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We develop some properties on the autocorrelation of the k-period returns for the gen-
eral mean reversion (GMR) process in which the stationary component is not restricted
to the AR(1) process but takes the form of a general ARMA process. We then derive
some properties of the GMR process and three new nonparametric tests comparing the
relative variability of returns over different horizons to validate the GMR process as
an alternative to random walk. We further examine the asymptotic properties of these
tests which can then be applied to identify random walk models from the GMR pro-
cesses.
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1. Introduction

The efficiency of the securities markets constitutes the basis for most research conducted
by financial economists on the impact of the random walk model on stock prices or
other financial data. Some accept the random walk hypothesis but some reject it. Ran-
dom walks, a special case of unit root processes, help identify the kinds of shocks that
drive stock prices to make independent successive price changes. If a stock price series
follows a random walk, the price has no mean reversion tendency and, hence, a shock
to the price will lead to increasing deviations from its long-run equilibrium. If, on the
other hand, a stock price series does not follow a random walk but manifests significant
stationary components, it follows that future equity prices are predictable based on past
prices. Thus, it is possible to design profitable trading schemes based on historical equity
data.

Early statistics to test the random walk processes usually emphasize the examination
of serial correlation. A commonly used statistic to test the random walk hypothesis is
the unit root tests developed by Dickey and Fuller [17, 18]. The shortcoming of us-
ing this test is that it is a necessary but not a sufficient condition to show that random
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walk is a unit root process as a random walk for stock prices means that returns must
be uncorrelated but the unit root test allows predictable elements (Lo and MacKinlay
[39]).

As the variance ratio tests developed by Lo and MacKinlay [39] have been found to
be more powerful than unit root tests, they are more often used by both academics and
practitioners to test the null hypothesis of random walk processes for stock prices, a re-
flection of market efficiency upon acceptance of the hypothesis. In testing the random
walk hypothesis, some simply test random walk against non-random walk. However, the
random walk model could be too simple while the non-random walk model could be too
general, thus it would not reflect the complexity of stock return behavior which could
consist of components of both random walk and non-random walk models. To improve
the validity and reliability of the test in more complicated situations, some restrictions
apply to alternative models set in the alternative hypothesis. One category of the alterna-
tives (Summers [49]) is the mean reversion model (fads) (“fad” means there is a tendency
towards herding in the market) which is the sum of a random walk and an AR(1) station-
ary mean-reverting process with a mean reversion component resulting from temporary
divergences of prices from fundamental value.

The mean reversion could be explained by the overreaction hypothesis defined by De
Bondt and Thaler [15] who suggest that extreme movements in stock prices are followed
by movements in the opposite direction to “correct” the initial overreaction and that the
greater the magnitude of initial price change, the more extreme the offsetting reaction.
The idea of fads in investor attitudes may influence stock prices such that the prices have a
tendency to gravitate back to fundamentals in the long run. Some suggest that stock prices
will be mean-reverting over long horizons. In addition, from the long-term perspective,
many studies find that stock returns display a significant negative serial correlation. As
a simple fads model may not be able to capture the mean-reverting process over long
horizons nor capture the behavior of being negative serial correlated over long horizons,
a general mean reversion (GMR) model is then required to extend the fads model in
which the temporary component follows a general ARMA stationary process. The test of
random walk against GMR becomes important and we will study this hypothesis in this
paper.

In this paper, we study the GMR process in which the stationary component is not re-
stricted to the AR(1) process but takes the form of a general ARMA process. We first de-
rive several properties about the first-order autocorrelations of the k-period returns and
the variance ratios of the mean reversion process, and thereafter develop some properties
of the GMR process. Based on these properties, we further develop three new nonpara-
metric tests comparing the relative variability of returns over different horizons to test
the GMR model as an alternative to random walk. We further examine the asymptotic
properties of these tests which can then be applied to identify random walk models from
the GMR processes.

This paper is organized as follows. We begin with a series of literature review in Section
2. We discuss the theories of both random walk and the GMR process and study some
properties of the general GMR process in Section 3. In Section 4, we develop three new
nonparametric tests for random walk null versus the GMR alternative and examine their
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asymptotic properties. Conclusions are presented in Section 5 and the proofs of the prop-
erties and theorems are in the appendix.

2. Literature review

Stock prices should reflect a retinal forecast of the present value of future dividends. How-
ever, the efficient market hypothesis has been traditionally associated with the assertion
that future price changes are unpredictable or, in other words, efficient capital markets
have no memory. Since Bachelier [2] has first advanced the concept of efficient market
and used the random walk model for stock prices, financial economists have been exam-
ining the validity of the random walk model for stock prices. Ever since researchers, such
as Working [52], Cowles and Jones [12], Kendall [35], Roberts [46], and Fama [21], have
been testing whether stock prices follow a random walk model by examining whether
the horizon returns for successive price changes are autocorrelated in the short horizon
or not. Some of these studies conclude that the random walk model could not be re-
jected.

However, in many other studies, stock prices do not conform to the random walk pro-
cess for stock prices; for example, Merton [41] shows that the changes in the variance of a
stock’s return can be predicted from its variance in the recent past. The existence of many
anomalies, for example, the January effect (Keim [34] and Barone [3]) and the weekend
effect (French [25]), violate the random walk hypothesis for stock prices. In addition, the
positive autocorrelation of stock returns over intervals under a year and negative auto-
correlation over longer intervals have been interpreted as an evidence of mean reverting
behavior in stock prices. The predictable changes of current stock prices in the opposite
direction in the coming years suggest that there are large and persistent transitory devi-
ations from equilibrium. Under a closely related methodology based on autoregression,
MacKinlay and Ramaswamy [40] find significant negative first-order autocorrelation in
normalized intraday basis changes of the S&P 500 index futures traded on the Chicago
Mercantile Exchange.

Some researchers suggest that stock prices are not random but mean-reverted, which
implies that stock returns could be predicted from past returns. For example, Fama and
French [23] report that about 40% of the variation of 3–5 year returns can be predicted
from past returns because of the mean reversion in US stock prices. They also document
negative autocorrelations in long-horizon return in the portfolios of NYSE-listed stocks,
which suggest that long-horizon future returns are predictable based on past returns and
risk premia can generate mean reversion in equilibrium. Kim et al. [36] find that mean
reversion in stock prices is strong in the pre-war period and is weaker in the post-war
one; and interpret their findings as an evidence of a fundamental change in the stock
returns process. Bessembinder et al. [5] detect greater magnitude of mean reversion in
financial asset prices of agricultural commodities and crude oil, and substantially less
but still statistically significant degree of mean reversion for metals. Cecchetti et al. [8],
Bekaert and Hodrick [4], and Frennberg and Hansson [27] also analyze the mean rever-
sion in stock prices as well as in GNP. Besides the above mean reversion processes, differ-
ent mean reversion processes have also been proposed (Conrad and Kaul [11], Durlauf
[19]).
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Mean reversion could be explained by the overreaction hypothesis defined by De Bondt
and Thaler [15] who suggest that extreme movements in stock prices are followed by
movements in the opposite direction to “correct” the initial overreaction and that the
greater the magnitude of initial price change, the more extreme the offsetting reaction.
The idea of fads in investor attitudes may affect stock prices and as long as prices have
any tendency to gravitate back to fundamentals, they will be mean-reverting over long
horizons (Werner et al. [16]). To support their claim, they find that in a long-term per-
spective (3–7 years) stock returns display significant negative serial correlations. Poterba
and Summers [44] also find strong mean reversion over long-time horizons, with a dis-
play of negative serial correlation at long horizons but positive serial correlation over
short horizons. To model mean reversion, Summers [49] hypothesizes that the logarithm
of the stock prices follows the fads model which consists of a permanent component fol-
lowing a random walk model and a temporary component following a stationary AR(1)
model. A GMR model, for example, see Eckbo and Liu [20] and Daniel [14], is the ex-
tension of the fads model in which the temporary component follows a general ARMA
stationary process.

Random walk properties of stock price series have long been prominent in the stud-
ies of the stock return generating process (Summers [49], Fama and French [23], Lo
and MacKinlay [39], Liu and He [38]). There are many statistics that can be used to
test the random walk hypothesis, for example, the Box-Pierce Q test and the Dickey-
Fuller unit root tests. However, despite their superiority over serial correlations, the unit
root tests developed by Dickey and Fuller [17, 18] fail to detect some important de-
partures from the random walk model. Variance ratio tests originated from the pio-
neer works of Cochrane [10] and Lo and MacKinlay [39] with its methodology up-
dated and expanded by Chow and Denning [9] have been found to be a better alter-
native to these tests. For example, Liu and He [38] find that the variance ratio test is
heteroscedasticity-consistent and can accept overlapping data, which makes it a more re-
liable test than the Box-Pierce Q test and a more powerful test than both the Box-Pierce
Q test and the Dickey-Fuller tests against hypotheses such as the AR(1), ARIMA(1,1,1),
and ARIMA(1,1,0). As such, the variance ratio test has been widely used in finance, for
example, Oldfield and Rogalski [43], French and Roll [26], and Jones et al. [33] ap-
ply it to the relation between trading day and overnight return volatilities, Ronen [47]
tests it on per-hour variances and finds that they are equal during trading and non-
trading hours, and Lee and Mathur [37] use it to examine the efficiency in futures mar-
kets.

If a stock price follows a random walk with its generating process dominated by per-
manent components, it has no mean reversion tendency. The empirical evidence of the
random walk properties is mixed. To support the random walk hypothesis, Ayadi and
Pyun [1] apply the same test to stocks in the Korean Stock Exchange and show that after
adjusting the serial correlation and heteroscedasticity, the random walk hypothesis can-
not be rejected. Campbell et al. [7] see no objection to the random walk hypothesis in US
stock market. Ojah and Karemera [42] apply the multiple variance ratio test developed by
Chow and Denning [9] and show that equity prices in major Latin American emerging
equity markets follow a random walk model and conclude that international investors in
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these markets cannot use historical information to design systematically profitable trad-
ing schemes because future long-term returns are not dependent on past returns.

On the other hand, Poterba and Summers [44] reject the random walk hypothesis
and document that developed capital markets’ stock returns exhibit positive autocorre-
lation over short horizons and mean reversion over long horizons. Liu and He [38] re-
ject the random walk hypothesis under homoscedasticity and heteroscedasticity for five
weekly exchange rates and suggest autocorrelations of weekly increments in the nominal
exchange rate series, while Urrutia [50] uses a variance ratio test to document the dynam-
ics that are inconsistent with the random walk model. Fong et al. [24] indicate that the
martingale model works well for exchange rates of the floating-rate regime. Nevertheless,
Gilmore and McManus [28] apply the variance ratio tests and obtain mixed results con-
cerning the random walk properties of the stock indexes of the central European equity
markets.

3. The theory

Let pt be the logarithm of the stock price under consideration at time t. The random walk
model for stock price is one of the oldest parsimonious models in finance that hypothe-
sizes pt to follow the recursive equation such that

pt = μ+ pt−1 +ηt, (3.1)

where μ is a drift parameter and the usual stochastic assumption on ηt is that it is a white
noise process of a Gaussian error structure with mean zero and constant variance. Many
studies have rejected the random walk model for stock prices and support the mean-
reverting process by which long-horizon future returns are predictable based on past re-
turns. A simple mean reversion model is the fads model (Summers [49]) which consists
of a permanent component qt and a temporary component zt such that

pt = zt + qt, qt = μ+ qt−1 +ηt, zt = φzt−1 + ζt, (3.2)

in which qt and zt are independent, qt is a random walk with a drift, zt follows a stationary
AR(1) model, the disturbances {ηt} and {ζt} are serially, mutually, and cross-sectionally
independent at all nonzero leads and lags. This could be improved from testing non-
random walk alternative to the fads alternative such that

H0 : pt follows a random walk model versus H1 : pt follows a fads model. (3.3)

The GMR model (Eckbo and Liu [20] and Daniel [14]) is the extension of the fads
model in which zt follows a stationary ARMA process. The evidence that stock prices
will be mean-reverting over long horizons and displaying significant negative serial cor-
relations over years suggests that a simple fads model may not be able to capture the
mean-reverting process over long horizons. The GMR model extends the fads model, in
which the temporary component follows an ARMA stationary process. In this paper, we
test the following hypotheses:

H0 : pt follows a random walk model versus H1 : pt follows a GMR model. (3.4)
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To develop statistics for the above hypotheses, we first define the continuous compo-
nent k-period return, rkt , and the continuous component k-period change, skt , respective
at time t for the stationary component zt to be

rkt = pt − pt−k, skt = zt − zt−k. (3.5)

Under the GMR process, it is easy to show that

rkt = skt + kμ+
k−1∑

i=0

ηt−i. (3.6)

Notice that skt is stationary for any k as zt is stationary. We define

ai = corr
(
zt,zt−i

)
, bk1 = corr

(
skt+k,skt

)
, ρk1 = corr

(
rkt+k,rkt

)
, (3.7)

where ρk1 can be expressed as

ρk1 =
ρ1 + 2ρ2 + ···+ kρk + (k− 1)ρk+1 + ···+ ρ2k−1

k+ 2
[
(k− 1)ρ1 + ···+ ρk−1

] . (3.8)

In the GMR model, the transitory component zt possesses the following two properties.

Property 3.1. For any ARMA stationary process zt, the first-order autocorrelation of its
k-period change will tend to be minus half as k tends to infinity. That is,

lim
k→∞

bk1 =−
1
2
. (3.9)

Property 3.2. For any ARMA stationary process, the limit of the kth-order autocorrelation
will be zero, that is, limk→∞ ak = 0.

The proof of Property 3.1 is straightforward. The proof of Property 3.2 is in the appen-
dix. The above two properties concerning the stationary component in the GMR model
can be used to derive the following theorem concerning the first-order autocorrelation of
the k-period returns and the variance ratio test for the GMR model.

Theorem 3.3. For the GMR model, there exists an integer k0 such that the first-order auto-
correlation, ρk1 , of the k-period returns, rkt , will be negative for all k ≥ k0. That is, ρk1 < 0 for
all k ≥ k0.

Refer to the appendix for the proof of Theorem 3.3. This theorem asserts that if the
stock price is mean-reverted, it would exhibit negative autocorrelations for long-horizon
returns. But with the fads model, the stock returns will exhibit negative serial correlation
in a short horizon; see for example Jegadeesh [31]. For short-horizon returns, there is
no restriction on the signs of the first-order autocorrelations in the GMR process. To
test the GMR process against the random walk process using autocorrelations, we should
focus on the autocorrelations of the long-horizon instead of short-horizon returns and
test whether the autocorrelations are negative.
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The variance ratio test developed by Lo and MacKinlay [39] for k-period is defined as
1/k times the ratio of the variance of the kth lag difference of a series to that of the first
lag difference such that

VR(k,1)= var
(
rkt

)
/k

var
(
rt
)
/1

, (3.10)

where rkt and rt are defined in (3.5). Under the random walk hypothesis, the increments
in asset price series are serially uncorrelated, and hence the return variance will be pro-
portional to the return horizon and the variance ratio VR(k,1) will be 1, while with the
mean reversion alternative, VR(k,1) will fall below 1 due to the negatively serial correla-
tion of the return series. The variance ratio test exploits the fact that the variance of the
increments in a random walk is linear in the sampling interval such that if a series follows
a random walk model, the variance of its k-differences would be k times the variance of
its first differences. Hence, the hypothesis to test random walk against non-random walk
is equivalent to the hypothesis to test VR(k,1)= 1 against VR(k,1) �= 1.

Theorem 3.3 suggests that this variance ratio test may not be a suitable test for the
GMR model versus the random walk model. Before developing the new variance ratio
tests for this purpose, we first introduce the following theorems for the variance ratio
test.

Theorem 3.4. For the GMR model, there exists an integer k such that the variance ratio
for the return series would be less than one for all k ≥ k0 that is, VR(k,1) < 1 for all k ≥ k0

where VR(k,1) is defined in (3.10).

Theorem 3.5. For a GMR process, when k is large enough, the variance ratio VR(k,1)
will decrease as k increases. Thus, for sufficiently large k, VR(k,1) > VR(k + 1,1), that is,
VR(k,1) decreases as k increases.

Refer to the appendix for the proofs of Theorems 3.4 and 3.5. Theorem 3.4 states that
the variance ratio for long-horizon returns should be less than one. However, for the
GMR model, it is not necessary for the short-horizon returns to have a variance ratio less
than 1. This is different from the findings for the fads model, see Jegadeesh [31]. This
theorem suggests that for testing of the mean reversion process, one should focus on the
variance ratios of long-horizon returns and test whether they are less than one. In the
literature, there are several variance ratio tests, for example, Hays et al. [29] and Daniel
[14]. But in this paper, we provide an alternative approach of using the variance ratio test
to test whether a time series, for example, stock prices or stock index, follows the GMR
model or the random walk model, and this is discussed in the next section.

4. New variance ratio tests

Using the properties of the autocorrelation and variance ratio statistics for the GMR
model, we construct three new variance ratios tests to test whether stock prices follow
the random walk or the GMR model. The first test is constructed based on Theorem 3.3
and the other two tests on the subsequent two theorems. Testing the random walk process
against the GMR process is equivalent to testing whether the first-order autocorrelations
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of long-horizon returns are zero or negative, as in the following hypotheses:

H0 : ρk1 = 0, ∀k,

H1 : ρk1 < 0, for large k.
(4.1)

To test the above hypotheses, we first define

I(1)
i =

⎧
⎨
⎩

1, ρ̂ ki
1 < 0, i= 1,2, . . . ,m,

0, otherwise,
(4.2)

where ρ̂ki1 is the sample first-order autocorrelation for ki-period returns, i= 1,2, . . . ,m, as
defined in (3.7) and can be computed by (3.8). We then define

T(1)
q =

m∑

i=q
I(1)
i =

∑
a

(q)
i I(1)

i , (4.3)

where

a
(q)
i =

⎧
⎨
⎩

1, i≥ q,

0, otherwise
(4.4)

and obtain the following theorem.

Theorem 4.1. The statistic T(1)
q is asymptotically normal distributed with mean, variance,

and covariance:

asy ·E(T(1)
q

)=
m∑

i=1

a
(q)
i asy ·E(Ii

)= 1
2

m∑

i=1

a
(q)
i ,

asy ·var
(
T(1)
q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(1)
i j√

1− {
ρ(1)
i j

}2

⎤
⎥⎥⎦ ,

asy ·cov
(
T(1)
q ,T(1)

q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(1)
i j√

1− {
ρ(1)
i j

}2

⎤
⎥⎥⎦ .

(4.5)

Refer to the appendix for the proof of Theorem 4.1. The value of q determines the

starting point for the negative first-order autocorrelation. Obviously, a large value of T(1)
q

will favor the mean reversion alternative. However, there is no prior knowledge about
what q should be, so it is hard to predetermine the value of q, say q = 1,2, . . . ,m. To

overcome this problem, we construct T(1)
q for a set of predetermined values of q. The

random walk hypothesis will be rejected if at least one of T(1)
q is significantly large, and

will be accepted if all of them are not significantly large. The test statistic for (4.1) is

Z(1) = max
1≤q≤m

∣∣z(1)
q

∣∣, (4.6)
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where z(1)
q are the standardized values of the set of statistics {T(1)

q | q = 1,2, . . . ,m} such
that

z(1)
q = T(1)

q − asy ·E(T(1)
q

)
√

asy ·var
(
T(1)
q

) . (4.7)

With the above asymptotic expectations and variances of the set of statistics T(1)
q , the set

of standardized statistics z(1)
q can be computed by using (4.7). Note that as the asymptotic

distribution of the vector of the standardized statistics is multivariate normal with a zero
mean vector under the null hypothesis, the test statistic Z(1) which is the maximum of
the set of standardized statistics can then be obtained. We will discuss at the end of this
section the testing procedure of using Z(1).

Testing the random walk process against the GMR process is also equivalent to testing
whether the variance ratios for long-horizon returns are equal to one or smaller than one,
such that

⎧
⎨
⎩
H0 : VR(k,1)= 1, for all large k,

H1 : VR(k,1) < 0, for some large k.
(4.8)

To address these hypotheses, we define

I(2)
i =

⎧
⎨
⎩

1, VR̂
(
ki,1

)− 1 < 0, i= 1,2, . . . ,m,

0, otherwise,
(4.9)

where VR̂(ki,1) is the estimated variance ratio of the ki-period return to 1-period return,
i= 1,2, . . . ,m, which can be written as a linear combination of the autocorrelations of the
1-period return series (Cochrane [10]):

VR̂(k,1)= 1 +
2
k

k−1∑

j=1

(k− j)ρ̂ j , (4.10)

where ρj is the jth-order autocorrelation of 1-period return. Postulating

T(2)
q =

m∑

i=q
I(2)
i =

m∑

i=q
a

(q)
i I(2)

i , (4.11)

where a
(q)
i is defined in (4.4), we obtain the following theorem.
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Theorem 4.2. The statistic T(2)
q is asymptotically normal distributed with mean, variance,

and covariance:

asy ·E(T(2)
q

)= 1
2

m∑

i=1

a
(q)
i ,

asy ·var
(
T(2)
q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(2)
i j√

1− {
ρ(2)
i j

}2

⎤
⎥⎥⎦ ,

asy ·cov
(
T(2)
q ,T(2)

q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(2)
i j√

1− {
ρ(2)
i j

}2

⎤
⎥⎥⎦ .

(4.12)

Refer to the appendix for the proof of Theorem 4.2. Note that the value of q deter-
mines the starting point for the variance ratio when the variance ratio is smaller than

one. Obviously, a large value of T(2)
q will favor the mean reversion alternative. Following

the argument for the consideration of the test statistic in the first test, the test statistic of
this test should be

Z(2) = max
1≤q≤m

∣∣z(2)
q

∣∣, (4.13)

where z(2)
q are the standard values of the set of statistics {T(2)

q | q = 1,2, . . . ,m} under the
null hypothesis, such that

z(2)
q = T(2)

q − asy ·E(T(2)
q

)
√

asy ·var
(
T(2)
q

) . (4.14)

With the asymptotic expectations and variances of the set of statistics T(2)
q stated in

Theorem 4.2, the set of standardized statistics z(2)
q can be computed by using (4.14) and

thereafter the test statistic Z(2) can be computed. We will discuss at the end of this section
the testing procedure using the test statistic Z(2).

Alternatively, testing the random walk process against the GMR process is equivalent
to testing whether the variance ratios are the same or decreasing for long-horizon returns,
such that

⎧
⎨
⎩
H0 : VR(k+ 1,1)=VR(k,1), for all large k,

H1 : VR(k+ 1,1) < VR(k,1), for some large k.
(4.15)

To address these hypotheses, we first define

I(3)
i =

⎧
⎨
⎩

1, VR̂
(
ki+1,1

)−VR̂
(
ki,1

)
< 0, i= 1,2, . . . ,m− 1,

0, otherwise,
(4.16)
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where VR̂(ki+1,1) and VR̂(ki,1) are the estimated variance ratios of ki+1-period returns
and ki-period returns to 1-period returns, i = 1,2, . . . ,m− 1, which can be computed by
using (4.10). We also construct

T(3)
q =

m−1∑

i=q
I(3)
i =

m−1∑

i=1

a
(q)
i I(3)

i , (4.17)

where a
(q)
i is defined in (4.4). Here, the value of q determines the starting point for the

decreasing trend in the variance ratios. Same as the argument of the above two tests, a

large value of T(3)
q will favor the mean reversion alternative.

Theorem 4.3. The statistic T(3)
q is asymptotically normal distributed with mean, variance,

and covariance:

asy ·E(T(3)
q

)= 1
2

m−1∑

i=1

a
(q)
i ,

asy ·var
(
T(3)
q

)= 1
2π

m−1∑

i=1

m−1∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(3)
i j√

1− {
ρ(3)
i j

}2

⎤
⎥⎥⎦ ,

asy ·cov
(
T(3)
q ,T(3)

q

)= 1
2π

m−1∑

i=1

m−1∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(3)
i j√

1− {
ρ(3)
i j

}2

⎤
⎥⎥⎦ .

(4.18)

Refer to the appendix for the proof of Theorem 4.3. Since there is no prior knowledge
about what q should be, we set the test statistic of this test as

Z(3) = max
1≤q≤m

∣∣z(3)
q

∣∣, (4.19)

where z(3)
q are the standardized values of the set of statistics {T(3)

q | q = 1,2, . . . ,m− 1}
under the null hypothesis, such that

z(3)
q = T(3)

q − asy ·E(T(3)
q

)
√

asy ·var
(
T(3)
q

) . (4.20)

With the above asymptotic expectations and variances of the set of statistics T(3)
q , the

set of standardized statistics z(3)
q can be computed by using (4.20), and the asymptotic

null distribution of the test statistic Z(3) can be constructed using the simulation method.
We now turn to discuss the testing procedure of using the statistics Z(1), Z(2), and Z(3)

defined in (4.6), (4.13), and (4.19). For simplicity, we let Z(i) to be T1 and z(i)
q to be zq for

i= 1,2 and 3 and q = 1,2, . . . ,m. Thus, (4.6), (4.13), and (4.19) become

T1 = max
1≤i≤m

∣∣z
(
ki
)∣∣. (4.21)
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Applying the probability inequality in Sidak [48], we obtain the following inequality for
a set of m independent standard normal variates, (Z1,Z2, . . . ,Zm):

Pr
[

max
(∣∣z1

∣∣,
∣∣z2

∣∣, . . . ,
∣∣zm

∣∣)≤ Zα+/2

]
≥ (1−α), (4.22)

where α+ = 1− (1−α)1/m.
Hochberg [30] proves that under the condition that the set of m standard normal vari-

ates, zi’s, are correlated with an arbitrary correlation matrix Ω, the following inequality
holds:

Pr
[

max
(∣∣z1

∣∣,
∣∣z2

∣∣, . . . ,
∣∣zm

∣∣)≤ SMM(α;m;T)
]
≥ (1−α), (4.23)

where SMM(α;m;T) is the upper α point of the studentized maximum modulus (SMM)
distribution with parameter m and T (the sample size) degrees of freedom. Asymp-
totically, when T = ∞, the Hochberg inequality is equivalent to the Sidak inequality
with SMM(α;m;∞)= Zα+/2. Combining the above results, the following inequality holds
asymptotically:

Pr
[
T1 ≤ SMM(α;m;∞)

]≥ (1−α). (4.24)

The asymptotic SMM critical value can be calculated from the conventional standard
normal distribution, that is, SMM(α;m;∞)= Zα+/2. By comparing T1 with the calculated
SMM critical value, the random walk hypothesis versus the GMR model can then be
tested. We note that the multiple tests, for example, the multiple variance ratio test devel-
oped by Chow and Denning [9], usually follow the SMM distribution (Richmond [45]).

5. Concluding remarks

Lo and MacKinlay [39] introduce the variance ratio test to test the hypothesis of the
random walk to reflect market efficiency against the alternative of the non-random walk
model to reflect market inefficiency. However, the non-random walk model could be too
general and thus it does not reflect the complexity of stock return behavior which may
follow the GMR process, containing components of both random walk model and non-
random walk model. In this paper, we develop some properties for the GMR process.
Using these properties, we extend the variance ratio tests developed by Lo and MacKinlay
[39] to three new nonparametric tests comparing the relative variability of returns over
different horizons to test the GMR model as an alternative to the random walk model
and examine the asymptotic properties of these tests. We will study the power and the
size of our proposed variance ratio tests, and compare their performance with some well-
known variance ratio tests by simulation and by an illustration with a well-known real-life
example in a separate paper.

In the literature, there are several modifications and refinements made to the variance
ratio tests or the ways of using them. For example, Cressie [13] uses the standardized
variogram, that is, k times the variance ratio plotted against k, as a graphical procedure
for determining the nonstationarity in time series, Westfall [51] modifies the variance
ratio statistics to obtain the correct asymptotic level of significance for nonnormal data,
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and Chow and Denning [9] develop a simple multiple variance ratio test. Fong et al. [24]
develop joint variance ratio tests to assess the martingale hypothesis for exchange rates
while Ronen [47] modifies the variance ratio tests across trading and nontrading periods
by using the generalized method of moments. In addition, Wright [53] proposes using
variance ratio tests based on ranks and signs of a time series to test the null hypothesis
that the series is a martingale difference sequence. Recently, Busetti and Taylor [6] develop
a new statistic to test the hypothesis of stochastic stationarity in time series characterized
by variance shifts at some point in the sample. Further research includes applying our
approach to the above studies to test the GMR model in place of the non-random walk
model or the fads model.

Appendix

Proof of Property 3.2. Recall that any ARMA(p,q) stationary process can be represented
by

φp(B)zt = θq(B)εt, (A.1)

where φp(B) = 1−φ1B−···−φpBp and θq(B) = 1− θ1B−···− θqBq. Thus, for suffi-
ciently large k, we have

ak = φ1ak−1 +φ2ak−2 + ···+φpak−p. (A.2)

It is well known that the above equation can be expressed in the following form:

ak =
p∑

i=1

AiG
k
i , (A.3)

where G−1
i ’s are the roots of the difference equation φp(B)= 0, and all Ai’s are constants.

For any stationary process, we have |G−1
i | > 1 and |Gi| < 1 and hence

lim
k→∞

kak =
p∑

i=1

Ai

{
lim
k→∞

kGk
i

}
= 0 (A.4)

which implies that limk→∞ ak = 0. �

Proof of Theorem 3.3. As zt and qt are independent, for large k, the first-order autocorre-
lation of the k-period returns can be expressed in the following:

ρk1 =
cov

(
rkt+k,rkt

)

var
(
rkt

) =
cov

(
skt+k + kμ+

∑k−1
i=0 ηt+k−i,s

k
t + kμ+

∑k−1
i=0 ηt−i

)

var
(
skt + kμ+

∑k−1
i=0 ηt−i

)

= cov
(
skt+k,skt

)

var
(
skt
)

+ kσ2
η

= bk1 var
(
skt
)

var
(
skt
)

+ kσ2
η

.

(A.5)

From Property 3.1, we have limk→∞ bk1 = −1/2. Hence, ρk1 < 0 for all significant large k.
�
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Proof of Theorem 3.4. Since

var
(
rkt

)= var

(
skt + kμ+

k−1∑

i=0

ηt−i

)
= var

(
skt
)

+ kσ2
η ,

var
(
skt
)= var

(
zt − zt−k

)= var
(
zt
)

+ var
(
zt−k

)− 2cov
(
zt,zt−k

)

= 2var
(
zt
)− 2cov

(
zt,zt−k

)= 2
(
1− ak

)
σ2
z ,

(A.6)

we have

VR(k,1)= var
(
rkt

)
/k

var
(
rt
)
/1
=

⌊
var

(
skt
)

+ kσ2
η

⌋
/k

[
var

(
st
)

+ σ2
η

]
/1

= 2
(
1− ak

)
σ2
z + kσ2

η

2
(
1− a1

)
σ2
z + kσ2

η
· 1
k
= 1 +

2σ2
z

[(
1− ak

)− k
(
1− a1

)]

k
[
2
(
1− a1

)
σ2
z + σ2

η

] .

(A.7)

Applying Property 3.2, for sufficiently large k, we have (1− ak)− k(1− a1) < 0. Thus,
VR(k,1) < 1 for all sufficiently large k. �

Proof of Theorem 3.5.

VR(k+ 1,k)= var
(
rk+1
t

)
/k+ 1

var
(
rkt

)
/k

= var
(
sk+1
t

)
+ (k+ 1)σ2

η

var
(
skt
)

+ kσ2
η

· k

k+ 1

= 2
(
1− ak+1

)
σ2
z + (k+ 1)σ2

η

2
(
1− ak+1

)
σ2
z + kσ2

η
· k

k+ 1

= 1 +
2k

(
1− ak+1

)
σ2
z + k(k+ 1)σ2

η − 2(k+ 1)
(
1− ak

)
σ2
z − k(k+ 1)σ2

η[
2
(
1− ak

)
σ2
z + kσ2

η

]
(k+ 1)

= 1 +
2
(− 1− kak+1 + (k+ 1)ak

)
σ2
z[

2
(
1− ak

)
σ2
z + kσ2

η

]
(k+ 1)

.

(A.8)

As

lim
k→∞

2
(− 1− kak+1 + (k+ 1)ak

)
σ2
z =−2σ2

z , lim
k→∞

[
2
(
1− ak

)
σ2
z + kσ2

η

]
(k+ 1)=∞,

(A.9)

we have

lim
k→∞

VR(k+ 1,k)= 1−. (A.10)

Applying Theorem 3.4, for all sufficiently large k, we have VR(k+ 1,1) < 1.
Hence, VR(k+ 1,1) < VR(k,1). �
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To prove Theorems 4.1 to 4.3, we first define

Ii =
⎧
⎨
⎩

1, xi < 0, i= 1,2, . . . ,m,

0, otherwise,
(A.11)

where X = (x1,x2, . . . ,xm)t a∼N(0,Σ), Σ= {σi j}, and obtain the following property.

Property A.1. For Ii defined in (A.11), we have

asy ·E(Ii
)= 1

2
, asy ·var

(
Ii)= 1

4
,

asy ·cov
(
Ii,I j

)= 1
2π

tan−1

⎛
⎝ ρi j√

1− ρ2
i j

⎞
⎠ ,

(A.12)

where

ρi j = corr
(
xi,xj

)= σi j√
σii
√σj j . (A.13)

The proof of Property A.1 is straightforward and hence we skip presenting the proof
which is available on request.

Property A.2. Under the random walk hypothesis, the asymptotic expected values, vari-
ances, and covariances for the set of estimated variance ratios {VR̂(ki,1) | i= 1,2, . . . ,m}
are as follows:

asy ·E(VR̂
(
ki,1

))= 1, asy ·var
(

VR̂
(
ki,1

))= 2
(
ki− 1

)(
2ki− 1

)

3Tki
,

asy ·cov
(

VR̂
(
ki,1

)
,VR̂

(
kj ,1

))= 2
3

(
ki− 1

)

Tkj

(
3kj − ki− 1v), i < j,

√
T(VR̂− 1) a∼N

(
0,Σ2

)
,

(A.14)

where VR̂= (VR̂(k1− 1),VR̂(k2− 1), . . . ,VR̂(km− 1))′ and Σ2 = {σ (2)
i j } with

σ (2)
ii = 2

(
ki− 1

)(
2ki− 1

)

3ki
, σ (2)

i j =
2
3

(
ki− 1

)

kj

(
3kj − ki− 1

)
. (A.15)

These properties enable us to obtain the proofs of Theorems 4.1 to 4.3 shown as below.

Proof of Theorem 4.1. Under the null hypothesis, ρ̂ ki
1 will be small and can be estimated

by (3.8). It is well known that under the null hypothesis, the vector of the sample auto-
correlation for the i-period returns has an asymptotic multivariate normal distribution
such that

√
Tρ̂

a∼N(0,I). (A.16)
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Hence, the asymptotic null distribution of ρ̂ ki
1 is

√
Tρ̂ k

i
a∼N

(
0,

∑

1

)
, (A.17)

where ρ̂ k
1 = (ρ̂ k1

1 , ρ̂ k2
1 , . . . , ρ̂ km

1 )′ and
∑

1 = {σ (1)
i j } with

σ (1)
ii = 2k2

i + 1
3ki

,

σ (1)
i j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k2
i

k j
, kj ≥ 2ki,

1
3kikj

[
k3
j − 6k2

j ki + 12kjk2
i − 5k3

i + 2ki− kj
]

, ki ≤ kj ≤ 2ki.

(A.18)

Under the null hypothesis, using the above results and applying Property A.1, we obtain
the following results:

asy ·E(I(1)
i

)= 1
2

, asy ·var
(
I(1)
i

)= 1
4

,

asy ·cov
(
I(1)
i ,I(1)

j

)= 1
2π

tan−1

⎡
⎢⎢⎣

ρ(1)
i j√

1− {
ρ(1)
i j

}2

⎤
⎥⎥⎦ ,

(A.19)

where

ρ(1)
i j = corr

(
ρ̂ ki
i , ρ̂

kj
1

)= σ (1)
i j√

σ (1)
ii

√
σ (1)
j j

. (A.20)

Note that ρ(1)
i j will not depend on T , the total number of observations in the returns series.

Also, under the null hypothesis, the asymptotic expectations, variances, and covariances

of the set of statistics, T(1)
q , will then be

asy ·E(T(1)
q

)=
m∑

i=1

a
(q)
i asy ·E(Ii

)= 1
2

m∑

i=1

a
(q)
i ,

asy ·var
(
T(1)
q

)=
m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j cov

(
I(1)
i ,I(1)

j

)

= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(1)
i j√

1− {
ρ(1)
i j

}2

⎤
⎥⎥⎦ ,
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asy ·cov
(
T(1)
q ,T(1)

q

)= cov

[ m∑

i=1

a
(q)
i I(1)

i ,
∑

a
(q)
j I(1)

j

]
=

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j cov

(
I(1)
i ,I(1)

j

)

= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(1)
i j√

1− {
ρ(1)
i j

}2

⎤
⎥⎥⎦ .

(A.21)
�

Proof of Theorem 4.2. From Property A.2, under the random walk hypothesis, we obtain
the asymptotic expected values, variances, and covariances for the set of estimated vari-
ance ratios {VR̂(ki,1) | i = 1,2, . . . ,m}. Using this result and applying Property A.1, we
obtain the following results under the null hypothesis:

asy ·E(I(2)
i

)= 1
2

, asy ·var
(
I(2)
i

)= 1
4

,

asy ·cov
(
I(2)
i ,I(2)

j

)= 1
2π

tan−1

⎡
⎢⎢⎣

ρ(2)
i j√

1− {
ρ(2)
i j

}2

⎤
⎥⎥⎦ ,

(A.22)

where

ρ(2)
i j = corr

(
VR̂

(
ki,1

)
,VR̂

(
kj ,1

))= σ (2)
i j√

σ (2)
ii

√
σ (2)
j j

. (A.23)

Note again that ρ(2)
i j will not depend on T , that is, the total number of observations in the

returns series. Also, under the null hypothesis, the asymptotic expectations, variances,

and covariances of the set of statistics, T(2)
q will be

asy ·E(T(2)
q

)= 1
2

m∑

i=1

a
(q)
i ,

asy ·var
(
T(2)
q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(2)
i j√

1− {
ρ(2)
i j

}2

⎤
⎥⎥⎦ ,

asy ·cov
(
T(2)
q ,T(2)

q

)= 1
2π

m∑

i=1

m∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(2)
i j√

1− {
ρ(2)
i j

}2

⎤
⎥⎥⎦ .

(A.24)

�
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Proof of Theorem 4.3. From Property A.2, under the random walk hypothesis, we obtain
the asymptotic expected values, variances, and covariances for the set of estimated vari-
ance ratios {VR̂(ki,1) | i = 1,2, . . . ,m}. Using this result and applying Property A.1, we
obtain the following results under the null hypothesis:

asy ·E(I(3)
i

)= 1
2

, asy ·var
(
I(3)
i

)= 1
4

,

asy ·cov
(
I(3)
i ,I(3)

j

)= 1
2π

tan−1

⎡
⎢⎢⎣

ρ(3)
i j√

1− {
ρ(3)
i j

}2

⎤
⎥⎥⎦ ,

(A.25)

where

ρ(3)
i j = corr

(
VR̂

(
ki+1,1

)−VR̂
(
ki,1

)
,VR̂

(
kj+1,1

)−VR̂
(
kj ,1

))

= σ (2)
i+1, j+1− σ (2)

i+1, j − σ (2)
i, j+1 + σ (2)

i, j√
σ (2)
i+1,i+1 + σ (2)

i,i − 2σ (2)
i+1,i

√
σ (2)
j+1, j+1 + σ (2)

j, j − 2σ (2)
j+1, j

.
(A.26)

Thus, under the null hypothesis, the asymptotic expectations, variances, and covariances

of the set of statistics, T(3)
q , will be

asy ·E(T(3)
q

)= 1
2

m−1∑

i=1

a
(q)
i ,

asy ·var
(
T(3)
q

)= 1
2π

m−1∑

i=1

m−1∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(3)
i j√

1− {
ρ(3)
i j

}2

⎤
⎥⎥⎦ ,

asy ·cov
(
T(3)
q ,T(3)

q

)= 1
2π

m−1∑

i=1

m−1∑

j=1

a
(q)
i a

(q)
j tan−1

⎡
⎢⎢⎣

ρ(3)
i j√

1− {
ρ(3)
i j

}2

⎤
⎥⎥⎦ .

(A.27)

�
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