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1. Introduction

In the present paper we consider the nonconvex problem

minimize f (x),

subject to x ∈ S,

g(x)≥ 0,

(RP)

where f ,g :Rn →R are convex continuous functions and S is a nonempty, convex com-
pact in Rn.

Such problems have many practical and theoretical applications in telecommunica-
tion, mechanics, engineering design, economics, and other fields (see [1, 2, 21], etc.) and
have been studied actively over the last four decades (see, e.g., [9, 19] and their refer-
ences). In addition to these direct applications, (RP) may appear as subproblems in more
difficult nonconvex problems [5, 17, 20]. Also it is known that reverse convex problems
and the well-known convex maximization (concave minimization) problems are dual to
each other and the latter has an abundance of applications [12, 19].

In the literature, this problem is known as the minimization problem with a “hole” [3],
the reverse convex problem (see [7, 11], etc.), the problem over complements of convex
sets [13], the canonical d.c. programming problem (see [8, 18], etc.), and anticonvex
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2 Reverse convex problems

programs [12]. All these various expressions are used to describe the constraint g(x)≥ 0
that creates difficulties and destroys the convexity of the problem.

Throughout this paper we will call the problem “the reverse convex.”
A good deal of literature exists on methods for solving problem (RP). Our focus in

this paper is on an approach based on global optimality conditions.
The purpose of this paper is to establish necessary and sufficient optimality conditions

for nonsmooth reverse convex problems (RP) and to study some convergence properties
of an algorithm in the case of LP with an additional quadratic reverse convex constraint.

The present paper is organized as follows. First, we derive necessary and sufficient op-
timality conditions for nonsmooth reverse convex problems in Section 2. Then in order
to be self-contained in Section 3, we recall from [15, 16] an algorithm for solving (RP)
and some of its convergence properties. Finally, Section 4 is devoted to the LP problem
with an additional quadratic reverse convex constraint. As a result of this section we prove
a proposition which plays an essential role in providing convergence of the algorithm.

Our notation is fairly standard in convex analysis. By ∂g(·), cl(D), co(D) we denote
the subdifferential, the closure, and the convex hull, respectively.

2. Necessary and sufficient optimality conditions

We will use further notation:

D = {x ∈Rn | x ∈ S, g(x)≥ 0
}

,

F(z)= {x ∈Rn | x ∈ S, f (x)≤ f (z)
}

,

N(S, y)= {y∗ ∈Rn | 〈y∗x− y
〉

0, ∀x ∈ S
}
.

(2.1)

In what follows, we will require the following two assumptions to hold even if this is not
always mentioned explicitly.

Assumption 2.1. There exists a finite solution of problem (RP), that is,

inf
{
f |D} >−∞, ∃x0 ∈D : f

(
x0
) 
= +∞. (2.2)

Assumption 2.2. At a solution of problem (RP) the reverse convex constraint is active,
that is,

Argmin(RP)∩ {x | g(x) > 0
}=∅, (2.3)

where by “Argmin” we denote a set of solutions.

The latter assumption is quite standard for (RP), which means that the reverse convex
constraint g(x)≥ 0 is essential.

Theorem 2.3. If for a reverse convex problem (RP) (2.3) holds (Assumption 2.2), and if its
feasible point z solves problem (RP) globally, then

∀y s.t. g(y)= 0,

∂g(y)∩N
(
F(z), y

) 
= ∅.
(2.4)
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Proof. Let us assume that z solves (RP), (2.3) holds, but (2.4) does not hold. Then there
is y such that g(y)= 0 and

∂g(y)∩N
(
F(z), y

)=∅. (2.5)

Two given sets do not intersect when any element of one of them does not belong to the
second; in our case:

for any y∗ ∈ ∂g(y) we have y∗ 
∈N
(
F(z), y

)
. (2.6)

The latter implies ∃x ∈ F(z) : 〈y∗x− y〉 > 0.
In other words, what we assumed means that there are y, x such that g(y)= 0, f (x)≤

f (z), x ∈ S satisfying

〈
y∗,x− y

〉
> 0, ∀y∗ ∈ ∂g(y). (2.7)

By the convexity of function g(·) one obtains

0 <
〈
y∗,x− y

〉≤ g(x)− g(y)= g(x). (2.8)

Then f (x) ≤ f (z), x ∈ S together with (2.8) implies that x also solves (RP) since z is
a solution to (RP). It contradicts (2.3) because of g(x) > 0 in (2.8). This contradiction
completes the proof. �

Example 2.4. We consider a two-dimensional problem (RP) (see Figure 2.1), with

f (x)=
(
x1− 1

4

)2

+
(
x2− 1

4

)2

,

g(x)= 2
∣
∣x1

∣
∣+

∣
∣x2

∣
∣− 1,

S=Π=
{
x ∈R2 | − 1

2
≤ x1 ≤ 1

4
,− 3

4
≤ x2 ≤ 5

4

}
.

(2.9)

Here the reverse convex constraint function is the piecewise linear (nonsmooth) function.
Similar domains are encountered frequently in optimization problems of economics [21].

It is not difficult to see that at point z = (−9/20,−1/10)� the first-order optimality
condition:

∃μ≥ 0, ∃z∗ ∈ ∂g(z)
〈∇ f (z)−μz∗,x− z

〉≥ 0, ∀x ∈Π, (2.10)

holds since at z function g(·) is differentiable ∂g(z)= {∇g(z)} and∇ f (z)−μ∇g(z)= 0.
The number of such stationary points z where the first-order optimality condition holds
could be very huge in nonconvex optimization and we do not know which one fails to be
a global solution. To answer this question we use a necessary global optimality condition.
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∂g(z)

z

F(z)

y =
(
− 1

4
,

1
2

)

U={v | g(v)=0}

f (x) = f (z)S = Π

∇g(y)

u

Figure 2.1. The necessary condition (Example 2.4).

Let us try to use (2.4) to get the answer. We consider points

y =
(
− 1

4
,
1
2

)�
satisfying g(y)= 0,

u=
(
− 9

20
,
1
2

)�
satisfying f (u)≤ f (z), u∈Π.

(2.11)

It is easy to see that at point y the subdifferential of function g(·) consists of a unique
element (gradient) and we have 〈∇g(y),u− y〉 = 2/5 > 0. According to the necessary op-
timality conditions we can assert that z is not a global solution to the considered problem.

The next theorem gives us a sufficient condition.

Theorem 2.5. Assume that for a feasible point z of problem (RP)

−∞≤ inf
(
g,Rn

)
< g(z)= 0 (2.12)

is true, and in addition suppose that

∀y ∈ S s.t. g(y)= 0, ∃y∗ ∈ ∂g(y),

∃h= h
(
y, y∗

)∈ S,
〈
y∗,h− y

〉
> 0.

(2.13)

Then a sufficient condition for the point z to be a global solution to (RP) is

∀y s.t. g(y)= 0,

∂g(y)∩N
(
F(z), y

) 
= ∅.
(2.14)
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Proof. Suppose that the assumptions of the theorem are satisfied and (2.14) holds, but z
is not a global solution to (RP).

So, there is w such that

w ∈ S, g(w)≥ 0, f (w) < f (z). (2.15)

First of all, we show an existence of u such that

u∈ S, g(u) > 0, f (u) < f (z). (2.16)

It is clear that if g(w) > 0, then u=w.
Thus we consider only the case of g(w) = 0. Due to the continuity of function f (·)

there is a neighborhood W of the point w, for which we have

f (x) < f (z), ∀x ∈W. (2.17)

According to (2.13) we also have

∃w∗ ∈ ∂g(w), ∃h∈ S
〈
w∗,h−w

〉
> 0. (2.18)

Then because of the convexity of function g(·) for α∈]0,1[, and x(α)= αh+ (1−α)w we
arrive at

g
(
x(α)

)− g(w)≥ 〈w∗,x(α)−w
〉= α

〈
w∗,h−w

〉
> 0. (2.19)

This means

g
(
x(α)

)
> 0, x(α)∈ S, α∈ ]0,1[. (2.20)

So, for the sufficiently small positive number α0 it is evident that x(α0)∈W ; and ac-
cording to (2.17) we have

f
(
x
(
α0
))

< f (z). (2.21)

Therefore, u= x(α0) satisfies (2.16).
On the other hand (2.12) implies the existence of v such that g(v) < g(z)= 0.
Due to the continuity of g(·) and inequalities g(v) < 0 < g(u), the open interval con-

necting two points v and u:

y(β)= βv+ (1−β)u, 0 < β < 1, (2.22)

intersects the level set g(x)= 0 at some point y0 = y(β0), (0 < β0 < 1).
Now we show that any subgradient y∗0 ∈ ∂g(y0) does not belong to N(F(z), y0), that

is, for all y∗0 ∈ ∂g(y0) there is u∈ F(z) satisfying 〈y∗0 u− y0〉 > 0.
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By replacing u by its expression from (2.22) we have for u ∈ F(z) and for all y∗0 ∈
∂g(y0)

〈
y∗0 ,u− y0〉=

〈
y∗0 ,

y0−β0v

1−β0
− y0

�
= β0

β0− 1

〈
y∗0 ,v− y0〉

≥ β0

β0− 1

(
g(v)− g

(
y0))= β0

β0− 1
g(v) > 0,

(2.23)

that means y∗0 
∈ N(F(z), y0). Hence ∂g(y0)∩N(F(z), y0) =∅ is contradicting (2.14).
The theorem now follows. �

Remark 2.6. The core expression of both necessary and sufficient optimality conditions

∂g(y)∩N(F, y) 
= ∅ (2.24)

could be written as

∃y∗ ∈ ∂g(y),
〈
y∗,x− y

〉≤ 0, ∀x ∈ F.
(2.25)

Its checking requires first solving the problem

maximize
〈
y∗,x

〉
,

subject to x ∈ F,
(2.26)

and then verifying the inequality below on its solution x(y):

〈
y∗x(y)− y

〉≤ 0. (2.27)

The following example shows how one could use sufficient optimality conditions ob-
tained to prove the global optimality of some point.

Example 2.7. We continue to consider the problem from Example 2.4. Suppose that we
found a stationary point one way or another; for instance in our case (see Figure 2.2)
z = (1/4,1/2)�. To assert its global optimality we have to use a sufficient global optimality
condition. Let us try to use Theorem 2.5. According to Theorem 2.5, before checking
(2.14) one has to check assumption (2.13).

It is quite evident that for any point y of the level set g(y) = 0 there is a subgradient
y∗ ∈ ∂g(y) such that 〈y∗,h− y〉 > 0, where h is one of the vertices of the box Π, that is,
assumption (2.13) holds in this case.

Now we divide the level set U = {v | g(v)= 0} into four parts U =U11∪U10∪U00∪
U01, corresponding to four orthants.

Notice that the solution to problem

maximize
〈
v∗,x

〉
,

subject to x ∈ F(z),
(2.28)
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∂g(v)

v U = {v | g(v) = 0}

U10U00

∇g(v)
(
v ∈ U10

)

∇g(v)
(
v ∈ U00

)

U11U01

∇g(v)
(
v ∈ U11

)
∇g(v)

(
v ∈ U01

)

S = Π

z

f (x) = f (z)
F(z)

Figure 2.2. The sufficient condition (Example 2.7).

where v∗ ∈ ∂g(v), could be written as

u(v)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
4

,
1
2

)�
, if v ∈U11;

(
1
4

,0
)�

, if v ∈U10;

(
1
4
− 1

2
√

5
,
1
4
− 1

4
√

5

)�
, if v ∈U00;

(
1
4
− 1

2
√

5
,
1
4

+
1

4
√

5

)�
, if v ∈U01.

(2.29)

Then it is not difficult to see that for all v such that g(v)= 0 we have

〈
v∗,u(v)− v

〉≤ 0. (2.30)

In other words, there is no point on the level set {v | g(v)= 0} where the sufficient global
optimality condition is violated. Thus, according to Theorem 2.5, z is a global solution to
the considered problem.

Remark 2.8. Similar optimality conditions for reverse convex problems (RP) were first
obtained by Strekalovsky [13, 14]. Therein the author used the following assertion:

∀y : g(y)= 0, ∂g(y)⊂N
(
F(z), y

)
, (2.31)
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instead of our (2.4) and (2.14) from Theorems 2.3 and 2.5, respectively. One can see the
difference between our ∂g(y)∩N(F(z), y) 
= ∅ and (2.31) (i.e., the difference between
checking the nonemptyness of the intersection of two convex sets and the inclusion of
one convex set in the other) since the latter is generally more difficult to check in practice.

But in the case of the differentiable function g(·) there is no difference between them
(inclusion, intersection) since the subdifferential ∂g(·) consists of a single element∇g(·)
and it intersects a normal cone if and only if it itself lies in the normal cone.

3. Algorithm and its convergence properties

In the following sections in addition we will assume that function g(·) is quadratic; g(x)=
(1/2)〈Qx,x〉− γ where Q =Q� and Q > 0 (positive definite) and γ > 0.

In order to be self-contained, let us recall the main lines of an algorithm for finding a
global solution to the reverse convex problem (RP) based on optimality conditions like
(2.4), (2.14), (2.31). The algorithm was proposed in [15] and its convergence was proven
in [16].

Given a point x0 such that x0 ∈ S, g(x0)≥ 0, and k = 0.
The algorithm consists of the following steps.

Algorithm 3.1.

Step 1. Let zk be a local minimum (or a stationary point) of (RP) with starting point xk.

Step 2. Approximate the level set {y | g(y)=0} by Rk = R(zk)={v1,v2, . . . ,vNk | g(vi)= 0,
i= 1, . . . ,Nk}; i := 1.

Step 3. Solve ui = argmax{〈∇g(vi),x〉 | x ∈ F(zk)}.
Step 4. Solve wi = argmax{〈∇g(y),ui− y〉 | g(y)= 0}.
Step 5. If (〈∇g(wi),ui −wi〉 > 0), then xk+1 := ui, k := k + 1, go to Step 1; /∗ new local
search ∗/.

Step 6. Else if (i < Nk), then i := i+ 1 go to Step 3.

Step 7. Else STOP; /∗ zk is the solution related to Rk
∗/.

Remark 3.2. Assume that for some index i one has 〈∇g(wi),ui −wi〉 > 0 and therefore
xk+1 := ui. Then xk+1 ∈ S, f

(
xk+1

) ≤ f
(
zk
)

since xk+1 ∈ F
(
zk
)
, and g(xk+1) > 0 since

g(xk+1)− g(wi)≥ 〈∇g(wi
)
,ui−wi〉 > 0.

So, the algorithm generates a sequence {zk} of stationary points such that

f
(
zk+1)≤ f

(
xk+1)≤ f

(
zk
)
, ∀k = 0,1,2, . . . . (3.1)

In the appendix, we remind the proof of convergence of a theoretical method given in
[16]. It is not difficult, under assumptions (a1)–(a4) below, to specialize the theoretical
method into the above practical algorithm.

(a1) There is a method for finding a local solution (or stationary point) to problem
(RP).
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(a2) There is a method for solving the problem

maximize
〈∇g(vi),x〉,

subject to x ∈ S,

f (x)≤ f
(
zk
)
.

(3.2)

(a3) There is a method for solving the problem

maximize
〈∇g(y),ui− y

〉
,

subject to g(y)= 0.
(3.3)

(a4) One can construct an approximation of the level set {y | g(y)= 0} that is a “re-
solving set” according to Definition 3.3 below.

In general, in the case of unsuccessful approximations used in Step 2, the solution
found by the algorithm could fail to be a global solution. Therefore we introduce the
notion of the “resolving set” for the approximations that guarantees the globality of a
solution obtained.

Definition 3.3 [15, 16]. An approximation

R= {v1,v2, . . . ,vN | g(vi)= 0, i= 1, . . . ,N
}

(3.4)

is called a “resolving set” if the fact that z is not a global solution to (RP) implies

max
i

{〈∇g(wi
)
,ui−wi

〉 | i∈ {1,2, . . . ,N}} > 0. (3.5)

Example 3.4. We come back to the problem from Examples 2.4 and 2.7. It is not difficult
to see that approximation

R=
{(

1
4

,
1
2

)�
,
(
− 1

4
,
1
2

)�
,
(
− 1

4
,−1

2

)�
,
(

1
4

,−1
2

)�}

(3.6)

is a “resolving set.”

Let us discuss the assumptions. In our opinion, assumptions (a1), (a2), (a3) are rela-
tively easier than (a4).

Nowadays, usable local search methods have been designed [1, 2, 16] for reverse con-
vex problems despite its being NP-hard.

The problem in (a2) is convex if function f (·) and set S are assumed to be convex.
With regard to (a3), in general, it is a nonconvex problem but the problem can be

solved analytically in some simple cases. For instance [15], in the quadratic case, that is,
g(x)= (1/2)〈Qx,x〉− γ where Q =Q� and Q > 0 (positive definite) and γ > 0, point

wi =
(

2γ
〈
Qui,ui

〉

)1/2

ui (3.7)

solves the problem of (a3).
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Finally, as regards (a4) there is no approximation proved to be a “resolving set” except
some simple cases in [4]. In practice we have used the algorithm without the proof that
approximations are “resolving sets.” For instance, in [10, 15] the approximation consists
of some deterministic points issuing from the problem. The authors of [6] to solve the
well-known multiknapsack problem have proposed randomly generating level set points
where the number of points is limited by a tabu list to prevent the same level set area from
being re-examined. In all cases, the experiments showed that the algorithm is promising,
but it is always important to prove that an approximation used is a “resolving set.” The
next section is devoted to the question of how to prove it.

4. Example of “resolving set”

We consider the linear programming problem with an additional reverse convex qua-
dratic constraint:

minimize 〈d,x〉,
subject to Ax ≤ b,

g(x)= 1
2
〈Qx,x〉− γ ≥ 0,

(LRCP)

where d,x ∈ Rn, A� = (a1,a2, . . . ,am) is an (n×m)-matrix, b ∈ Rm, Q = Q� and Q > 0
(positive definite) (n× n)-matrix, and γ > 0. We assume that here the polytope in the
constraint is full dimensional and bounded.

Proposition 4.1. Suppose that assumption (2.13) holds, which may be written in terms of
(LRCP) as follows:

∀y such that g(y)= 0 and Ay ≤ b

there exists h such that Ah≤ b and

〈Qy,h− y〉 > 0.

(4.1)

Then the approximation

R= {v1,v2, . . . ,vm+1 | g(vi)= 0, i= 1, . . . ,m+ 1
}

, (4.2)

where

vi =
⎧
⎨

⎩

μiQ−1ai, for 1≤ i≤m,

μm+1Q−1d, for i=m+ 1,
(4.3)

μm+1 =
(

2γ
〈
Q−1d,d

〉

)1/2

,

μi =
(

2γ
〈
Q−1ai,ai

〉

)1/2

, 1≤ i≤m,

(4.4)

is a “resolving set” for problem (LRCP).
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Proof. According to Definition 3.3 one has to prove that if z does not solve (LRCP), then
maxi{〈∇g(wi),ui−wi〉 | i∈ {1,2, . . . ,m+ 1}} > 0.

So, suppose that z is not a solution to (LRCP), that is, there is u such that

〈d,u〉 < 〈d,z〉,

Au≤ b,
1
2
〈Qu,u〉− γ ≥ 0.

(4.5)

We first show that there exists u satisfying

〈d,u〉 < 〈d,z〉,

Au≤ b,
1
2
〈Qu,u〉− γ > 0.

(4.6)

Because of (4.1), if

Au≤ b,
1
2
〈Qu,u〉− γ = 0, (4.7)

then there is h such that

Ah≤ b, 〈Qu,h−u〉 > 0. (4.8)

By the convexity of the polytope, Ah≤ b and Au≤ b imply that

Au(λ)≤ b for each λ∈ [0,1], (4.9)

where u(λ)= λu+ (1− λ)h.
For λ sufficiently close to 1 we obtain

〈
d,u(λ)

〉
<
〈
d,z

〉
. (4.10)

On the other hand, from assumption (4.1) and the convexity of g(·) we have

0 < (1− λ)
〈∇g(u),h−u

〉= 〈∇g(u),u(λ)−u
〉≤ g

(
u(λ)

)− g(u). (4.11)

We summarize the analysis as “for u= u(λ) (4.6) holds for λ sufficiently close to 1.”
Let us now introduce the following notation:

am+1 = d;

A
� = (A�,am+1);

b
� = (b1, . . . ,bm,〈d,z〉).

(4.12)

We have u satisfying (4.6). Then computing βs as

βs =max
{
β | β ≥ 0, A(βu)≤ b

}
(4.13)

we obtain point us as us = βsu.
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We assume without loss of generality that 〈as,us〉 = bs, that is, the sth constraint is
active at us.

By the construction of the point vs, since ∇g(vs)=Q(μsQ−1as)= μsas, it is quite evi-
dent that us solves the following problem (see (a2)):

maximize
〈∇g(vs),x

〉
,

subject to Ax ≤ b,
(4.14)

corresponding to index s.
For the solution us we can also solve the so-called level problem

maximize
〈∇g(y),us− y

〉
,

subject to g(y)= 0,
(4.15)

analytically by the formula

ws = αsu
s, where αs =

(
2γ

〈Qus,us〉

)1/2

. (4.16)

Because of the construction of us and (4.6) we have

g
(
us
)= g

(
βsu

)≥ g(u) > 0= g
(
ws
)
, (4.17)

which implies that 0 < αs < 1.
Hence, due to positive definiteness of matrix Q we have

max
i

{〈∇g(wi
)
,ui−wi

〉 | i∈ {1,2, . . . ,m+ 1}}

≥ 〈∇g(ws
)
,us−ws

〉= 〈Qws,us−ws
〉= αs

(
1−αs

)〈
Qus,us

〉
> 0,

(4.18)

completing the proof. �

5. Concluding remarks

In this paper, to establish optimality conditions for reverse convex problems, we have used
the fact [17] that the inclusion A⊂ B is true for two convex sets A,B ⊂Rn (B = cl(B)) if
and only if

N(B, y)∩N(A, y) 
= ∅, ∀y ∈ bd(B) (5.1)

rather than using the well-known equivalent conditions from convex analysis:
(i) (B− y)◦ ∈ (A− y)◦ for y ∈ (A∩B);

(ii) σ(y |A)≤ σ(y | B) for all y ∈Rn;
(iii) N(B, y)⊂N(A, y) for all y ∈ bd(B);

where D◦, σ(· |D), bd(D) are used for the polar, the support function, and the boundary
of D, respectively.

In our caseA= F(z) and B is the Lebesgue set of the reverse convex constraint function
g(·).
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We also have touched on the question of how to prove that a level set approximation
of the reverse convex constraint function is a “resolving set,” which plays an essential role
in providing convergence of the algorithm based on the optimality conditions obtained.

Appendix

Theoretical method

In this appendix, we provide the outline of a theoretical method for (RP) and a sketch of
the proof of its convergence [16]. For simplicity, in addition we assume that function g(·)
is differentiable. In this case the optimality conditions (2.4), (2.14) could be written as

∀y : g(y)= 0,
〈∇g(y),x− y

〉≤ 0, ∀x ∈ F(z). (A.1)

We now introduce the function ϕ(·) as follows:

ϕ(z)= sup
x,y

{〈∇g(y),x− y
〉 | x ∈ S, f (x)≤ f (z), g(y)= g(z)

}
. (A.2)

By the definition of “sup” we have

ϕ(z)≥ 0, ∀z ∈ S. (A.3)

Moreover, for z : g(z)= 0 it is not difficult to see that ϕ(z)= 0 implies (A.1).
We also assume that

for given ε > 0, θ > 0, x ∈ S, g(x) 
∈ [−θ,ε]

there are μ > 0, u= u(x)∈ S such that

−θ ≤ g(u)≤ ε, f (u)≤ f (x)−μg(x) + ε.

(G)

Let {εk}, {θk}, {δk} be numerical sequences satisfying

εk > εk+1 > 0,
∞∑

k=1

εk < +∞, θk > 0, δk > 0,

μ
(
δk + θk

)≤ εk − εk+1.

(A.4)

We are given zk such that zk ∈ S and −θk ≤ g(zk)≤ εk,k = 0,1,2, . . ..
By the construction of the function ϕ(·) according to the definition of “sup” for δk > 0

there are pk, xk such that

〈∇g(yk), pk − yk
〉≥ ϕ

(
zk
)− δk,

g
(
pk
)= g

(
yk
)
, pk ∈ S, f

(
pk
)≤ f

(
zk
)
.

(A.5)

By convexity of g(·) and ϕ(·)≥ 0 we obtain

−δk ≤ ϕ
(
pk
)− δk ≤

〈∇g(yk), pk − yk
〉≤ g

(
pk
)− g

(
yk
)≤ g

(
pk
)

+ θk, (A.6)

which implies g(pk)≥−(δk + θk).
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The method is defined by

zk+1 =
⎧
⎨

⎩

pk, if − θk+1 ≤ g
(
pk
)≤ εk+1,

uk, if g
(
pk
) 
∈ [− θk+1,εk+1

]
,

(A.7)

where uk ∈ S is a vector that exists by assumption (G) and satisfies

−θk+1 ≤ g
(
uk
)≤ εk+1, f

(
uk
)≤ f

(
pk
)−μg

(
pk
)

+ εk+1. (A.8)

Theorem A.1. Suppose that assumptions (2.2), (A.4), (G) hold. Then a sequence {zk} gen-
erated by the method satisfies

lim
k→+∞

ϕ
(
zk
)= 0. (A.9)

Proof. Because of (A.5), in the case of zk+1 = pk inequality f (zk+1)≤ f (zk) holds. In the
second case

f
(
zk+1)≤ f

(
pk
)−μg

(
pk
)

+ εk+1 ≤ f
(
zk
)

+μ
(
δk + θk

)
+ εk+1. (A.10)

Hence, from (A.4) and the above two inequalities, we obtain

f
(
zk+1)≤ f

(
zk
)

+ εk, k = 0,1,2, . . . . (A.11)

When (A.11) and

εk > εk+1 > 0,
∞∑

k=1

< +∞ (A.12)

hold, the numerical sequence { f (zk)} converges [16] and its limit is finite because of
(2.2). Now, the index is divided into two parts ks, kt:

−θks+1 ≤ g
(
pks
)≤ εks+1,

−(θkt+1 + δkt
)≤ g

(
pkt
)≤ 1

μ

(
f
(
zkt
)− f

(
zkt+1))+ εkt+1.

(A.13)

Finally, we obtain limk→+∞ g(pk)= 0 which, in combination with inequalities (A.6), im-
plies

lim
k→+∞

ϕ
(
zk
)= 0. (A.14)

�

Theorem A.2. In addition to the conditions of Theorem A.1, suppose that (2.13) and the
following condition:

∃ν > 0, ∃ρ > 0, ‖∇g(y)‖ > ν, ∀g(y)≥−ρ (A.15)

are satisfied. Then an accumulation point of a sequence {zk} generated by the method solves
problem (RP).
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Proof. By construction we have

−θk ≤ g
(
zk
)≤ εk, (A.16)

which implies limk→+∞ g(zk)=0. Using this fact and (2.13), together with limk→+∞ϕ(zk)=
0, we obtain the desired result from the sufficient optimality condition. �
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