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Abstract.  We describe a simple discrete time renewal process of an event where a success is
preceded by a failure.  Its properties, especially the distributions of the counting and the interval
processes, are investigated.  We also propose an application to statistical process control based on
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Keywords: Average Number Inspected, Bernoulli Trials, Counting Process, Quality Control,
Recurrent Event Process, Waiting Time.

1. Introduction

Suppose we have a sequence of independent Bernoulli trials with outcomes of success (S)
or failure (F).  Many recurrent events can be generated by the Bernoulli trials (Feller,
Chapter XIII, 1968).  For example, one may be interested in the recurrent events of
having runs of S of length k.  In fact, there are various ways of counting the number of
runs of S of length k (see, for example, Wang and Ji, 1995).  Here, we consider an
interesting event derived from the Bernoulli sequence and defined by

E = A sucess preceded by one or more failures{ } .   

The event E  is somewhat reminiscent of an old popular Chinese saying “Failure is the
mother of success”.  Effectively, it means a success will arrive after a cumulative number
of failures.  Of course, this saying has a connotation of ‘cause and effect’; however, the
E  defined here only describes a phenomenon since the trials are assumed to be
independent.

Consider an automated production process of items in which an item may be classified as
either conforming F or nonconforming S.  Each individual item is inspected in the order
of production.  If this is not a 100% inspection scheme, a sampling device will be used for
selecting an item. Then the event E  defined above corresponds to the appearance of the
first nonconforming after one or more conforming items have been inspected. This event
may be slightly reworded as

E = Appearance of the doublet FS{ }

Consider a familiar experiment of coin tossings in which we designate  S = H , F = T
having  p = q = 1/ 2 . Then the event E may also constitute a betting game for a player
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who selects E against another player whose betting strategy is to obtain a HH first, for
example.

This recurrent event process may be considered as a special case of a more general
‘pattern in Bernoulli trials’ studied in Hunter (1983, pp. 118-120).

The first part of the paper is devoted to the study of the counting process Nn{ }and the

interval process  Sk{ }, k ≥ 1. Since most of the properties can be obtained through using

some standard theory, we therefore omit many of the details.  Instead, we approach our
analyses from some intuitive first principles that are often more interesting and reveal
more about the process than that from the probability generating functions.

The main thrust of the paper is to demonstrate how the waiting time between two
consecutive occurrences of E may be used for constructing a control chart in quality
control.  It is found that this new control scheme for fraction nonconforming has a larger
‘average number inspected’ than a more established chart known as the CCC control chart
when the production process is in control.

2. Distribution of Waiting Time Between Two Consecutive Recurrent Events

Let T be the time from the origin to the first occurrence of E . In other words, T represents
the waiting time for the first appearance of FS.  This is also the waiting time between the
occurrences of two consecutive E ’s. Then T = n if the following sequence occurs:

  

S S S F . . . F F S

1 2 3 4 . . . . n − 1 n

Let

  f n = P T = n{ }.

Clearly,  f1 = 0. The probability sequence f n{ }may be obtained as in Hombas (1997) who

partitioned the sample space into sets that begin with F and S . However, this approach is
cumbersome as can be seen in Hombas’ paper.  Other methods may be used to derive f n ,
see for example, Chapter 3 of Hunter (1983).  Here, we shall describe a more direct
approach as follows :

First, T = n  means that the event E occurs at  n, n ≥ 2 , for the first time.  This is equivalent
to having observed a sequence that begins with i S’s,   0 ≤ i ≤ n − 2,  followed by

(  n − 1− i ) F’s and then by S at n.  In other words, E occurs at n if the outcome of the nth

trial is the first S that is preceded by one or more failures.



THE RECURRENT EVENT PROCESS OF A SUCCESS 103

It is now obvious that the distribution of T is given by
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                                                                         (2.1)

We will soon see that (2.1) may be derived by another easy but well estabilshed method.

It is straight forward to verify that

  
f i

i=2

∞

∑ = 1; so E  is indeed a persistent recurrent process

(pp. 75, Hunter, 1983).

Now the probability generating function (p.g.f.) F(s) of the sequence f n{ } is given by

  
F(s) =

pqs2

pqs2 − s + 1
.       (2.2)

Next, define

  
un = P E occurs at the nth  trial{ },u0 = 1.      (2.3)

As E occurs at n (not necessary for the first time) if and only if the outcomes at the
(n-1)th and  the nth trial are F and S, respectively, it is obvious that

  u0 = 1,u1 = 0,u2 = u3 =......= pq .        (2.4)

From (2.4), we would be able to find the distribution of T , i.e ., the sequence f n{ } ,

through the well known relationship between the generating function (g.f.) of un{ }and the

p.g.f.  F(s) .  However, we omit the details here and refer the readers to Chapter 3 of
Hunter (1983).
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2.1. Mean Recurrence Time and Variance

We now proceed to find the first two moments of the waiting time random variable T.
First, the mean recurrence time of E , i.e., E(T ), may be obtained from (2.2) by
differentiating F(s) with respect to s giving

  
µ = E(T ) = ′F (1) =

1
pq

.        (2.5)

As was observed earlier, E is persistent.  Clearly it is also aperiodic; so
  
µ =

1
µ∞

=
1
pq

(Hunter, 1983, pp 119).

In contrast, the mean waiting time of the event SS{ }(i.e. mean recurrence time of a
success run of length 2) is given by (Feller,1968, pp. 324)

  
µs =

1 + p

p2 .        (2.6)

When  p = q =. 5 , it is easy to see from (2.5)-(2.6) that the mean waiting time for FS{ }is 4

and 6 for SS{ } , respectively.  This fact was noted in Hombas (1997). The question arises:
For what value of   p  would the above two events end up with the same mean waiting

time? Setting 
  

1 + p

p2 =
1
pq

 and solve for p , we get p=.6181.  In other words, if two

players A and B are tossing a biased coin with probability of getting an H (i.e S) being
.6181 and that A bets for FS and B for SS, respectively, then the expected waiting time
would be the same for both players.

Now the outcome SS is always preceded by FS except when SS appears on the first two
trials.  Therefore the probability that FS will beat SS, i.e. , the probability that FS will

appear before SS does in a sequence of independent trials, is   1− p2 .  When   p =.6181,

  1− p2 = p =.6181which is greater than .5.  In other words, at the value  p =.6181, it is
more likely that FS will appear earlier than  SS  although their mean waiting times are
identical.

The variance of T is given by

  
Var T( ) = σ 2 =

1− 3 pq

p2q2 .        (2.7)

It is apparent from (2.7) that   Var(T )  is minimum when   p = q = 0.5 .
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3. Distribution of Sk

Let Sk  denote the number of Bernoulli trials required to obtain the kth E and Nn , the

number of occurrences of E up to and including the nth trial.  The two variables are related
by

  P Nn = k{ } = P Sk ≤ n{ } − P Sk +1 ≤ n{ } .        (3.1)

We may represent the partial sum as:

  Sn = T1 + T2 +....Tn  ,

where Ti  denotes the number of Bernoulli trials we observe between the  (i − 1)th and the

ith occurrence of FS, including the last trial that completes the pattern E . Note in
particular,   T1 = T . 

Clearly, the sequence Ti{ }consists of independent random variables.  It now follows from

(2.2) together with independence of the members of Ti{ } , that the p.g.f. of Sk  is simply

given by
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For   k = 2 and k = 3, we can show by using partial fractions and extracting the coefficient

of sn  that :
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and
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  (3.4)

It was pointed out by one of the referees that in general, we have

 

  
P Sk = n{ } =

k + i − 1
i

⎛

⎝
⎜

⎞

⎠
⎟

i=0

n−2k

∑
n − k − i − 1
n − 2k − i

⎛

⎝
⎜

⎞

⎠
⎟ pi+kqn−k−i         (3.5)



106 C. D. LAI

  for n = 2k , 2k + 1, ....

A closed form expression from this formula does not appear to be possible.

4. The Number of Occurrences of  E , Nn

Let Nn be the number of recurrent events E  that occur up to and including the nth trial

(excluding the occurrence of E  at the   0
th  trial).  We  now focus our attention to the study

of the counting process Nn that is associated with E .

Recall, (3.1) provides a key link between Sk  and Nn , that is:

  P Nn = k{ } = P Sk ≤ n{ } − P Sk +1 ≤ n{ } .

In particular,

  P Nn = 0{ } = 1− P S1 ≤ n{ } = P T > n{ }

     
  
=

qn+1 − pn+1

q − p
.        (4.1)

Next,  P Nn = 1{ }and  P Nn = 2{ }  may be evaluated through equations (3.3-(3.4). However,

we opt to use the following more intuitive and direct approach:
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n
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1
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and
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We may continue iteratively,  yielding

 
  
P Nn = k{ } = f i

i=2

n−(2k−2)

∑ P Nn−i = k − 1{ }, n ≥ 2k .         (4.5)

A more explicit expression for the distribution of Nn can be derived simply by using
Cor 3.4.4A of Hunter (1983) which states that

  
P Nn = k{ }
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∞
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extracting the coefficient of   s
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A closed form expression for general k from this expression is unknown.

For many practical purposes, we may only need to know about the first two moments of
Nn .

It follows from (3.4.9) of Hinter (1983) and our (2.4) above that the mean count of E ’s in

  (0, n] is given by

  
ENn = uk

k =1

n

∑ = (n − 1)pq .       (4.7)

To find the variance of Nn ,we may use (2.4), (4.7) and the following identify that holds
for any recurrent event process:

  

E Nn
2( ) = u1 + u2 +...+un + 2 uj u1+....+un− j( )

j=1

n−1

∑ .        (4.8)

Without having to rely on the theory of recurrent event process, we now proceed to derive
the mean and variance from the first principles. These are more interesting and reveal
more about the process than that from the p.g.f.  F(s).
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Consider the sequence of independent Bernoulli trials beginning from   i = 1 till i = n.   At

each   i, i ≥ 2, an event E either occurs with probability ′p = pq  or E  does not occur with

probability   ′q = 1− ′p = 1− pq . Form an associated sequence of binary variables denoted

by  Yi{ }, i ≥ 2 such that

  

P Yi = 1{ } = pq,

P Yi = 0{ } = 1− pq.
        (4.9)

The counting process Nn{ }may now be expressed in terms of Yi{ } :

  Nn = Y2 + Y3 +...Yn  ,      (4.10)

and hence

  

ENn = Expected Number
i=2

n

∑  of ′E s at Trial No. i

     = E(Yi )
i=2

n

∑ = (n − 1)pq.

     (4.11)

Unlike the original Bernoulli sequence,  Yi{ }, i ≥ 2, is not sequence of independent

random variables although   Yi  andYi+k  are independent for k ≥ 2 .  Hence,

   

  

Var Nn{ } = Var Y2 + Y3 +..Yn{ }

              = Var Yi{ }
i=2

n

∑ + 2 Cov Yi ,Y j{ }
j>i=2

n

∑
              = (n − 1)pq(1− pq) + 2(n − 2) × Cov Yi ,Yi+1{ }
              = (n − 1)pq(1− pq) − 2(n − 2)( pq)2

              = (n − 1)pq − (3n − 5)( pq)                                                         (4.12)

The ratio of variance to mean is

  

Var Nn{ }
ENn

= 1−
(3n − 5)pq

(n − 1)
.     (4.13)

Now

  

(3n − 5)pq

(n − 1)
≤ 3 pq ≤

3
4

  which implies 
  

1
4
≤

Var Nn{ }
ENn

≤
3
4

 ,

so that there is an apparent under dispersion for this process relative to the Poisson
process.
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5. A Control Chart to be Based on T

Production processes are usually of very high quality today.  Particularly, in an electronic
industry such as integrated circuits manufacturing, the fraction nonconforming p  is in the

parts-per-million (PPM) range such as 0.0001 or 100PPM.  The standard Statistical
Process Control (SPC) techniques are not very suitable for near zero-defect environment
as detailed by Goh (1987).  The main problem is: there are too many false alarms, and it
is impossible to detect process improvement, as the lower control limit (LCL) for a  p or
np-chart will not exist.  In what follows, we assume that p < q . This is necessary for any
production process.  In fact, we may simply assume that   p < 0.1 whenever applicable.

5.1 Cumulative Count of Conforming (CCC ) Control Chart

A useful control procedure for such a high-quality process is based on the statistic Y, the
number of conforming units between two successive occurrences of nonconforming
items.  The statistic Y is designated as the Cumulative Count of Conforming (CCC) units
by Goh (1987), see also Lucas (1989), Xie and Goh (1992).  Some other discussions on a
decision procedure based on Y can be seen in Nelson (1994) and Quesenberry (1995).

Let   E0 = Occurence of an S{ }where S here denotes the outcome of the inspected unit
being nonconforming.  It is clear that such a continuous sampling procedure may be
regarded as a recurrent event process.  However, it is necessary to clarify our notation
here.  In the references just cited above, Y denotes the number of conforming units
between two nonconforming units. In contrast, the waiting time between the two
consecutive occurrences of an event in the recurrent event theory traditionally includes
the trial that ‘completes’ the event.  In other words, Y +1 is the waiting time instead of Y.
For consistency, we let   T0 = Y + 1.

It should be noted that the cumulative count of conforming (CCC) control chart is useful
for monitoring a high-quality process. It is equally effective for controlling other
processes that have a moderate size of p , the proportion of nonconforming units of the
production process.

It is easy to see that   T0 , the number of units inspected to obtain the first nonconforming,
has a geometric distribution given by

  P T0 = n{ } = qn−1p, n ≥ 1,        (5.1)

having tail probability

  P(T0 > n) = qn,        (5.2)

and  mean waiting time

  
E(T0 ) =

1
p

.        (5.3)
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Suppose we are only interested to detect the upward shift of p , i.e, we are only concerned
with quality deterioration, then the resulting control chart has only the lower control limit
(LCL).  A small value of  T0 indicates that the nonconforming units have occurred too
often for a process that is under control.  The control procedure for this scheme is to send
an out-of-control signal if the value of  T0 falls below the LCL.  We require the probability
of this to happen to be very small, say α, when the process is in control.  In other words,
α is the false alarm probability which is also the Type I error.

Let  L0  be the lower control limit  for the CCC control chart with a given α , then

  q
L0 = (1− α ), i. e. , qL0 +1 − (1− α )q = 0 .       (5.4)

It follows from (5.1) that

  
L0 =

log(1− α )
log q

.        (5.5)

5.2 Modified CCC Control Chart Based on T

It is obvious from (2.1) that

 
  
P T > n{ } =

qn+1 − pn+1

q − p
.        (5.6)

It seems reasonable to propose a new control scheme based on the statistic T which is the
waiting time for the appearance of a nonconforming unit preceded by one or more
conforming units.  T may also be interpreted as the total number of items that have been
inspected during the time interval at each end of which a point is plotted on the control
chart.  Assuming we are concerned only with quality deterioration, we shall let L
designate the lower control limit  of the proposed chart satisfying

  
P(T > L) =

qL+1 − pL+1

q − p
= 1− α .        (5.7)

Equivalently,

  q
L+1 = pL+1 + (q − p)(1− α ) ,        (5.8)

whereα  is the probability of false alarm or the Type I error with the fraction
nonconforming at some acceptable level   p = p0 .

Unlike  L0  in Section 5.1, it is not easy to solve the above functional equation for L .
However, the following observations would be helpful in our search.
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First, by comparing (2.1) with (5.1), it is clear that

   P T = n{ } > P T0 = n{ }, for n ≥ 2.          (5.9)

(We note also that   P T = 1{ } = 0  whereas   P T0 = 1{ } = p ).

Equation (5.9) suggests that T would have a longer tail probability than that of  T0 .  As a
matter of fact, for any given n, the difference between the two tail probabilities (see (5.6)
and (5.2)) is:

  

qn+1 − pn+1

q − p
− qn =

p qn − pn( )
q − p

> 0, if q > p ,     (5.10)

and so  L ≥ L0 .  Indeed, L  is near  L0  for small values of p . In fact, for these small values
of p , we note  from (5.9) that

  q
n+1 = (1− α )(q − p) + pn+1 ≈ (1− α )(q − p),     0 < p < 0.01.     (5.11)

For this range of p , L  may be approximated as

  
L + 1 ≈

log(1− α )
log q

+
log(q − p)

log q
.      (5.12)

In other words,

  
L ≈ L0 +

log(q − p)
log q

− 1
⎧
⎨
⎩

⎫
⎬
⎭

,  0 < p < 0.01.      (5.13)

A simple spread sheet can be used to find L .  The following table gives the lower control
limits of the modified CCC control chart when α = 0.025 and α = 0.05:

Table 1:Lower Control Limits For the Control Charts Based on T

 p L  for  α = 0.025 L  for α = 0.05

0.01 3 6

0.005 6 12

0.001 26 52

0.0005 51 103

0.0001 254 513
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With this new control scheme, the quality inspector would not take action (such as
plotting a point on the chart) when two or more nonconforming units occur consecutively.
This is perhaps the main difference between this new control chart and the existing CCC
control chart that is based on the statistic  T0 .  Psychologically speaking, one may regard
the phenomenon of observing consecutive nonconformings as a fluke because of pbeing
rather small.  Looking from another angle, T can be interpreted as a ‘delayed’ version of

  T0 .

For illustration, suppose a sequence of items from a production line have been inspected
for quality having the acceptable quality level set at   p = 0.01 and   α = 0.05   The result of
this inspection process is as follows :

FFFFFFFSSSFFFFFFFSFFS

Three points are then plotted on the control chart with  T1 = 8, T2 = 10,  and T3 = 3 .  From

Table 1 above, we find that the lower control limit L is 6.  Since  T3  falls below L, an out-
of-control signal is sent immediately so an action to examine the production line is called
for.  The result of the examination may indicate that the process is still operating
properly; in that case, we would declare this out-of-control signal as a false alarm.

5.3 Comparison of Two Mean Waiting Times

Recall, 
  
E(T0 ) =

1
p

  and 
  
E(T ) =

1
pq

 ; so 
  
E(T ) =

E(T0 )
q

> E(T0 ) .

Also,

  
E(T ) =

1
pq

=
1
p

+
1
q

= E(T0 ) +
1
q

.      (5.14)

Consider a Bernoulli sequence SSSSFFFSSS where S denotes that E  has occurred at that
trial. Clearly, T is the number of trials required to obtain the first F plus the number of
trials to obtain the first S (counting from the second F).  We note that the forward
recurrence time to an S in an independent Bernolli sequence is also a geometric random
variable; just like the forward recurrence time for a Poisson event is also exponentially
distributed.  Therefore,

  T = Geometric(q) + T0 .      (5.15)

So, (5.14) is a natural consequence of (5.15).  Furthermore, (2.2) and (2.7) become a
simple consequence of (5.15).
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Assume that 
  
E(T0 ) =

1
p0

, we want to find value of p so that

  
E(T0 ) =

1
p0

= E(T ) =
1

p(1− p)
.      (5.16)

Equivalently, we have

  p(1− p) = p0  i. e.,  p2 − p + p0 = 0 .      (5.17)

Solving the quadratic equation for p , we obtain

  
p =

1 ± 1− 4 p0

2
.      (5.18)

In the context of quality control, both   p0 and p are much smaller than 0.5 , so (5.18) has
only one meaningful root giving

  
p =

1− 1− 4 p0

2
.      (5.19)

6. Average Number Inspected (ANI)

In order to evaluate the performance of a control chart, a measure such as the Average
Run Length (ARL) is often used.  Essentially, ARL is the average number of points that
must be plotted before a point indicates an out-of-control condition.  Bourke (1991) used
the term ANI to refer to the expected number of items inspected until a signal is produced.
This is equivalent to the definition given in Page (1954, p101) where ARL is defined as
‘the expected number of articles sampled before action is taken’.  In what follows,
Bourke’s (1991) terminology will be used.

6.1 ANI for CCC Control Chart

For the CCC control chart, the ANI is easy to obtain (Bourke (1991) and is given by

  
   ANI( p) =

1
p

/ P Signal |p( )               6.1)

  
  
=

1
p

/ P(T0 ≤ L0 ) =
1

pα
 ,        (6.2)
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where α is the false alarm probability which is also the Type 1 error.  Note that our aim
here is to detect an upward shift of the process quality level p only.  However, if both
control limits are required, then   P(T0 ≤ L0 )  in (6.2) is to be replaced by

  P(T0 ≤ L) + P(T0 ≥ U) with  P T0 ≤ L |  p = pa( ) ≤ α / 2and   P T0 ≥ U |  p = pa( ) ≤ α / 2 .

Here pa  is the acceptable quality level, that is, the process is assumed to be in control at
this level.

We note in passing that (6.2) may be derived by using the approach to be developed in the
following subsection.

6.2.  ANI for the Modified CC Control Chart:

Let N be the number of nonconforming units onserved that leads to an out-of-control
signal and SN be the total number inspected to obtain the first out-of-control signal.  As N

is a random variable so SN  is a compound random variable. N is effectively a‘stopping
time’ random variable.  Therefore,

  E SN[ ] = E E(SN )|N[ ]
is the average number inspected in the sense of Bourke’s (1991) terminology.

For given N = n ,

  Sn = T1 + T2 +....Tn

subject to   Ti > L, i = 1, ...n − 1 and Tn ≤ L , where L is the lower control limit satisfying:

P T ≤ L( ) = α .

Now,

 

  
E SN[ ] = E

n=1

∞

∑ (Sn| Ti > L,1 ≤ i ≤ n − 1, Tn ≤ L)pn ,   pn = P(N = i) .        (6.3)

For given N = n , we can show that

  E(Sn ) = (n − 1)µ + + µ − ,        (6.4)

where

  µ
+ = E T |T > L[ ],   µ - = E T |T ≤ L[ ] .

(Recall,   T = T1 , and Ti  are independent and identically distributed).
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We also note that N has a geometric distribution having mean
  

1
α

.

It is well known (in fact it can be shown easily) that

  
iqi−1

i=m

i=n

∑ =
mqm−1 − (m − 1)qm − (n + 1)qn + nqn+1

p2        (6.5)

Hence, 

  

µ+ =
1

(1− α)(q − p)
n pqn − qpn{ }

L+1

∞

∑

   =
1

(1− α)(q − p)
q

p
(L + 1)qL − LqL+1{ } − p

q
(L + 1)pL − LpL+1{ }⎡

⎣
⎢

⎤

⎦
⎥

   =
1

(1− α)(q − p)

(L + 1) qL+2 − pL+2{ } − L qL+3 − pL+3{ }
(q − p)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
                        (6.6)

and

    

  

µ− =
1

(q − p)α
n pqn − qpn( )

n=2

L

∑

    =
1

(q − p)α
2q2 − q3 − (L + 1)qL+1 + LqL+2

p
−

2p2 − p3 − (L + 1)pL+1 + LpL+2

q

⎧
⎨
⎩

⎫
⎬
⎭

=
1

α(q − p)

2(q3 − p3 ) − (q4 − p4 ) − (L + 1) qL+2 − pL+2{ } + L qL+3 − pL+3{ }
pq

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
       (6.7)

It follows from (6.3) and (6.4) that the avearge number inspected for the control chart
under discussion is

  ANI = E SN[ ] = EN − 1{ }µ + + µ − ,        (6.8)

bearing in mind that
  
EN =

1
α
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It follows from (6.6)-(6.8) that

  

ANI =
(2q3 − 2 p3 ) − (q4 − p4 )

αpq(q − p)

      =
(2q3 − 2 p3 ) − (q2 + p2 )(q − p)

αpq(q − p)

     =
(q3 − p3 + pq2 − qp2 )

αpq(q − p)

 
  
    =

1
α

×
1
pq

= E(T )EN ,        (6.9)

which is the Wald’s identity in sequential analysis.

Comparing the two ANIs, we find that the ANI for the modified CCC scheme exceeds the
ANI for the CCC control chart by the amount   1/ αq( ).  For a process that is in control, a

control scheme that gives a larger ANI has an advantage as it would send fewer false
alarm signals.  However, for a high quality production process (i.e., for very small p , and
hence for large q ), this advantage becomes minimal.  As we remarked in Section 5.1, the
CCC control chart is also applicable for controlling fraction nonconforming even in the
case when p is of moderate size.  For such processes, the modified CCC control chart may
be considered as a serious alternative.
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