© Journal of Applied Mathematics & Decision Sciences, 1(2), 119-130 (1997)
Reprints Available directly from the Editor. Printed in New Zealand.

ON THE SIGNIFICANCE LEVEL OF THE
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Abstract. The concept of the multirelation coefficient is defined to describe the closeness of
a set of variables to a linear relation. This concept extends the linear correlation between two
variables to two or more variables. Parameters of a beta distribution are determined that are
utilized to approximate significance levels of the multirelation coefficient for any given number
of observations and variables. A generalized Student ¢ distribution is defined. This distribution,
which is termed the multirelated ¢ distribution, reduces to the Student ¢ distribution for two
variables. It is useful in the determination of the significance level of the multirelation coefficient.
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1. Introduction

The concept of the multirelation coefficient is described in Drezner (1995). It gives
a measure of closeness of a set of variables to a linear relationship. In order to be
able to compare the significance level of two multirelation coefficients with different
dimensionality, the significance level of the multirelation coefficient is needed. We
evaluate the distribution of the multirelation coefficient and its fractiles for a finite
number of observations. There might be ways to evaluate the limit of the distribu-
tion as the number of observations increases to infinity. Such a result might have
some practical interest but is not investigated here.

First, the concept of multirelation coefficient is introduced and then some of its
properties are outlined (for a detailed discussion see Drezner (1995)). Let A(R) be
the least eigenvalue of the correlation matrix R between a given set of k variables.
The multirelation coefficient r(Y1,...,Y%) is defined as: r(Y1,...,Y:) =1 — A(R).
The multirelation coefficient is a measure of the linear relation among all the Y; for
i=1,...,k.

The following properties are proven in Drezner (1995) and help explain the role
and the properties of the multirelation coefficient.

Property 1 0 <r(Yy,...,Y;) < 1.

Property 2 r(Y1,...,Y, 1) <r(Y3,...,Y%).

T Part of this research was done while the second author was on sabbatical leave at the Hong
Kong University of Science and Technology, Kowloon, Hong Kong.
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Property 3 r(Y1,...,Y:) =0 iff r;; =0 for every 1 <i < j <k.

Property 4 r(Y1,...,Y) =1 iff some vector is a linear combination of the other
vectors. (Or, in other words, the vectors are linearly dependent).

2. On the Distribution of the Multirelation Coefficient

In order to be able to compare multirelation coefficients with different number of
variables and observations the fractiles of the multirelation coefficient are helpful.
In this section we approximately calculate these fractiles for a given number of
observations and variables.

First, some properties of the eigenvalues of the correlation matrix are found. Let,
for a given correlation matrix R = {r;;},

The eigenvalues of R are Ay, ..., A;x. By matrix theory:

k k
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Assume that the elements of k vectors Y; for ¢ = 1,... k of length n each have a
given random distribution. By (6) the eigenvalues are a sample from a multivariate
distribution ¥. The correlation matrix of the sample has off diagonal elements equal
to —ﬁ. This correlation matrix is singular. By (3) the means of the multivariate
distribution ¥ are all equal 1. It is known, (Kendall, 1980), that E(r};) = —L for
any distribution of independent Y;'s. Therefore, E(7?) = —= . By (4) the variances

of ¥ are all equal to %

In trying to determine the type of the multivariate distribution ¥, when the Y}'s
are drawn from i.i.d. normal distributions, we first checked whether ¥ can be
approximated by a multivariate normal distribution (see the Appendix for compu-
tational details). We observed that the multivariate normal distribution is not a
good approximation for the distribution of the eigenvalues and thus cannot be used
to accurately derive the distribution of the multirelation coefficient. In order to
find a better approximation for ¥ we plotted the simulation results. In Figure 1
we present the distribution of the least eigenvalue that was obtained by calculating
the eigenvalues of a correlation matrix of 5 by 5 generated by randomly generated
vectors of 100 elements each. The figure shows the frequency of eigenvalues in
segments of size 0.01 (i.e., between 0 and 0.01, 0.01 and 0.02 and so on) based on
100,000 correlation matrices. This distribution is not a normal distribution, nor is
it symmetric. A discussion of the distribution of the eigenvalues of the correlation
matrix can be found in Kendall and Stuart (1966)'. However it does not address
our particular issue of the distribution of the smallest eigenvalue. Moreover, since
the mean of all eigenvalues is 1 (3), the least eigenvalue cannot exceed 1. The
distribution of the least eigenvalue is between 0 and 1. We therefore attempted to
estimate the probability density function of the least eigenvalue in order to be able
to calculate the significance level of the multirelation coefficient.

The case k = 2 can be explicitly solved. For k = 2 the multirelation coefficient
is the absolute value of the correlation coefficient. The correlation coefficient is
related to the Student ¢ distribution by the relationship:

rvn —2
P . ™)
V1—r2
The Student t distribution is related to the beta distribution by the following for-
mula (Abramowitz and Stegun, 1972):

v 1 v
v = x a’a f r=——7
t (2 2> or v+ t2 ®

Since v = n — 2, equation (7) yields:

v _ 2
pra- i ©)

Comparing (9) to (8) we get that 1 —r? is distributed by a beta distribution with
parameters ¢ = 232 and b = 1. Since 1_.(a,b) = I.(b,a), for k = 2: r? is
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Figure 1. The distribution of the smallest eigenvalue

distributed according to a beta distribution with parameters @ = 1 and b = 252
In conclusion, for the case £k = 2 the square of the multirelation coefficient is

distributed according to a beta distribution.

Examination of many graphs of the distribution of the least eigenvalue led us
to conclude that a beta distribution may be used to estimate the multirelation
coefficient distribution or its square. In Figure 2 the frequency of the least eigen-
value is compared with the beta distribution with the mean and the variance of
the simulated values. The fit justifies the exploration of the beta distribution as
an approximation to the distribution of the least eigenvalue. However, since r? is
actually a beta distribution for £ = 2, and the square of the multiple correlation
coefficient is also a beta distribution with a = % and b = ”T_k (Stuart and Ord,
1991; Kendall and Stuart, 1966), we investigated a possible fit of a beta distribution
to the distribution of r? rather than r.
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Figure 2. Distribution of the smallest eigenvalue and its beta approximation

3. Determining the Parameters of the Beta Distribution

In order to be able to apply the beta distribution for the calculation of the probabil-
ities involving the multirelation coefficient, estimates for the parameters a and b of
the distribution are required for given k and n (rather than be estimated by simu-
lation). We calculated these parameters for k = 2,3,...,10 and n = 10,20, ...,100
using only pairs k,n for which n > 3k. The simulation was performed as follows.
For a given k and n, a matrix of size k by n is generated using standard generation
techniques (Law and Kelton (1991), Marse and Roberts (1983)). The elements of
this matrix are drawn from a standard normal distribution. The correlation matrix
is calculated and the multirelation coefficient found.

For each case we simulated 20 sets of 50,000 matrices each for a total of one million
matrices for each result in Table 1. In the table we report the mean and standard
error (standard deviation of the 20 sets divided by v/20) for a and b calculated for
each pair of k and n. A curve fitting using multiple regression was performed on
these means. Since regression analysis assumes uniform variance for all points, we

regressed on 2=%5 for a, and —2 — 0.5 for b using only the points for k > 3. These
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Table 1. Means and standard errors of the beta parameters
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a b a b

k n Mean Std. Mean Std. k n Mean Std. | Mean Std.

Err. Err. Err Err.
2 10 .5002 | .0009 4.0102 | .0089 6 30 6.0431 | .0074 | 13.6086 | .0178
2 20 14984 | .0007 8.9728 | .0209 6 40 5.9395 | .0058 | 19.1151 | .0204
2 30 14991 | .0008 | 13.9733 | .0310 6 50 5.8610 | .0058 | 24.4942 | .0241
2 40 14998 | .0010 | 18.9934 | .0473 6 60 5.8108 | .0060 | 29.8494 | .0308
2 50 .5008 | .0013 | 24.0249 | .0759 6 70 5.7688 | .0079 | 35.1205 | .0522
2 60 .5015 | .0014 | 29.0718 | .0905 6 80 5.7310 | .0075 | 40.3296 | .0565
2 70 5011 | .0012 | 34.0281 | .0955 6 90 5.6965 | .0100 | 45.4839 | .0787
2 80 .5004 | .0011 | 38.9781 | .1139 6 | 100 5.6622 | .0093 | 50.5601 | .0804
2 90 .5004 | .0011 | 43.9846 | .1161 7 30 8.0576 | .0122 | 13.4839 | .0210
2 | 100 .5004 | .0010 | 48.9952 | .1092 7 40 7.9263 | .0097 | 19.3146 | .0254
3 10 | 1.4615 | .0021 3.5677 | .0059 7 50 7.7962 | .0090 | 24.9112 | .0316
3 20 | 1.4391 | .0024 8.5942 | .0159 7 60 7.7109 | .0106 | 30.4740 | .0426
3 30 | 1.4264 | .0028 | 13.5165 | .0239 7 70 7.6495 | .0112 | 35.9733 | .0532
3 40 | 1.4165 | .0025 | 18.3722 | .0339 7 80 7.5798 | .0112 | 41.3033 | .0611
3 50 | 1.4126 | .0021 | 23.2346 | .0345 7 90 7.5137 | .0096 | 46.5561 | .0646
3 60 | 1.4117 | .0023 | 28.1393 | .0473 7 | 100 7.4701 | .0122 | 51.8415 | .0879
3 70 | 1.4081 | .0019 | 32.9634 | .0528 8 30 | 10.3174 | .0166 | 13.3077 | .0232
3 80 | 1.4041 | .0021 | 37.7299 | .0681 8 40 | 10.0928 | .0118 | 19.3599 | .0233
3 90 | 1.4004 | .0020 | 42.5085 | .0727 8 50 9.9131 | .0094 | 25.2065 | .0266
3 | 100 | 1.3970 | .0025 | 47.2469 | .0963 8 60 9.7875 | .0132 | 30.9862 | .0407
4 20 | 2.7390 | .0034 8.4389 | .0129 8 70 9.6777 | .0121 | 36.6246 | .0459
4 30 | 2.6979 | .0040 | 13.5666 | .0205 8 80 9.5954 | .0106 | 42.2148 | .0470
4 40 | 2.6678 | .0037 | 18.5891 | .0285 8 90 9.5104 | .0126 | 47.6753 | .0638
4 50 | 2.6509 | .0037 | 23.5816 | .0344 8 | 100 9.4378 | .0154 | 53.0880 | .0882
4 60 | 2.6440 | .0037 | 28.6169 | .0451 9 30 | 12.7596 | .0199 | 13.0054 | .0214
4 70 | 2.6273 | .0045 | 33.4731 | .0631 9 40 | 12.4468 | .0196 | 19.3175 | .0309
4 80 | 2.6101 | .0045 | 38.2554 | .0704 9 50 | 12.1993 | .0160 | 25.3959 | .0332
4 90 | 2.5971 | .0050 | 43.0491 | .0921 9 60 | 12.0301 | .0168 | 31.3880 | .0442
4 | 100 | 2.5879 | .0044 | 47.8435 | .0889 9 70 | 11.8975 | .0149 | 37.2875 | .0455
5 20 | 4.3336 | .0041 8.2193 | .0103 9 80 | 11.7798 | .0166 | 43.0683 | .0611
5 30 | 4.2409 | .0070 | 13.6075 | .0254 9 90 | 11.6700 | .0168 | 48.7397 | .0732
5 40 | 4.1901 | .0055 | 18.8849 | .0266 9 | 100 | 11.5891 | .0162 | 54.4027 | .0846
5 50 | 4.1460 | .0059 | 24.0506 | .0370 (| 10 40 | 14.9622 | .0245 | 19.1574 | .0326
5 60 | 4.1227 | .0052 | 29.2296 | .0430 || 10 50 | 14.6170 | .0193 | 25.4273 | .0356
5 70 | 4.0901 | .0061 | 34.2507 | .0604 (| 10 60 | 14.4061 | .0162 | 31.6369 | .0364
5 80 | 4.0630 | .0068 | 39.2278 | .0735 || 10 70 | 14.2234 | .0188 | 37.7142 | .0462
5 90 | 4.0428 | .0076 | 44.2211 | .0899 || 10 80 | 14.0750 | .0177 | 43.6801 | .0514
5| 100 | 4.0242 | .0072 | 49.1511 | .0894 || 10 90 | 13.9537 | .0196 | 49.6049 | .0692
6 20 | 6.2146 | .0056 7.9360 | .0086 || 10 | 100 | 13.8663 | .0181 | 55.5136 | .0786

“normalized” values yield uniform standard errors for the range in Table 1. The
following estimates for a and b for given n and k were obtained for r2:
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a ~ 0.5+ (k—2) [0.656849 +0.143161vk — 2 — 0.0136582/(k — 2)°

1.8702  24.1483 n 132.632)]
n 2

+ (k—2) (0.0981548+
n—2

(10)

n n3

+ (k- 2) [—13.8256 +9.85850v/F — 2 — 1.618145(k — 2)

104.2541 — 38.0559/F =2 — 6.3085(k — 2
4 0.1420267/(k — 2)¢F 4 042041 = 38,0559 6.3085(k — 2)

Vn =2
N —222.772 — 100.9864/k — 2 + 91.075(k — 2)
n—2
| B14178VE =2 — 2217765 (k — 2)]
(n—2)?

4. Calculating Approximate Fractiles

Calculating the significance level of a certain value of the multirelation coefficient
can be done by the following algorithm:

1. A multirelation coefficient of r was obtained for given values of k£ and n.
2. Estimate the values of a and b using equation (9).

3. Estimate the significance as 1-I,2(a,b) where I.(a,b) is the incomplete beta
distribution (Abramowitz and Stegun, 1972).

Calculating the critical value of r for a given significance a can be done as a
binary search on the segment [0,1] using the algorithm.

We tested this procedure on various values of n, k and « and compared the critical
value of r obtained by the algorithm with a simulation of 10,000 matrices. The
comparison is reported in Table 2. The simulated fractiles are given in parentheses
next to the calculated fractiles.

We know that for £ = 2 the quantity ’\’/‘{’1:222 is a Student t distribution. We
have found that the same quantity is well behaved for the multirelation coefficient
fractiles. It can be used to estimate fractiles for values of n which are not reported
in Tables 2 and 3. We define these values as the Multirelated t Fractiles. In Table
3 we give the calculated values for these Multirelated ¢ fractiles.

5. An Example

In Drezner (1995) an example taken from Kendall (1980) was used to demonstrate
the concept of the multirelation coefficient. Fifteen traits of applicants were tested
for relationships. The traits were:
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Table 2. Fractiles of the multirelation coefficient and simulation results

k| n 0.90 0.95 0.975 0.99 0.995

2 | 10 | 549(.552) | .632(.630) | .697(.697) | .765(.769) |.805(.815)
2 | 20 | .378(.380) | .444(.441) | .499(.494) | .561(.552) |.602(.596)
2 | 30 | .306(.308) | .361(.361) | .409(.402) | .463(.450) |.499(.489)
2 | 40 | .264(.262) | .312(.311) | .354(.353) | .403(.403) |.435(.431)
2 | 50 | .235(.233) | .279(.276) | .317(.317) | .361(.359) |.391(.384)
2 | 100 | .166(.166) | .197(.199) | .224(.227) | .257(.263) |.279(.285)
3| 10 | .746(.744) | .800(.797) | .840(.843) | .880(.886) |.903(.907)
3| 20 | .540(.544) | .592(.600) | .636(.644) | .684(.690) |.715(.722)
3| 30 | .443(.443) | .490(.490) | .530(.5 4) 575(.582) |.605(.611)
3| 40 | .386(.385) | .428(.428) | .465(.465) | .506(.510) |.534(.539)
3| 50 | .346(.343) | .385(.385) | .418(.419) | .457(.455) |.483(.481)
3 | 100 | .246(.246) | .274(.275) | .300(.302) | .329(.329) |.349(.349)
4| 20| .644(.644) | .687(.688) | .722(.726) | .760(.768) |.785(.789)
4| 30 | .537(.536) | .577(.578) | .612(.615) | .650(.652) |.675(.683)
4| 40 | .471(.472) | .508(.510) | .540(.542) | .577(.583) |.601(.614)
4| 50 | 424(.423) | .459(.458) | .489(.490) | .524(.527) |.547(.547)
4| 100 | .305(.305) | .332(.331) | .355(.355) | .382(.388) |.401(.405)
5| 20 | .721(.723) | .756(.757) | .785(.787) | .815(.814) |.835(.834)
5| 30 | .609(.607) | .644(.641) | .673(.673) | .706(.705) |.728(.728)
5| 40 | .536(.537) | .570(.571) | .598(.600) | .631(.634) |.652(.654)
5| 50 | .485(.487) | .517(.521) | .544(.554) | .575(.584) |.596(.607)
5| 100 | .353(.352) | .378(.377) | .400(.401) | .425(.426) |.442(.441)
6 | 20 | .780(.780) | .809(.813) | .832(.838) | .857(.863) |.873(.878)
6 | 30 | .666(.666) | .697(.700) | .723(.727) | .751(.754) |.770(.775)
6 | 40 | .590(.591) | .621(.621) | .646(.649) | .675(.679) |.694(.700)
6| 50 | .536(.5 9) 565(.568) | .590(.593) | .618(.626) |.637(.646)
6 | 100 | .393(.392) | .417(.419) | .437(.442) | .461(.468) |.477(.486)
7| 30 | .714(.715) | .741(.742) | .764(.765) | .789(.793) |.805(.811)
7| 40 | .636(.639) | .663(.666) | .686(.692) | .712(.723) |.729(.740)
7| 50 | .579(.581) | .606(.607) | .629(.630) | .654(.657) |.671(.673)
7 | 100 | .428(.428) | .450(.453) | .470(.473) | .492(.497) |.507(.514)
8 | 30 | .754(.753) | .778(.780) | .798(.802) | .820(.823) |.834(.837)
8 | 40 | .676(.676) | .700(.703) | .721(.725) | .744(.749) |.760(.764)
8 | 50 | .617(.618) | .642(.644) | .663(.664) | .686(.688) |.702(.706)
8 | 100 | .459(.458) | .480(.482) | .499(.500) | .520(.524) |.534(.538)
9 | 30 | .787(.789) | .809(.810) | .826(.829) | .845(.849) |.858(.863)
9 | 40 | .710(.710) | .733(.734) | .751(.754) | .773(.779) |.786(.793)
9| 50 | .651(.651) | .674(.677) | .693(.698) | .714(.721) |.729(.739)
9 | 100 | .487(.487) | .507(.507) | .525(.527) | .545(.550) |.559(.567)
10 | 40 | .740(.742) | .761(.764) | .778(.781) | .797(.802) |.809(.814)
10 | 50 | .681(.682) | .702(.703) | .720(.722) | .740(.741) |.753(.752)
10 | 100 | .513(.512) | .532(.532) | .549(.552) | .568(.570) |.581(.586)

(1) Form of Letter of application (6) Lucidity (11) Ambition

(2) Appearance (7) Honesty (12) Grasp

(3) Academic Ability (8) Salesmanship (13) Potential

(4) Likability (9) Experience (14) Keenness to join
(5) (10 (15)

5) Self-confidence ) Drive Suitability
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Table 3. Fractiles of the Multirelated ¢ distribution

k n 0.90 0.95 | 0.975 0.99 |0.995
2 10 | 1.860 | 2.306 | 2.752 | 3.356 |3.833
2 20 | 1.735 | 2.101 | 2.445 | 2.879 |3.197
2 30 | 1.702 | 2.049 | 2.369 | 2.764 |3.047
2 40 | 1.687 | 2.025 | 2.334 | 2.712 |2.981
2 50 | 1.678 | 2.011 | 2.315 | 2.683 [2.943
2] 100 | 1.662 | 1.985 | 2.277 | 2.628 |2.873
3 10 | 3.169 | 3.766 | 4.380 | 5.240 |5.939
3 20 | 2.719 | 3.119 | 3.497 | 3.980 [4.338
3 30 | 2.617 | 2.976 | 3.308 | 3.721 |4.020
3 40 | 2.577 | 2.920 | 3.233 | 3.618 |3.894
3 50 | 2.555 | 2.889 | 3.192 | 3.562 |3.825
3| 100 | 2.508 | 2.824 | 3.108 | 3.450 |3.689
4 20 | 3.572 | 4.011 | 4.429 | 4.966 |5.368
4 30 | 3.369 | 3.743 | 4.090 | 4.523 |4.838
4 40 | 3.288 | 3.637 | 3.957 | 4.351 |4.633
4 50 | 3.246 | 3.582 | 3.887 | 4.260 [4.526
4 | 100 | 3.168 | 3.480 | 3.760 | 4.096 |4.333
5 20 | 4.409 | 4.899 | 5.367 | 5.973 |6.429
5 30 | 4.060 | 4.453 | 4.820 | 5.278 |5.612
5 40 | 3.919 | 4.276 | 4.605 | 5.010 |5.300
5 50 | 3.847 | 4.187 | 4.496 | 4.874 [5.143
5| 100 | 3.730 | 4.039 | 4.317 | 4.650 |4.884
6 20 | 5.283 | 5.837 | 6.371 | 7.065 |7.589
6 30 | 4.730 | 5.148 | 5.538 | 6.026 |6.383
6 40 | 4.510 | 4.879 | 5.218 | 5.637 |5.938
6 50 | 4.400 | 4.745 | 5.060 | 5.445 |5.719
6 | 100 | 4.230 | 4.538 | 4.813 | 5.144 |5.376
7 30 | 5.400 | 5.847 | 6.264 | 6.789 |7.173
7 40 | 5.083 | 5.467 | 5.819 | 6.255 |6.568
7 50 | 4.926 | 5.279 | 5.600 | 5.994 |6.275
7] 100 | 4.688 | 4.995 | 5.270 | 5.599 |5.831
8 30 | 6.077 | 6.556 | 7.006 | 7.572 |7.987
8 40 | 5.650 | 6.050 | 6.418 | 6.874 |7.202
8 50 | 5.437 | 5.800 | 6.130 | 6.535 |6.824
8 | 100 | 5.117 | 5.423 | 5.697 | 6.027 |6.258
9 30 | 6.759 | 7.275 | 7.759 | 8.371 |8.821
9 40 | 6.216 | 6.635 | 7.021 | 7.499 |7.845
9 50 | 5.942 | 6.316 | 6.657 | 7.075 |7.373
9 | 100 | 5.523 | 5.830 | 6.105 | 6.435 |6.666
10 40 | 6.782 | 7.222 | 7.628 | 8.131 |8.495
10 50 | 6.444 | 6.831 | 7.184 | 7.617 |7.926
10 | 100 | 5.913 | 6.222 | 6.498 | 6.829 |7.061

127

The data consisted of 48 applicants and the correlation matrix between these
traits is given (Drezner, 1995; Kendall, 1980). Note that two entries should be
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corrected in Drezner (1995): 7514 = 0.48, r11,15 = 0.43. A procedure similar to
backward step-wise regression was presented in Drezner (1995). Variables which
are not associated with the rest were dropped one by one according to a certain
rule. The issue of which of the subsets is best remained unresolved. In order to
determine which of the subsets is the most significant, we need to calculate the
significance level of the multirelation coefficient for each subset. The present paper
provides us with the tools necessary to make such determination. In Table 4 we give
the original subsets presented in Drezner (1995) with their calculated multirelation
coefficients as well as the significance level of each multirelation coefficient calcu-
lated by the method presented in this paper. Other methods for subset selection
may be considered as well, possibly yielding better results.

By examining Table 4 it is clear that the best subset is the subset of 6 variables
(Likability, Self-confidence, Lucidity, Honesty, Ambition, Grasp) because it yields
the best significance level.

Since this particular problem with k¥ = 15 has only 2'® — 16 = 32, 752 possible
subsets (excluding subsets of less than two members), it is feasible to calculate
the multirelation coefficient for each subset and select the best one. In Table 5
we report, the best multirelation coefficient for subsets of 2,3,...,15 elements, a list
of the members of that subset, and the corresponding significance. Note that the
significance levels are quite small. However, these values should be quite accurate
because both the beta distribution and the theoretical multirelation distribution are
anchored to zero at both ends of the segment [0,1]. Such small values of significance
cannot be verified by simulation. Some of the groups have an improved significance
level. However, the best group obtained by this analysis is still the same group of
6 variables. We conclude that the step-wise backward procedure is effective.

6. Appendix

In Johnson and Kotz (1972) there are some simplified formulas when all the cor-
relation coefficients are equal to each other (and in our case they are all equal
to —k—il) The case when all the p’s are positive is relatively simple. Define
®(h,k,p) = Pr(x; > h, fori = 1,...,k) when the correlation coefficient between
X; and Xj is equal to p for all i # j. k = 1 represents the univariate Normal

distribution: ®(h) = ®(h, 1, p) for any p. For p > 0 (Johnson and Kotz 1972):

sk = [ 2o (s [0, an

— 00

where Z(X) is the standard normal density function. The integral (11) can be calcu-
lated using Gaussian quadrature formulas based on Hermite polynomials (Abramowitz
and Stegun, 1972).

For a negative p a recursion formula by k is given:



ON THE SIGNIFICANCE LEVEL OF THE MULTIRELATION COEFFICIENT

Table 4. Significance levels for
the example problem

k r Significance
2 | 0.88000 [1.77-10"1°
3 | 0.89699 |6.18-10~16
4 | 0.92007 [4.26-10"17
5 | 0.93376 |6.46-10—18
6
7
8

0.95047 |7.91.10—20
0.95232 |2.67-10"19
0.95475 |7.36-10~19
9 | 0.96102 |2.49-10~19
10 | 0.96332 |6.80-10—1°
11 | 0.96394 |5.11-10"18
12 | 0.96539 |2.11-10-17
13 | 0.96544 |1.83-10—16
14 | 0.96553 |1.24-10~15
15 | 0.96559 |6.46-10—15

Table 5. Best significance levels for the example problem

k r Set Significance
2 | 0.88000 | 612 1.77 -10~ 16
3 | 0.91419 | 6 12 13 1.31-10~17
4 | 0.92367 | 610 12 13 1.59 -10~17
5 | 0.93789 | 4101213 14 1.58 .10 18
6 | 0.95047 | 456 711 12 7.91-10—20
7 1095305 | 145671112 1.89 -10~19
8 | 095725 | 4567101213 14 2.02-10-19
9 | 096102 | 456710111213 14 2.49 -10~19
10 | 096332 | 456 710 11 12 13 14 15 6.80 - 1019
11 | 096445 | 3456 71011121314 15 3.71-10"18
12 | 096539 | 3456 781011121314 15 2.11-10-17
13 | 0.96548 | 34567891011 12131415 1.78 - 1016
14 | 096553 | 1345678910 11121314 15 1.24 10715
15 | 096559 | 1234567891011 12131415 |6.46-10~15
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k o
¥k, p) = S () #lani, )60k~ ) (12)

Ny )
=1

where o =\ /i £ = TRt

When p = —k—il then « is undefined and therefore we need to find it as a limit.
p' approaches 1 and a approaches infinity, therefore, for a negative h ®(ah, k, p')
approaches 1. In conclusion, when p = — 2=, ®(ah, k, p’) = 1. We get:

k
@(h,k,—ﬁ) _ 2(—1)”1 (?)fb(h,k—i,—ﬁ) (13)

This result is true only for the last stage of the recursion formula. For lower
values of k the recursion formula (12) can be calculated without undefined values.
For a positive h, ®(ah,k,p') = 0, and equation (13) is no longer true. The

probability ®(h, k, — ) = 0. This is in line with the observation that the smallest

A cannot be greater than 1 because a positive h means that all eigenvalues are
greater than 1 which is impossible.

Calculating the required multinormal probabilities using this approach is very
efficient even for large values of k.

Notes

1. We are thankful to D. Aigner of University of California-Irvine for turning our attention to
this discussion

References

1. Abramowitz, M. and I.A. Stegun. Handbook of Mathematical Functions, Dover Publications
Inc., New York, 1972.
2. Drezner, Z. Computation of the Multivariate Normal Integral. ACM Transactions on Math-
ematical Software, 18, 470-480, 1992.
3. Drezner, Z. Multirelation - A Correlation Among More Than Two Variables. Computational
Statistics and Data Analysis, 19, 283-292, 1995.
4. Johnson, N.L. and S. Kotz. Distributions In Statistics: Continuous Multivariate Distribu-
tions, John Wiley & Sons, Inc., New York, 1972.
5. Kendall, M.G. and A. Stuart. The Advanced Theory of Statistics, V. Distribution Theory,
2nd Edition, p.396, Hafner Publishing Co., New York, 1963.
6. Kendall, M.G. and A.S. Stuart. The advanced Theory of Statistics, Vol. 3 Hafner Publishing
Co., New York, 1966.
7. Kendall, M.G. Multivariate Analysis 2nd Ed., MacMillan Publishing, New York, 1980.
8. Law A.M. and W.D. Kelton. Simulation Modeling € Analysis, 2nd Ed., McGraw Hill, New
York, 1991.
9. Marse K. and S.D. Roberts. Implementing a Portable FORTRAN Uniform (0,1) Generator.
Simulation, 41, 135-139, 1983.
10. Stuart A. and J.K. Ord. Kendall’s Advanced Theory of Statistics Vol. 2, Fifth Edition,
Edward Arnold, A division of Hodder & Stoughton, London, 1991.



