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We propose an evolutionary recursive algorithm, for the exact windowed case, to esti-
mate subset vector discrete lag (SVDL) filters with a forgetting factor and an intercept
variable. SVDL filtering is demonstrated as a basis for constructing a multi-layered poly-
nomial neural network by Penm et al. (2000) The new proposed time update recursions
allow users to update SVDL filters at consecutive time instants, and can show evolution-
ary changes detected in filter structures. With this new approach we are able to more ef-
fectively analyse complex relationships where the relevant financial time series have been
generated from structures subject to evolutionary changes in their environment. An illus-
tration of these procedures is presented to examine the integration between the Australian
and the Japanese bond markets, and the USA and the UK bond markets, changed over
the period. The proposed algorithms are also applicable to full-order vector discrete lag
(VDL) filtering with a forgetting factor and an intercept.

Copyright © 2006 Andrew H. Chen et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Statistical filter researchers for financial time-series systems are often concerned that the
coefficients of their established filters may not be constant over time, but vary when the
filters are disturbed by changes arising from outside environmental factors. This concern
has motivated researchers to develop sequential estimation algorithms that allow users to
update subset time series filters at consecutive time instants, and allow for the coefficients
to slowly evolve, and then can show evolutionary changes detected in filter structures.
Hannan and Deistler [4] propose a recursive estimation of an autoregressive (AR) filter.
Azimi-Sadjadi et al. [1] suggest a full-order updating procedure for the training process
of a multiplayer neural network.

These studies utilise the fixed forgetting factor (henceforth called the forgetting fac-
tor) in the filtering and simulations of nonstationary time series. The forgetting factor as
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described in Hannan and Deistler [4] has been widely adapted to account for nonstation-
arity of time series, and it is suitable to capture nonstationarity for a filter in which the
underlying relationships between the variables involved change smoothly and gradually.
In order to emphasise the importance of using more recent observations in filtering, the
forgetting factor allocates greater weight to more recent estimated residuals and “forgets”
some of the past. When the recursions are implemented in the stationary situation, the
value of the forgetting factor is set to one.

The use of vector discrete lag (VDL) filtering in financial time series is versatile. As
shown in Penm et al. [6], a VDL filter has been demonstrated as a basis for constructing
a multi-layered polynomial neural network. Further, Holmes and Hutton [5] suggest the
use of a SVDL system to assess the relationship between z(t) and the set of current and
lagged y(t), where there is a continuous or random delay.

In order to increase the filtering and analysis power of neural networks to be applied
to a time series system, Penm et al. [6] introduce inhibitor arc and switchable connec-
tion to the neural network structure. The inhibitor arc was introduced to network theory
by Petri [9], and the associated connection strength for all these arcs is constrained to
zero at all times. The switchable connection is obtained from switching theory, and the
strength is switchable between zero and non-zero at any time. To incorporate such pow-
erful connections the commonly used estimation algorithms for full-order filters are not
applicable, because the structure of the lag coefficients is estimated without the “presence
and absence” restrictions. As a result, it is necessary to develop an estimation algorithm
for SVDL filters which includes full-order filters as a special case.

While there are well developed time update full-order VDL filtering algorithms [see
Carayannis et al. [3]], these are not applicable to VDL filters with a subset structure. This
is because the “optimal” subset filter at time instant t may become “suboptimal” at time
instant t + i, i = 1, . . . ,n. If one simply sets zero values to the coefficients of the missing
lags, and then applies the time update algorithms for the full-order case, this leads to
a loss of efficiency in the filter performance, as the subset structure of the filter is not
updated accordingly. Consequently, an efficient algorithm needs to be developed for the
time update SVDL filters, including full-order filters obtained as special cases.

In this paper a forward time update algorithm has been developed for the exact win-
dowed case, to recursively estimate the SVDL filtering with a forgetting factor and an in-
tercept variable. Compared to the residual-based algorithm proposed in Penm et al. [6],
the current algorithm utilises only the available observations without any assumption
on unseen observations to estimate filter coefficients. In addition, the current algorithm
is a coefficient-based time update algorithm, which can detect evolutionary changes in
filter structures. However the proposed algorithm in Penm et al. [6] is a residual-based
order update algorithm, which undertakes recursions, moving from low-order filters to
high-order filters, so no evolutionary changes are captured through parameter updating.
Therefore the focus of Penm et al. [6] is not on the evolution over time of the parametric
structure of the system. We now are proposing forward time update algorithms because
they allow users to update SVDL filters at consecutive time instants, and can show evolu-
tionary changes detected in filter structures.
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To demonstrate the effectiveness of the proposed time update algorithm, we apply the
recursive extended two-layer neural network algorithm, equivalent to time update SVDL
filtering, to examine the causal linkages between government bond markets of three lead-
ing industralised countries, namely the United States, the United Kingdom and Japan,
during the period from August 1994 through December 2004. The findings are helpful in
explaining linkages between the government bond markets involved.

The remainder of the paper is organised as follows. In Section 2 we present the algo-
rithm for recursively estimating SVDL filtering with a forgetting factor and an intercept
variable. An empirical example to assess whether there is any changing integration be-
tween the Australian and the Japanese bond markets, and the USA and the UK bond
markets is presented in Section 3. In Section 4 a summary is given.

2. New evolutionary recursive algorithms for SVDL filtering

In this section we introduce forward time-update recursions which recursively estimate
an SVDL filter for the exact-windowed case.

In SVDL filtering, it is desirable to relate z(t) to present and past data for y(t). We
consider an SVDL filter of the form

z(t) + ρ+
p∑

i=1

h′i
(
Is
)
y(t+ 1− i)= εh(t),

{
h′i
(
Is
)= 0, as i∈ Is

}
, (2.1)

where h′i , i = 1,2, . . . , p are g × r parameter matrices, ρ is an intercept variable, εh(t) is a
g × 1 stationary process with E{εh(t)} = 0 and

E
{
εh(t)ε′h(t− τ)

}=
⎧
⎨
⎩
Ω τ = 0

0 τ �= 0.
(2.2)

Equation (2.1) and properties associated with εh(t) together constitute a VDL filter, which
involves a g-dimensional regressand vector z(t) and an r-dimensional regressor vector
y(t). The order of the system is p,1≤ i1 < i2<··· < is ≤ p− 1, and y(t+ 1− i) is a deleted
lag (i∈ Is).

Given two finite data sample sets, {z(n), . . . ,z(T)} and {y(n), . . . , y(T)}, it is necessary
to sequentially estimate all possible SVDL filters from (2.1) using the exact-windowed
case. Since the actual scheme of (2.1) may not be order p, the resulting estimates of hi is
denoted by hp,n,T(i), where T is the sample size under examination. Then the predictor
of an SVDL system of (2.1) can be described as

ẑ(i)=−H′
p,n,T

(
Is
)
Yp−1,i

(
Is
)
, i > T , (2.3)

whereHp,n,T = [h′p,n,T(1),ρ′p,n,T ,h′p,n,T(2), . . . ,h′p,n,T(p)]′, andYp,i = [y(i),1r , . . . , y(i− p)]′.
1r denotes an r × 1 vector with all 1 entries. Hp,n,T(Is) is formed by removing
h′p,n,T(i1), . . . ,h′p,n,T(is) ofHp,n,T , andYp,i(Is) is formed by removing y′(i+ 1− i1), . . . , y′(i+
1− is) of Yp,i.
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The residual vector for observation i is

εhp,n,i

(
Is
)= z(i) +H′

p,n,T

(
Is
)
Yp−1,i

(
Is
)
, n≤ i≤ T. (2.4)

In reality, many time-series systems present complex non-stationary features and cannot
be filtered by assuming that y(t) and x(t) are stationary. Thus, for a VDL filter fitted to
these two sample sets using the exact windowed method of forming the sample covariance
matrix, we have

Rp−1,n,T
(
Is
)
Hp,n,T

(
Is
)=−rp−1,n,T

(
Is
)
, (2.5)

where

Rp−1,n,T
(
Is
)=

T∑

i=p−1+n

λT−iYp−1,i
(
Is
)
Y ′p−1,i

(
Is
)

rp−1,n,T
(
Is
)=

T∑

i=p−1+n

λT−iYp−1,i
(
Is
)
z′(i), Ωp,T

(
Is
)=

T∑

i=p−1+n

λT−iεhp,n,i

(
Is
)
ε′hp,n,i

(
Is
)
,

(2.6)

where λ, 0 < λ≤ 1, is the forgetting factor as described in Hannan and Deistler [4]. The
forgetting factor is suitable for a filter in which the underlying relationships between the
variables involved change smoothly and gradually. When λ= 1, the recursions are imple-
mented in the stationary situation.

Further, the following relations at t = T + 1 have been established,

Rp−1,n,T+1
(
Is
)
Hp,n,T+1

(
Is
)=−rp−1,n,T+1

(
Is
)
, (2.7)

where

Rp−1,n,T+1
(
Is
)= λRp−1,n,T

(
Is
)

+Hp−1,n,T+1
(
Is
)
H′

p−1,n,T+1

(
Is
)
,

rp−1,n,T+1
(
Is
)= λrp−1,n,T

(
Is
)

+Yp−1,T+1
(
Is
)
z(T + 1).

(2.8)

To develop time update recursions for SVDL filtering, we consider the forward VAR(p,Is)
filter with an intercept variable of the form

y(t) + τ +
p∑

i=1

ai
(
Is
)
y(t− i)= ε(t), ai

(
Is
)= 0, as i∈ Is, (2.9)

where ε(t) is an independent and identically distributed random process with

E
{
ε(t)

}= 0, E
{
ε(t)ε′(t− k)

}=
⎧
⎨
⎩
V
(
Is
)

as k = 0

0 as k �= 0.
(2.10)
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Figure 2.1. A four-variable tree diagram which illustrates the reciprocal integer pairs of subset VAR
filters up to and including lag length P = 4. Of note, numerals denote particular lags in a forward VAR
and numerals in italics denote such leads in a backward VAR.

We also consider a backward VAR(p) filter of the form

bp
(
Ms
)
y(t) +β+

p−1∑

i=0

bi
(
Ms
)
y(t− p+ i)= ε̄(t),

b0
(
Ms
)= I , bi

(
Ms
)= 0, as i∈Ms,

(2.11)

where E{ε̄(t)} = 0, and the disturbance variance is V̄(Ms), Ms represents an integer set
with elements m1,m2, . . . ,ms, mj = p − i j , j = 1,2, . . . ,s. A reciprocal integer pair for a
forward subset VAR filter and a backward subset VAR filter is a pair of (2.9) and (2.11).
Figure 2.1 shows a lag tree diagram which illustrates the reciprocal integer pairs of all
subset VAR processes up to and including lag length, k = 4. Note that numerals repre-
sent particular lags in a forward VAR and underlined numerals represent such leads in a
backward VAR.

We need to sequentially estimate all possible subset VAR filters from (2.9) and (2.11)
using the exact-windowed case. Then we define observation i

Y ′ p,i =
[
I , y(i− 1), . . . , y(i− p)

]
,

A′p,n,T =
[
τp,n,Tp ,ap,n,T(1), . . . ,ap,n,T(p)

]
, B′p,n,T =

[
bp,n,T(p),ξp,n,T , . . . ,bp,n,T(1)

]
.

(2.12)

For a reciprocal integer pair of the forward VAR(p,Is) and the backward VAR(p,Ms) fil-
ters fitted to this sample set, we have

Rp,n,T
(
Is
)=

T∑

i=p+n

λT−iYp,i
(
Os
)
Y ′p,i

(
Os
)
, (2.13)
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where

Yp,i
(
Os
)=
[

y(i)
Y p,i

(
Ls
)
]
=
[
Yp−1,i

(
Os
)

y(i− p)

]
,

Rp,n,T
(
Is
)
[

1
Ap,n,T

(
Is
)
]
=
[
Vp,n,T

(
Is)

0

]
, Vp,n,T

(
Is
)=

T∑

t=p+n

λT−i
[
εp(t)ε′p(t)

]
,

(2.14)

where Os represents an integer set with elements oj , j = 1, . . . ,s, and oj = i j + 2. Yp,i(Os)
and Yp−1,i(Os) are formed by removing the (o1), . . . , (os)′th row of Yp,i and Yp−1,i re-
spectively. Ls represents an integer set with elements l j , and l j = i j + 1 and Y p,i(Ls) is
formed by removing the (l1), . . . , (ls)′th row of Y p,i. Also Ap,n,T(Is) is formed by removing
ap,n,T(i1), . . . ,ap,n,T(is) of Ap,n,T .

Now we define

Dp,n,T
(
Is
)=

T∑

i=p+n

λT+1−iY p,i

(
Ls
)
Y ′ p,i

(
Ls
)
, Kp,n,T

(
Is
)=D−1

p,n,T

(
Is
)
Y p,T+1

(
Ls
)
,

τp,n,T
(
Is
)= 1 +Y ′ p,T+1

(
Ls
)
Wp,n,T

(
Is
)
, ep,n,T+1

(
Is
)= [I | A′p,n,T

(
Is
)]
Y p,T+1

(
Ls
)
.

(2.15)

In addition, for the corresponding backward VAR(p,Ms), we will have

Rp,n,T
(
Ms
)=

T∑

i=p+n

λT−i
[
Yp−1,i

(
Ms
)

y(i− p)

]
[
Y ′p−1,i

(
Ms
)]

,

V p,n,T
(
Ms
)=

T∑

t=n+p

λT−i
[
ε̄p(t)ε̄′ p(t)

]
,

Rp,n,T
(
Ms
)
[
Bp,n,T

(
Ms
)

1

]
=
[

0
V p,n,T

(
Ms
)
]

,

(2.16)

where Bp,n,T(Ms) and Yp−1,i(Ms) are formed by removing the (p + 2−m1), . . . , (p + 2−
ms)′th row of Bp,n,T and Yp−1,i respectively. We note p+ 2−mj = 2 + i j = oj , thus we can
easily see that Yp−1,i(Ms)= Yp−1,i(Os) and Rp,n,T(Ms)= Rp,n,T(Is).

Next, we consider a forward VAR(p+ 1,Is) filter with a intercept variable of the form

y(t) + a1
(
Ls
)
y(t− 1) + τ +

p+1∑

i=2

ai
(
Ls
)
y(t− i)= ε(t), ai

(
Ls
)= 0, as i∈ Ls, (2.17)
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where we have shifted the intercept variable to the third term of the filter for ease of matrix
algebra operations. Suppose the filter is based on the sample set {y(n), y(n+ 1), . . . , y(T +
1)}, we have

Dp+1,n,T+1

(
Ls
)=

T+1∑

i=p+1+n

λT+2−iYp,i−1
(
Os
)
Y ′p,i−1

(
Os
)
,

K̃p+1,n,T+1
(
Ls
)=D−1

p+1,n,T+1

(
Ls
)
Yp,T+1

(
Os
)
,

τp+1,n,T+1
(
Ls
)= 1 +Y ′p,T+1

(
Os
)
K̃p+1,n,T+1

(
Ls
)
.

(2.18)

Again we consider a forward VAR(p,Ls) filter with intercept, that is,

y(t) + a1
(
Ls
)
y(t− 1) + τ +

p∑

i=2

ai
(
Ls
)
y(t− i)= ε(t), ai

(
Ls
)= 0, as i∈ Ls, (2.19)

where we keep the intercept variable in the third term to assist with our algebraic ma-
nipulations. Suppose the filter is fitted to the sample set {y(n+ 1), y(n+ 2), . . . , y(T + 1)},
analogously we have

K̃p,n+1,T+1
(
Ls
)=D−1

p,n+1,T+1

(
Ls
)
Yp−1,T+1

(
Os
)
,

τp,n+1,T+1
(
Ls
)= 1 +Y ′p−1,T+1

(
Os
)
K̃p,n+1,T+1

(
Ls
)
.

(2.20)

The matrix inversion of Rp,n,T(Is) provides

R−1
p,n,T

(
Is
)=

⎡
⎣

V−1
p,n,T

(
Is
)

V−1
p,n,T

(
Is
)
A′p,n,T

(
Is
)

Ap,n,T
(
Is
)
V−1

p,n,T

(
Is
)

D−1
p,n,T

(
Is
)

+Ap,n,T
(
Is
)
V−1

p,n,T

(
Is
)
A′p,n,T

(
Is
)

⎤
⎦ . (2.21)

Right multiply with Y p,T+1(Ls) on both sides of (2.21) and employ (2.12) and (2.15), so
that we have

K̃p+1,n,T+1
(
Ls
)=

[
0

Kp,n,T
(
Is
)
]

+

[
I

Ap,n,T
(
Is
)
]
V−1

p,n,T

(
Is
)
ep,n,T+1

(
Is
)
. (2.22)

Again we right multiply the transpose of (2.22) with Y p,T+1(Ls), employ (2.12), and add
1 to both sides, so that we now establish

τp+1,n,T+1
(
Ls
)= τp,n,T

(
Is
)

+ ep,n,T+1
(
Is
)
V−1

p,n,T

(
Is
)
e′p,n,T+1

(
Is
)
. (2.23)

Analogously we can have

K̃p+1,n,T+1
(
Ls
)=

[
K̃p,n+1,T+1

(
Ls
)

0

]
+

[
Bp,n,T

(
Ms
)

I

]
V
−1
p,n,T

(
Ms
)
ep,n,T+1

(
Ms
)
,

τp+1,n,T+1
(
Ls
)= τp,n+1,T+1

(
Ls
)

+ ep,n,T+1
(
Ms
)
V
−1
p,n,T

(
Ms
)
ep,n,T+1

(
Ms
)
,

(2.24)

where ep,n,T+1(Ms)= [B′p,n,T(Ms) | I]Yp,T+1(Ms).
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From Penm et al. [7], if we permute the first row and the second row of the
K̃p+1,n,T+1(Is), the resulting vector is the Kp+1,n,T+1(Is) associated with a forward VAR(p+
1,Ls) filter of the form

y(t) + δ + a1
(
Ls
)
y(t− 1) +

p+1∑

i=2

ai
(
Ls
)
y(t− i)= ε(t), a

(
i,Ls

)= 0, as i∈ Ls, (2.25)

which means that Kp+1,n,T+1(Is)= Pp+1K̃p+1,n,T+1(Is), where Pp+1 is a permutation matrix
of the form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0
... 0

I 0 0
... 0

0 0 I
... 0

··· ··· ··· ··· ···
0 0 0

... I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.26)

Note that if there is a consecutive set of k deleted lags beginning at lag 1 in the forward
VAR(p,Is) filter fitted using the sample {y(n), . . . , y(T + 1)}, we have

Kp,n,T+1
(
Is
)= Kp−k,n,T+1−k

(
Ik
)
, τp,n,T+1

(
Is
)= τp−k,n,T+1−k

(
Ik
)
, (2.27)

where Is contains i1, . . . , ik, . . . , is, and i j = j, j = 1,2, . . . ,k, and Ik contains ik+1, . . . , is−k.
We now turn to the SVDL filtering. We use (2.6), (2.8) and (2.15), the following time

update recursions for SVDL filtering can then be developed.

ehp,n,T+1

(
Is
)= z(T + 1) +H′

p,n,T

(
Is
)
Yp−1,T+1

(
Is
)

εhp,n,T+1

(
Is
)= ehp,n,T+1

(
Is
)
τ−1
p,n,T+1

(
Is
)

Hp,n,T+1
(
Is
)=Hp,n,T

(
Is
)−Kp,n,T+1

(
Is
)
εhp,n,T+1

(
Is
)

Ωp,T+1
(
Is
)= λΩp,T

(
Is
)

+ εhp,n,T+1

(
Is
)
ehp,n,T+1

(
Is
)
.

(2.28)

In addition, the forward-time update algorithm from T to T + 1 is summarised in
Algorithm 2.1.

To determine the optimal SVDL filter at each time instant, we utilise the filter selection
criterion suggested by Hannan and Deistler [4]. From now on, we will use MHQC as an
abbreviation for this criterion, which is defined by

MHQC = log(Ω̂) +
[
2loglog f (T)/ f (T)

]
N , (2.29)

where f (T)=∑T
t=p−1+n λ

T−t is the effective sample size, andN the number of functionally
independent parameters. The optimal filter selected has the minimum value of MHQC.

3. Applications

To demonstrate the effectiveness of the proposed recursive algorithm, we investigate
whether the causal relationships between the Australian and Japanese bond markets and
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Ap,n,T(Is), Vp,n,T(I), Kp,n,T(Is), τp,n,T(Is), Bp,n,T(Ms), λ, Yp,T+1(Os),

Yp−1,T+1(Is), V̄p,n,T(Ms), Hp,n,T(Is), Ωp,T(Is), y(T + 1) and z(T + 1) are available

Recursions:

ep,n,T+1
(
Is
)= [1 : MA′p,n,T

(
Is
)]
Yp,T+1

(
Os
)

εp,n,T+1
(
Is
)= ep,n,T+1

(
Is
)
τ−1
p,n,T

(
Is
)

Ap,n,T+1
(
Is
)= Ap,n,T

(
Is
)−Kp,n,T

(
Is
)
ε′p,n,T+1

(
Is
)

Vp,n,T+1
(
Is
)= λVp,n,T

(
Is
)

+ εp,n,T+1
(
Is
)
e′p,n,T+1

(
Is
)

K̃p+1,n,T+1
(
Ls
)=

[
0

Kp,n,T
(
Is
)
]

+

[
1

Ap,n,T
(
Is
)
]
U−1

p,n,T

(
Is
)
ep,n,T+1

(
Is
)

partition K̃p+1,n,T+1(Ls)= [D/d]

ēp,n,T+1
(
Ms
)= λV̄p,n,T

(
Ms
)
d

K̃p,n+1,T+1
(
Ls
)=D−Bp,n,T

(
Ms
)
d

τp+1,n,T+1
(
Ls
)= τp,n,T

(
Is
)

+ e′p,n,T+1

(
Is
)
V−1

p,n,T

(
Is
)
ep,n,T+1

(
Is
)

τp,n+1,T+1
(
Ls
)= τp+1,n,T+1

(
Ls
)− ē′p,n,T+1

(
Ms
)
d

ε̄p,n,T+1
(
Ms
)= ēp,n,T+1

(
Ms
)[
τp,n+1,T+1

(
Ls
)]−1

V̄p,n,T+1
(
Ms
)= λV̄p,n,T

(
Ms
)

+ ε̄p,n,T+1
(
Ms
)
ē′p,n,T+1

(
Ms
)

Bp,n,T+1
(
Ms
)= Bp,n,T

(
Ms
)− K̃p,n+1,T+1

(
Ls
)
ε̄′p,n,T+1

(
Ms
)

Kp,n,T+1
(
Is
)= PpK̃p,n,T+1

(
Is
)

ehp,n,T+1

(
Is
)= z(T + 1) +H′

p,n,T

(
Is
)
Yp−1,T+1

(
Is
)

εhp,n,T+1

(
Is
)= ehp,n,T+1

(
Is
)
τ−1
p,n,T+1

(
Is
)

Hp,n,T+1
(
Is
)=Hp,n,T

(
Is
)−Kp,n,T+1

(
Is
)
ε′hp,n,T+1

(
Is
)

Ωp,T+1
(
Is
)= λΩp,T

(
Is
)

+ εhp,n,T+1

(
Is
)
e′hp,n,T+1

(
Is
)

Algorithm 2.1. The forward-time update recursions from T to T + 1 for SVDL forgetting-factor
inclusive filters with intercept variable.

the world’s two major bond markets, those of the USA and the UK, changed over the
period. The approach uses government bond indices from the Australian and the Japan-
ese bond markets in a system that also include indices of the USA and the UK markets.
The former two markets are considered to be representative of markets in the Asia Pa-
cific Basin region, while the latter two markets are treated as a proxy of the world bond
market. We undertake this research within the framework of SVDL, which provides a
new approach to examining such relationships. The more traditional framework for ex-
amining these questions is through VAR. However VAR filtering does not explicitly de-
tect evolutionary causal changes in the current and contemporary variable structures. It
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only provides the relationships detected from the lagged filter structure. The current and
contemporary causal relations become increasingly important in the efficient and com-
petitive financial markets of the developed economies. Therefore the filter development
should focus on VDL filtering.

The J. P. Morgan monthly bond price indices are sourced from Datastream over the
period August 1994 through December 2004. Those data in US dollar terms are sampled
from the government bond indices of Australia (AUS), Japan (JP), the UK (UK) and
USA (USA). The sample size of each series is 125. To examine stationarity for each series,
Microfit 4.0 is used to carry out the augmented Dickey-Fuller (ADF) unit root test. The
95 per cent critical values for each test computed using the response surface estimates,
indicate that all series are I(1).

The algorithm developed in Section 2 is used to assess the relationships between the
AUS-JP pair and the UK-USA pair. In detecting the causal relationship from UK-USA to
AUS-JP, the variables used are z1(t)= log AUS, z2(t)= log JP, y1(t)= log UK and y2(t)=
log USA. As discussed above, none of the logarithms of the four bond indices is stationary.
Therefore, exponential forgetting is used with a forgetting factor, 0.99, to allow for the
presence of non-stationarity. To begin it is assumed P = 16, which corresponds to a one
and a quarter year period. The proposed evolutionary SVDL recursions described above
are then applied to the logarithms of the data to select the “optimal” specification of
the vector discrete lag filters. A SVDL filter with lags (0,8) is selected by the MHQC at
T = 120 and 121. At T = 122, the lag structure selected changes to (0). Detailed filter
specifications with zero constraints selected are reported in Table 3.1.

To check the adequacy of each optimal filter fit, the strategy suggested in Brailsford et
al. [2] is used, with the proposed Penm and Terrell [8] algorithm applied to test each esti-
mated residual vector series. The results in Table 3.1 support the hypothesis that each
residual vector series is a white noise process. These optimal filters are then used as
the benchmark filters for analysing the causal relationships. The analysis indicates that
from T = 120 to 121, AUS is caused by the current and lagged UK; from T = 122 to
125, AUS is caused by the current UK only; and AUS is only caused by the current USA
from T = 120 to 125. JP is only caused by the current UK and the current USA from
T = 120 to 125. All these results occur when emphasis is placed on recent data. The find-
ings show that an efficient market hypothesis does exist in the system under examination
from T = 122. As time goes on, no arbitrage opportunity can be taken in those developed
economies.

For the causal relationship from AUS-JP pair, to UK and USA, Table 3.2 shows the
optimal discrete lag filters with λ = 0.99. These results strongly support the existence of
current causal relationship between AUS and UK. No causality from JP to UK is detected,
and no causality from either AUS or JP to US is identified. Also, the results in Table 3.2
support the hypothesis that each estimated vector residual series is a white noise process.
The findings confirm that the US economy is the hub of the world economy. The UK
bond market movements are not affected by the Japanese bond market movements. Since
the Japanese government imposes a zero-interest rate policy to avoid deflation arising
in the Japanese economy, no evidence of any causality from the Japanese bond market
movements to the UK and US bond markets can be identified.
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Table 3.1. The SVDL for the relationship, linking government bond indices from UK-USA pair to
Australian and Japan by MHQC using the GLS procedure.

T = 120 T = 121 T = 122

τ i, j entry (standard error) i, j entry (s.e.) i, j entry (s.e.)

0

1,1 −1.568(0.193) 1,1 −1.582(0.196) 1,1 −0.752(0.116)

1,2 2.011(0.281) 1,2 2.015(0.283) 1,2 1.623(0.312)

2,1 1.005(0.193) 2,1 1.001(0.182) 2,1 −0.1285(0.065)

2,2 −0.0725(0.036) 2,2 −0.0982(0.045) 2,2 0.450(0.193)

8 1,2 0.432(0.208) 1, 2 0.448(0.213)

ρ ρ1 11.535(1.201) ρ1 11.482(1.212) ρ1 8.871(1.158)

ρ2 6.528(0.915) ρ2 6.242(0.906) ρ2 6.351(0.821)

T = 123 T = 124 T = 125

τ i, j entry (s.e.) i, j entry (s.e.) i, j entry (s.e.)

0

1,1 −0.765(0.123) 1,1 −0.776(0.128) 1,1 −0.788(0.142)

1,2 1.631(0.316) 1,2 1.636(0.316) 1, 2 1.639(0.318)

2,1 −0.1414(0.073) 2,1 −0.1521(0.078) 2,1 −0.1685(0.085)

2,2 0.458(0.196) 2,1 0.465(0.198) 2,2 0.468(0.201)

ρ ρ1 8.843(1.212) ρ1 8.822(1.158) ρ1 8.773(1.203)

ρ2 6.303(0.811) ρ2 6.281(0.812) ρ2 6.225(0.838)

Variables: z1(t)= log (AUS), z2(t)= log(JP), y1(t)= log(UK), y2(t)= log(USA).

SVDL: z(t) + ρ+
∑p

τ=1 h
′
τ(Is)y(t+ 1− τ)= εh(t).

Non-zero (i, j)th entries in estimated coefficient matrices, h′τ and ρ.

Table 3.2. The SVDL for the relationship, linking government bond indices from AUS-JP pair to UK
and USA by MHQC using the GLS procedure.

T = 120 T = 121 T = 122

τ i, j entry (s.e.) i, j entry (s.e.) i, j entry (s.e.)

0 1,1 −0.218(0.046) 1,1 −0.223(0.051) 1,1 −0.235(0.048)

ρ ρ1 3.583(0.203) ρ1 3.566 (0.211) ρ1 3.532(0.221)

ρ2 4.728(0.391) ρ2 4.725(0.388) ρ2 4.723(0.393)

T = 123 T = 124 T = 125

τ i, j entry (s.e.) i, j entry (s.e.) i, j entry (s.e.)

0 1,1 −0.243(0.044) 1,1 −0.246(0.042) 1,1 −0.255(0.043)

ρ ρ1 3.495(0.216) ρ1 3.462(0.215) ρ1 3.425(0.212)

ρ2 4.718(0.382) ρ2 4.716(0.395) ρ2 4.711(0.398)

Variables: z1(t)= log(UK), z2(t)= log (USA), y1(t)= log (AUS), y2(t)= log (JP).
SVDL: z(t) + ρ+

∑p
τ=1 h

′
τ(Is)y(t+ 1− τ)= εh(t).

Non-zero (i, j)th entries in estimated coefficient matrices, h′τ and ρ.

4. Conclusion

In this paper a revolutionary recursive algorithm, using the exact windowed case, has
been developed to sequentially select the best specification for a statistical subset neural
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network/VDL filter. The proposed construction method is simple to use, avoids cumber-
some matrix inversion, and results in greater numerical accuracy. The application investi-
gates the causal relationships between the Australian and the Japanese bond markets, and
the USA and the UK bond markets. This application demonstrates the effectiveness of the
proposed recursions and widens the possible use of the revolutionary recursive algorithm
in financial filtering and simulations.
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