arithmetic overflow. If we use other values of −∞
and +∞ with smaller absolute values than those of the computer values of −∞ and +∞,
it would lead to inconvenience and dependence on the data of the particular problems.
To avoid these difficulties and to take into account the above discussion, it is convenient
to do the following.
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Construct the sets of indices:

SVN = { j ∈ J \Z0 : aj >−∞, bj < +∞},

SV1= { j ∈ J \Z0 : aj >−∞, bj = +∞},

SV2= { j ∈ J \Z0 : aj =−∞, bj < +∞},

SV = { j ∈ J \Z0 : aj =−∞, bj = +∞}.
(4.7)

It is obvious that Z0∪ SV ∪ SV1∪ SV2∪ SVN = J , that is, the set J \Z0 is partitioned
into the four subsets SVN , SV1, SV2, SV , defined above.

When programming the algorithms, we use computer values of −∞ and +∞ for con-
structing the sets SVN , SV1, SV2, SV .

In order to construct the sets Jλa , Jλb , Jλ without the necessity of calculating the values
s j /pdjx

p
j with xj =−∞ or +∞ for problem (CSL), except for the sets J , Z0, SV , SV1, SV2,

SVN , we need some subsidiary sets defined as follows.
For SVN :

JλSVN =
{
j ∈ SVN :

s j

pdjb
p
j

< λ <
sj

pdja
p
j

}
,

JλSVN
a =

{
j ∈ SVN : λ≥ s j

pdja
p
j

}
,

JλSVN
b =

{
j ∈ SVN : λ≤ s j

pdjb
p
j

}
;

(4.8)

for SV1:

JλSV1 =
{
j ∈ SV1 : λ <

sj

pdja
p
j

}
,

JλSV1
a =

{
j ∈ SV1 : λ≥ s j

pdja
p
j

}
;

(4.9)

for SV2:

JλSV2 =
{
j ∈ SV2 : λ >

sj

pdjb
p
j

}
,

JλSV2
b =

{
j ∈ SV2 : λ≤ s j

pdjb
p
j

}
;

(4.10)

for SV :

JλSV = SV. (4.11)
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Step (1)1 (Initialization) J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n, J (0) := J , Jλa :=∅,
Jλb :=∅.
Construct the set Z0. If j ∈ Z0 then x∗j := bj .

Set J := J \Z0, J (0) := J , n(0) := n−|Z0|.
Construct the sets SVN , SV1, SV2, SV .
If SVN ∪ SV1= J then
if
∑

j∈J d ja
p
j ≤ α go to step (2)

else go to step (9) (feasible region X≤ is empty)
else if SV2∪ SV �= ∅ then
if SV2∪ SVN = J then
if α≤∑ j∈J d jb

p
j go to step (2)

else go to step (9) (there does not exist a λ∗ > 0 such that δ(λ∗)= 0)
else if SV1∪ SV �= ∅ go to step (2) (there exists a λ∗ > 0 such that δ(λ∗)= 0).

Step (3)1. Construct the sets JλSVN , JλSVN
a , JλSVN

b , JλSV1, JλSV1
a , JλSV2, JλSV2

b , JλSV

(with J (k) instead of J).
Construct the sets Jλ(k)

a , Jλ(k)
b , Jλ(k) by using (4.12) and find their cardinalities

|Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|, respectively. Go to step (4).

Algorithm 4.1. About Algorithm 3.1.

Then:

Jλ := JλSVN ∪ JλSV1∪ JλSV2∪ JλSV ,

Jλa := JλSVN
a ∪ JλSV1

a ,

Jλb := JλSVN
b ∪ JλSV2

b .

(4.12)

We use the sets Jλ, Jλa , Jλb , defined by (4.12), as the corresponding sets with the same
names in Algorithms 3.1 and 3.2.

With the use of results of this section, steps (1) and (3) of Algorithm 3.1 can be modi-
fied as follows, respectively, see Algorithm 4.1.

Similarly, we can define subsidiary index sets of the form (4.8)–(4.11) for problem
(CSLE) as well, and modify steps (1) and (3) of Algorithm 3.2.

Modifications of the algorithms, connected with theoretical and computational as-
pects, do not influence upon their computational complexity, discussed in Section 3, be-
cause these modifications do not affect the “iterative” steps of algorithms.

5. Computational experiments

In this section, we present results of some numerical experiments, obtained by applying
algorithms, suggested in this paper, to problems under consideration. The computations
were performed on an Intel Pentium II Celeron Processor 466 MHz/128 MB SDRAM
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Table 5.1

Problem (CSL) (CSLE)

Number of variables n= 1200 n= 1500 n= 1200 n= 1500

Average number of iterations 2.10 3.03 3.07 4.10

Average run time (in seconds) 0.06 0.067 0.00009 0.00011

IBM PC compatible. Each problem was run 30 times. Coefficients s j > 0, mj > 0, dj > 0,
j ∈ J , for problems (CSL) and (CSLE) were randomly generated, see Table 5.1.

When n < 1200, the run time of the algorithms is so small that the timer does not
recognize the corresponding value from its computer zero. In such cases the timer displays
“0 seconds.”

The effectiveness of algorithms for problems (CSL) and (CSLE) has been tested by
many other examples. As we can observe, the (average) number of iterations is much less
than the number of variables n for large n.

We provide below the solution of two simple particular problems of the form (CLS)
and (CLSE), respectively, obtained by using the approach suggested in this paper. The
results are rounded to the fourth digit.

Example 5.1.

min
{
c(x)=− ln

(
2x1

)− 3lnx2
}

(5.1)

subject to

x2
1 + 2x2

2 ≤ 10, 1≤ x1 ≤ 3, 1≤ x2 ≤ 5. (5.2)

The optimal solution, obtained by Algorithm 3.1, is

x∗ = (x∗1 ,x∗2
)= (1.5811,1.9365),

cmin = c
(

x∗
)=−3.1339.

(5.3)

Number of iterations: 1.

Example 5.2.

min
{
c(x)=−2ln

(
1 + 2x1

)− ln
(
1 + 3x2

)}
(5.4)

subject to

x1 + 2x2 = 10, 1≤ x1 ≤ 3, 1≤ x2 ≤ 5. (5.5)

The optimal solution, obtained by Algorithm 3.2, is

x∗ = (x∗1 ,x∗2
)= (3.0,3.5),

cmin = c
(

x∗
)=−5.2149.

(5.6)

Number of iterations: 2.
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6. Conclusions

In this paper, we propose an efficient method for solving convex separable minimization
problems with logarithmic objective function subject to convex inequality constraint or
linear equality constraint, and box constraints.

This approach could be continued and generalized for minimizing arbitrary convex
separable objective functions over the same feasible regions.
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