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Nowadays, quantum systems have become one of the focuses of the ongoing research and they
are typical complex systems, whose state variables are defined on the complex field. In this paper,
the issue of reachability and observability is addressed for a class of linear impulsive systems
on complex field, for simplicity, complex linear impulsive systems. This kind of time-driven
impulsive systems allows free impulsive instants, which leads to the limitation of using traditional
definitions of reachability and observability directly. New notations about the span reachable
set and unobservable set are proposed. Sufficient and necessary conditions for span reachability
and observability of such systems are established. Moreover, the explicit characterization of span
reachable set and unobservable set is presented by geometric analysis. It is pointed out that
the geometric conditions are equivalent to the algebraic ones in known results for special cases.
Numerical examples are also presented to show the effectiveness of the proposed methods.

1. Introduction

Recent years have witnessed growing interest in investigating the control theory of hybrid
systems andmost progress has beenmade in the stability and stabilization of hybrid systems,
see [1–5] and the references therein. Impulsive dynamical systems are an important class
of hybrid systems which exhibit continuous evolutions described by ordinary differential
equations and abrupt changes at some instants or impulses. Examples of these systems
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include evolution processes, optimal control models in economics, stimulated neural net-
works, frequency-modulated systems, and some motions of missiles or aircrafts. In view of
both theoretical and practical significance, much attention has been paid on the analysis and
synthesis of impulsive systems, or impulsive control systems, see [6–11] and the references
therein.

Closely related to the pole assignment, structural decomposition, quadratic optimal
control and observer design, the controllability, reachability, and observability play a signifi-
cant role in the control theory and engineering [12–14]. The controllability and observability
of various hybrid systems have been extensively investigated using different approaches such
as geometric analysis [7–9], algebraic characterization [10, 11], functional analysis [15, 16],
and differential geometric method [3]. Particularly, research efforts have been made on the
controllability and observability for impulsive systems. By proposing algebraic rank con-
ditions, the state controllability and observability of linear time-varying impulsive systems
were investigated in [10, 11]. For impulsive functional differential systems, the controllability
is considered with the help of fixed-point theorems [15, 16]. References [7–9] presented the
geometric analysis of reachability, controllability and observability for (switched) impulsive
systems. Geometric analysis is effective in providing easily verifiable conditions for the
controllability and observability based on the explicit characterization of controllable and
observable sets in terms of invariant sets of systems. Hence, it provides an effective and
simple method to investigate the fundamental properties of hybrid systems.

However, in the above-mentioned works, the state space of the considered systems
is always n-dimensional real vector space, that is, �n , except few reports on the issue of
controllability for complex systems [10, 17]. Nowadays, control of complex systems, espe-
cially quantum systems, has attracted considerable attention [18–22]. It should be noticed
that quantum system models are typical complex dynamical systems whose states evolve in
Banach (Hilbert) space on the field of complex number, which are much more complicated
than real systems. In view of this, complex dynamics systems have many potential applica-
tions ranging from science to engineering. Therefore, it is important and necessary to study
the control theory of a special class of complex dynamical systems, complex linear impulsive
systems. This motivates us to consider the reachability and observability of complex linear
impulsive systems by geometric analysis. The impulsive system considered in the current
paper has uncertainty in the impulsive instants which can be regarded as time-driven
impulsive systems. This kind of more general systems exists in many practical applications
[7]. Due to the novel properties of reachable set and unobservable set for this kind of systems,
traditional geometric analysis may be limited to characterize them. Hence, new concepts
on the reachable set and unobservable set are introduced. Based on these definitions, we
generalize the geometric analysis approach for reachability and observability to complex
linear impulsive systems. Specifically, sufficient and necessary criteria for reachability and
observability are derived, and explicit characterization of reachable set and unobservable set
is proposed consequently. Moreover, it is proved that the span reachable set and unobservable
set with free impulsive times are invariant subspaces of the complex impulsive system.

The rest of this paper is organized as follows. In Section 2, the complex linear impul-
sive systems to be dealt with are formulated and the solution expression for such systems is
presented. In Sections 3 and 4, based on the geometric characterization of reachable set and
unobservable set for complex linear impulsive systems, sufficient and necessary conditions
for state reachability and state observability of complex linear impulsive systems are derived,
respectively. Moreover, examples are discussed to illustrate the effectiveness of the proposed
methods. Finally, some conclusions are drawn in Section 5.
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2. Preliminaries

Consider the complex linear time-varying impulsive system described by

ẋ(t) = A(t)x(t) + B(t)u(t), t /= tk,

Δx(tk) = Ekx(tk) + Fkuk,

y(t) = C(t)x(t) +D(t)u(t),

x
(
t+0
)
= x0,

(2.1)

where k = 1, 2, . . . , A(t), B(t), C(t), andD(t) are known n×n, n×m, p×n, and p×m continuous-
time complex-valued matrices, x ∈ � n is the state vector, u ∈ � m is the control input, Ek and
Fk are complex n × n and n × m constant matrices, respectively, y ∈ � p is the output, J =
[t0,+∞),Δx(tk) = x(t+

k
)−x(t−

k
), where x(t+

k
) = limh→ 0+x(tk+h), x(tk) = x(t−

k
) = limh→ 0+x(tk−h)

with discontinuity points t0 < t1 < t2 < · · · < tk < · · · , limk→∞tk = ∞, which implies that
the solution of system (2.1) is left-continuous at tk. It should be noticed that the impulsive
instants tk can be chosen freely in this paper. We know that x(t) : � → �

n , and �
n is a

Banach space on the complex field � . A(t) : � → � where � = �(� n , � n ) is the bounded
� n -linear continuous map. Hence complex impulsive system (2.1) is a special differential-

difference equation in Banach space defined on the complex number field � . Let A∗ = A
�
be

the conjugated transpose of the complex matrix A.
∏1

i=k−1Ai stands for the matrix product
Ak−1Ak−2 · · ·A1.

Corresponding to system (2.1), consider the following complex differential equation:

ẋ(t) = A(t)x(t). (2.2)

Suppose that X(t) is the fundamental solution matrix of system (2.2). Then X(t, s) :=
X(t)X−1(s), (t, s ∈ J) is the transition matrix associated with the matrix A(t). It is clear that
X(t, t) = I, X(t, τ) X(τ, s) = X(t, s) and X(t, s) = X−1(s, t). Now we present the solution
expression of complex impulsive system (2.1) which was proved in [10] using ordinary
differential equations theory in the complex field.

Lemma 2.1 (see [10]). For t ∈ (tk−1, tk], k = 1, 2, . . ., the solution of system (2.1) is given by

x(t) = X(t, tk−1)

⎡

⎣
1∏

j=k−1

(
I + Ej

)
X
(
tj , tj−1

)
x0 +

k−1∑

i=1

i∏

j=k−1

(
I + Ej

)
X
(
tj , tj−1

)

×
∫ ti

ti−1

X(ti−1, s)B(s)u(s)ds +
k−1∑

i=2

i∏

j=k−1

(
I + Ej

)
X
(
tj , tj−1

)
Fi−1ui−1 + Fk−1uk−1

⎤

⎦

+
∫ t

tk−1

X(t, s)B(s)u(s)ds.

(2.3)

In the remainder of this paper, we focus our attention on the reachability of time-inva-
riant version of system (2.1) with respect to the continuous-time input u(t) and observability
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with respect to the continuous-time output y(t). The complex linear impulsive system is
given by

ẋ(t) = Ax(t) + Bu(t), t /= tk,

x
(
t+k
)
= Ex(tk),

y(t) = Cx(t),

x
(
t+0
)
= x0,

(2.4)

where A,B, C, E are known n × n, n × m, p × n, n × n constant complex matrices. Let T =
{t1, t2, . . . .} be a countable set of impulse times.

Remark 2.2. System (2.4) is a class of more general linear impulsive systems in the complex
field with time-driven impulsive behavior. The system parameter matrices are all complex
matrices. It should be noticed that the impulse times could be chosen freely, allowing for a
richer interaction between the continuous-time dynamics and the impulsive effects. Hence,
with inherent uncertainties, system (2.4) has interesting features in reachability and observa-
bility different from that of common impulsive systems. This motivates our current work.

Given an initial time t0 and final time tf , Lemma 2.1 gives the solution of (2.4) as
follows:

x
(
tf
)
= eAhM

⎧
⎨

⎩

1∏

m=M−1
EeAhmx(t0) +

M−2∑

m=1

⎡

⎣
m+1∏

j=M−1

(
EeAhj

)
E

∫ tm

tm−1

eA(tm−s)Bu(s)ds

⎤

⎦

+E
∫ tM−1

tM−2

eA(tM−1−s)Bu(s)ds

}

+
∫ tM

tM−1

eA(tM−s)Bu(s)ds,

(2.5)

where tf = tM and hi = ti − ti−1, i = 1, 2, . . . ,M. In the subsequent, we proceed to investigate
the reachability and observability criteria of complex linear impulsive system (2.4).

3. Geometric Analysis of Reachability

In this section, the main purpose is to characterize the geometric properties of reachability
of complex linear impulsive system (2.4) and establish the equivalence between algebraic
criteria in known results [10] and the geometric ones obtained here. To discuss the geometric
property of reachable set for complex impulsive system (2.4), we first introduce the concept
of invariant subspace of complex linear systems.

Consider the following complex linear system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

x
(
t+0
)
= x0.

(3.1)

For the complex constant matrix B ∈ � n×m , denote ImB as the range of B spanned by the col-
umns of B, that is, B � ImB = {y | y = Bu, ∀u ∈ �

m}. For a given matrixA ∈ �
n×n and a linear
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space W ⊆ � n , let 〈A | W〉 be the minimal A-invariant subspace containing W, that is, 〈A |
W〉 =

∑n−1
i=0 AiW. For simplicity, we denote 〈A | B〉 = 〈A | ImB〉 . By [13], for any complex

matrices A and B, we have {x : x =
∫ t
t0
eA(t−τ)Bu(τ)dτ, for some p.c.v. function u, t > t0} =

〈A | B〉, which is the reachable subspace of complex linear system (3.1). Moreover, the
equivalence between the algebraic condition for controllability and the geometric one is given
as follows. rank (B AB · · ·An−1B) = n is equivalent to Im(B)+A Im(B)+ · · ·+An−1 Im(B) = �

n .
In view of the special structure of the system considered here, definitions about the

reachability are introduced first. The state space for complex impulsive system (2.4) is de-
noted byX.

Definition 3.1 (Reachable set with fixed final time and fixed impulse times). For complex
linear impulsive system (2.4), a nonzero state xf is said to be reachable from zero with fixed
final time and fixed impulse times, if given t0, tf > t0 and a set of impulse times T, there exists
a piecewise continuous input u(t), t ∈ [t0, tf], such that the system is driven from x(t0) = 0
to x(tf ) = xf . The set of reachable states with fixed final time tf and fixed impulse times T is
denoted by Rfixed(t0, tf ,T).

Definition 3.2 (Reachable set with free final time and free impulse times). For system (2.4),
a nonzero state xf is said to be reachable from zero with free final time and free impulse
times, if given t0, there exists tf > t0, a set of impulse times T and a piecewise continuous
input u(t), t ∈ [t0, tf], such that the system is driven from x(t0) = 0 to x(tf ) = xf . The set of
reachable states with free final time tf and free impulse times T is denoted by Rfree.

From the definitions, we obtain Rfree =
⋃

T
⋃

tf>t0
Rfixed(t0, tf ,T). Given an impulse

times set T, by (2.5) and Definition 3.1, Rfixed(T) is given by

Rfixed = eAhM

⎧
⎨

⎩

1∏

m=M−1
EeAhmx(t0) +

M−2∑

m=1

⎡

⎣
m+1∏

j=M−1

(
EeAhj

)
E〈A | B〉

⎤

⎦ + E〈A | B〉

⎫
⎬

⎭
+ 〈A | B〉.

(3.2)

In [7], it was pointed out that for real impulsive systems, the reachable set does not neces-
sarily constitute a subspace. Thus, for complex linear impulsive system (2.4), Rfree may be
a subset instead of subspace of the state space. This fact will be clarified in the following
example.

Example 3.3. Consider complex linear impulsive system (2.4) with

A =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦, B =

⎛

⎜
⎜
⎝

0
1 + 2i
0
0

⎞

⎟
⎟
⎠, E =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 1 + i 0 0
1 0 0 0

⎤

⎥
⎥
⎦. (3.3)

It is clear that 〈A | B〉 = Im(B). For the case t0 < t1 < tf ,

Rfixed
(
t0, tf ,T

)
=

⎡

⎢
⎢
⎣

(1 + i)(1 + 2i)h1 0
0 1 + 2i

(1 + i)(1 + 2i) 0
0 0

⎤

⎥
⎥
⎦. (3.4)
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For any even number k ≥ 2 and t0 < t1 < · · · < tk < tf , it yields that

Rfixed
(
t0, tf ,T

)
=

⎡

⎢⎢⎢
⎣

(1 + i)k−1(1 + 2i) 0 0
0 (1 + i)k−2(1 + 2i) 1 + 2i

(1 + i)k(1 + 2i)hk 0 0
0 (1 + i)k−2(1 + 2i)hk−1 0

⎤

⎥⎥⎥
⎦
. (3.5)

Therefore, when the final time and the impulse times are fixed, the system can reach at most a
three-dimensional complex subspace of the state space. It follows that when only two impulse
times are required, that is, 0 < t1 < t2 < tf , Rfree can be characterized as follows:

Rfree =
⋃

h1,h2>0

Rfixed
(
t0, tf ,T

)
=
⋃

h1,h2>0

Im

⎡

⎢⎢
⎣

(1 + i)(1 + 2i) 0 0
0 (1 + 2i) 1 + 2i

2i(1 + 2i)h2 0 0
0 (1 + 2i)h1 0

⎤

⎥⎥
⎦. (3.6)

For a vector given by x = [ a b c d ]T (a, b, c, d /= 0), it can be represented by the linear combina-
tion of elements inRfree while it is not included in Rfree. It should be noticed that the subspace
spanned by the reachable set with free impulse times is the entire complex state space.

Example 3.3 motivates us to present a new concept, span reachability, for complex
impulsive system (2.4).

Definition 3.4 (Span Reachability). For complex impulsive system (2.4), the subspace spanned
by the elements ofRfree is denoted byRspan. A complex impulsive system for whichRspan = � n

is said to be span reachable.

In the following, the explicit construction of span reachable set is proposed and its
property is discussed. Denote the following subspaces sequences:

W0 = 〈A | B〉, Wm = 〈A | EWm−1〉, m ≥ 1,

Vm =
m∑

i=0

Wi, m = 0, 1, 2, . . . .
(3.7)

It is clear that V0 ⊆ V1 ⊆ · · · ⊆ Vm−1 ⊆ Vm, dimVm < ∞. If there exists an integer m > 0
such that Vm = Vm+1, by the construction of Vm, it is easy to verify Vm = Vm+1 = Vm+2 = . . ..
This implies that the sequence {Vm,m = 1, 2, . . .} converges to Vn. For the proof of the main
results, a Lemma is presented first. The proof is similar to that of Lemma 2 in [12]. Thus, we
omit it here.

Lemma 3.5. Given a complex matrix A ∈ � n×n , for almost T ∈ �, one has 〈A | W〉 = 〈eAT | W〉.

Theorem 3.6. For complex linear impulsive system (2.4), one has

Rspan = Vn. (3.8)
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Proof. For any xf ∈ Rfree, by (3.2) and the property of invariant subspace, we have xf ∈ Vn.
Then Rspan ⊆ Vn. Next we prove the reverse inclusion. From Lemma 3.5, there exists h > 0
such that sequence (3.7) can be redefined as follows:

W0 = 〈A | B〉, Wm = 〈eAh | EWm−1〉, m ≥ 1. (3.9)

Using the property of invariant subspace, (3.9) can be rewritten as

W0 = 〈A | B〉, Wm = eAh〈eAh | EWm−1〉, m ≥ 1, (3.10)

which implies that Vn has the following form:

Vn =〈A | B〉 +
n∑

m=1

∑

lm,...,l2,l1∈{1,2,...,n}

[
eAh
]lm

E · · ·
[
eAh
]l1
E〈A | B〉. (3.11)

Denote an impulse times set to be {l1h, l2h, . . . , lnh}. It is easy to get that 〈A | B〉 +
∑n

m=1 [e
Ah]lmE · · · [eAh]l1E〈A | B〉 ⊆ Rfixed. Hence, we obtain Vn ⊆ Rfree. Since any element

of Rspan can be expressed as a linear combination of elements from Rfree, we conclude that
Vn ⊆ Rspan. This completes the proof.

Remark 3.7. FromDefinition 3.4 and Theorem 3.6, it can be found that if Vn = � n , system (2.4)
is span reachable. For fixed final time and impulse times, if 〈A | B〉 = � n , which implies
that Rfixed constitutes the entire space, then we know that rank (B,AB, . . . , An−1B) = n. From
Theorem 3 in [10], the above condition indicates that system (2.4) is controllable. Hence,
when reduced to linear systems, the algebraic condition (3.11) in [10] and the geometric
criterion 〈A | B〉 = � n are equivalent in checking the reachability and controllability of system
(2.4). When reduced to complex linear impulsive systems with fixed impulse times and
AE = EA, simple computation follows that the conditions for reachability and controllability
are equivalent. While in this paper, we consider a more general system with time-driven
impulses, and a new concept, span reachability is introduced. Hence, the derived conditions
in this paper and the known literature [10] cannot be compared directly.

The concept of invariant subspace is fundamental to a geometric analysis of linear
time-invariant systems. The invariance facilitates the investigation of system control prob-
lems such as disturbance decoupling, output stabilization, output regulation, and structure
stability. Hence, we develop the invariant subspace characterization of the span reachable set
Rspan for complex linear time-driven impulsive systems. A follow-up question is that whether
the span reachable set Rspan is an invariant subspace of system (2.4). The invariant subspace
of complex impulsive systems (2.4) is defined as follows.

Definition 3.8. For complex impulsive system (2.4) with u(t) ≡ 0, V is an invariant subspace
if for any initial time t0 and any set of impulse times T, x(0) ∈ V implies x(t) ∈ V, ∀t ≥ t0.

Generalizing Lemma 4.2 in [7] to the complex case, we conclude that for complex
linear impulsive systems, V is an invariant subspace if and only if AV ⊂ V, EV ⊂ V. Now, for
system (2.4), we relate Rspan to the infimal invariant subspace 〈A,E | B〉 containing ImB.
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Theorem 3.9. For complex linear impulsive system (2.4), one has

Rspan = Vn = 〈A,E | B〉. (3.12)

Proof. First, we prove that Vn ⊇ 〈A,E | B〉. From (3.7), it is obvious that ImB ⊆ W0 ⊆ Vn,
AW0 = A〈A | B〉 ⊆ 〈A | B〉 = W0, AWm = A〈A | EWm−1〉 ⊆ 〈A | EWm−1〉 = Wm, m ≥ 1;
EWm ⊆ 〈A | EWm〉 = Wm+1 ⊆ Vn, m ≥ 0. Thus Vn is an invariant subspace containing ImB.
Since 〈A,E | B〉 is the infimal one, we obtain that Vn ⊇ 〈A,E | B〉.

Next, we prove that Vn ⊆ 〈A,E | B〉. Since 〈A,E | B〉 is the infimal invariant subspace
containing ImB, we get ImB ⊆ 〈A,E | B〉, Ai ImB ⊆ 〈A,E | B〉, i = 1, . . . , n − 1. Then W0 ⊆
〈A,E | B〉 and EW0 ⊆ 〈A,E | B〉. By the same reasoning, the fact that AiEW0 ⊆ 〈A,E | B〉
implies that W1 ⊂ 〈A,E | B〉, i = 0, . . . , n − 1. Similarly, for m > 1, Wm ⊆ 〈A,E | B〉, which
means that

∑n
i=0 Wi = Vn ⊆ 〈A,E | B〉. The proof is completed.

Example 3.10. Consider complex linear impulsive system (2.4) with the same coefficient
matrices as that in Example 3.3. Now we modify the matrix E as follows

E =

⎡

⎢⎢
⎣

0 0 0 1
0 0 0 0
1 1 + i 0 0
0 (1 + i) 0 0

⎤

⎥⎥
⎦. (3.13)

Using the construction proposed in (3.7), we have W0 = [0 (1 + 2i) 0 0]T , W1 = 〈A |
EW0〉 = [0 0 0 (1 + 2i)]T , W2 = 〈A | EW1〉 = [(1 + 2i) 0 0 0]T and W3 = 〈A | EW2〉 =
[0 0 (1 + 2i) 0]T . It can be easily verified that V4 spans the entire complex state space
� 4 . Hence, system (2.4) with the above matrices is span reachable. Moreover, form this
example, we can find that the explicit construction (3.7) helps us to derive the span reachable
set easily.

4. Geometric Characterization of Observability

In this section, we present the geometric characterization of the unobservability of complex
linear impulsive system (2.4). For convenience, the unobservable set of complex linear
systems and its geometric property are introduced first. For a matrix C ∈ �m×n , let K be
the kernel of C, that is, K � Ker C = {x ∈ �

n | Cx = 0} . Given a matrix A ∈ �
n×n

and a linear space M ⊆ � n , the largest A-invariant subspace contained in M is given by
〈M | A〉 := M∩A−1M∩A−2M∩· · ·∩A−n+1Mwhich is the unobservable subspace for complex
system (3.1) when M = K, where A−1M denotes the inverse image of subspace M. Also we
have Ker(MA) = A−1 Ker(M) [13]. We introduce the following definitions of unobservability.

Definition 4.1 (Unobservable set with finite intervals and fixed impulse times). For complex
impulsive system (2.4), a state x0 ∈ X is said to be unobservable on [t0, tf]with fixed impulse
times, if given tf > t0, impulse times set T and x0 = x(t0), the output y(t) is identically equal
to zero for all t ∈ [t0, tf]. The set of unobservable states with finite interval and fixed impulse
times is denoted by Qfixed.
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Definition 4.2 (Unobservable set with free impulse times). For complex impulsive system
(2.4), a state x0 ∈ X is said to be unobservable on [t0, tf] with free impulse time, if given t0,
x0 = x(t0) yields a response y(t) that is identically equal to zero for all t ≥ t0 and all impulse
times sets T. The set of these unobservable states is denoted by Qfree. System (2.4) is
observable if Qfree = {0}.

By the above definitions, we have Qfree =
⋂

T
⋂

tf>t0
Qfixed(tf ,T).

It is easy to see from Definitions 4.1 and 4.2, the observability of complex linear im-
pulsive system (2.4) is equivalent to that of zero-input complex impulsive system. In this
way, given an impulse times set T and x0 ∈ X, the output y(t) is given by

y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

CeA(t−t0)x0, t ∈ (t0, t1],

CeA(t−tm−1)
1∏

j=m−1
EeAhjx0, t ∈ (tm−1, tm], 2 ≤ m ≤ M.

(4.1)

Denote the following subspace sequences:

O0 = 〈K | A〉, Om =
〈
E−1Om−1 | A

〉
, m ≥ 1,

Pm =
m⋂

i=0

Oi, m = 0, 1, 2, . . . .
(4.2)

Similar to the discussion about Vm, the sequence {Pm,m = 0, 1, . . .} converges to Pn.

Theorem 4.3. For complex linear impulsive system (2.4), one has Qfree = Pn.

Proof. For an initial state x0 ∈ Pn and a given impulsive times setT∩(t0, tf) = {t0, t1, . . . , tM}, it
is obvious that from x0 ∈ O0 = Ker(C)∩A−1 Ker(C)∩ · · · ∩A−(n−1) Ker(C), we have CAkx0 = 0,
k = 0, 1, . . . , n − 1 which implies that CeA(t−t0)x0 = 0, t ∈ (t0, t1]. Since x0 ∈ O1 = 〈E−1〈K | A〉 |
A〉, the definition of the largest invariant subspace implies that x0 ∈

⋂n−1
k=0 A

−kE−1〈K | A〉.
Then EAkx0 ∈ 〈K | A〉, k = 0, 1, . . . , n − 1. From the property of matrix exponent, it follows
that EeAh1x0 ∈ 〈K | A〉, which means that CeA(t−t1)EeAh1x0 = 0, t ∈ (t1, t2]. By the same
reasoning, we get CeA(t−tm−1)

∏1
j=m−1(Ee

Ahj )x0 = 0, t ∈ (tm−1, tm], 2 ≤ m ≤ M. It means that the
output y(t) ≡ 0, t ∈ [t0, tf]. From Definition 4.2, we conclude that x0 ∈ Qfree and Pn ⊆ Qfree.

On the other hand, if x0 ∈ Qfree, then for any impulse times set T,

0 = y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

CeA(t−t0)x0, t ∈ (t0, t1],

CeA(t−tm−1)
1∏

j=m−1
EeAhj x0, t ∈ (tm−1, tm], 2 ≤ m ≤ M.

(4.3)
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The first equation in (4.3) shows that x0 ∈ 〈Ker(C) | A〉 = O0. If m = 2, (4.3) becomes
CeA(t−t1)EeAh1x0 = 0, t ∈ (t1, t2], then it follows from the definition of unobservable subspace
that

x0 ∈ Ker
(
CeA(t−t1)EeAh1

)
=
〈
Ker
(
CeA(t−t1)E

)
| A
〉
=
〈
E−1 Ker

(
CeA(t−t1)

)
| A
〉

=
〈
E−1〈K | A〉 | A

〉
.

(4.4)

Repeating the same process, we obtain x0 ∈ Oi, i ∈ {0, 1, . . . , n}. This means that x0 ∈ Pn and
Qfree ⊆ Pn. The proof is completed.

From Definition 4.2 and Theorem 4.3, we can see that if Pn = {0}, system (2.4) is
observable. Similarly, we aim to show the invariance of the unobservable set with free
impulse times Qfree. Denote the supremal invariant subspace of system (2.4) contained in
K to be 〈K | A,E〉.

Theorem 4.4. For complex linear impulsive system (2.4), one has

Qfree = Pn = 〈K | A,E〉. (4.5)

Proof. First, we prove that Pn ⊇ 〈K | A,E〉. Given any x0 ∈ 〈K | A,E〉, since 〈K | A,E〉
is the largest invariant subspace contained in KerC, we have Aix0 ∈ 〈K | A,E〉 ⊆ KerC,
i = 0, . . . , n − 1, which means that x0 ∈ O0 =

⋂n−1
i=0 A−iKerC. Furthermore, AjEAix0 ∈ 〈K |

A,E〉 ⊆ KerC, i, j = 0, . . . , n − 1, which means that x0 ∈ O1 =
⋂n−1

i=0 A−iE−1O0. By the same
deduction, x0 ∈ Om indicates that x0 ∈ Pn by the definition of Pn, m > 1. Then we have
Pn ⊇ 〈K | A,E〉.

Next, we prove that Pn ⊆ 〈K | A,E〉. Given any x0 ∈ Pn, x0 ∈ O0 =
⋂n−1

i=0 A−i KerC ⊆
KerC, thenPn ⊆ KerC. Moreover, sinceOm areA-invariant subspaces, we haveAx0 ∈ AOm ⊆
Om,m = 0, 1, . . . , n. It is clear thatAx0 ∈

⋂n
m=0 Om = Pn. On the other hand, the sequence {Pm}

converges to Pn, which implies that x0 ∈ Pn = Pn+1 and x0 ∈ Om, m = 1, 2, . . . , n + 1. Thus
Ex0 ∈ EOm =

⋂n−1
i=0 EA−iE−1Om−1 ⊆ EE−1Om−1 = Om−1, m = 1, 2, . . . , n + 1. This shows that

Ex0 ∈ Om, m = 0, 1, . . . , n. In conclusion, we have Ex0 ∈ Pn and Ax0 ∈ Pn. It means that Pn

is an invariant subspace contained inKwith respect to matricesA and E. Since 〈K | A,E〉 is
the largest one, we conclude that Pn ⊂ 〈K | A,E〉. This completes the proof.

Remark 4.5. When the systems in this paper and [10] are reduced to complex linear sys-
tems, if 〈Ker(C) | A〉 = {0}, from [13], we know that (〈Ker(C) | A〉)⊥ = 〈A� | C�〉 =
� n , that is, rank(S) = n, which means that system (2.4) is observable, where S =

[C�A�C� · · · (An−1)�C�]
�
.

Thus the geometric condition is equivalent to the algebraic one in Theorem 5(i) in [10]
for the observability of system (2.4). When reduced to complex linear impulsive systems with
AE = EA, simple computation follows that the algebraic condition in [10] and the geometric
one here for the observability are equivalent.
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Example 4.6. Consider complex linear impulsive system (2.4) with

A =

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦, E =

⎡

⎢⎢
⎣

0 0 0 1
1 0 0 1
0 1 0 0
0 0 0 0

⎤

⎥⎥
⎦, C =

[
0 1 0 0

]
. (4.6)

It is easy to get that O0 = ker(C) =
[ 1+i 0 0

0 0 0
0 1+i 0
0 0 1+i

]
. Simple computations from (4.2) yield that

O1 =
⋂3

i,j=1 ker(CA
iEAj) =

[ 0 0
1+i 0
0 0
0 1+i

]
andO2 =

[ 1+i 0 0
0 1+i 0
0 0 1+i
0 0 0

]
. Then we haveO0∩O1∩O2 = Qfree =

{0}, which means that the system is observable.

5. Conclusion

In this paper, the reachability and observability have been investigated for a class of time-
driven complex linear impulsive systems which allow free impulsive times. It has been
shown that traditional geometric approach may be not sufficient to study the reachability
and observability for such systems. Hence, a new geometric analysis method is developed.
New concepts of the reachability and observability have been introduced. Sufficient and
necessary conditions for the span reachability and observability of such systems have been
established. Moreover, geometric properties of span reachable set and unobservable set have
been studied. The equivalence between the algebraic conditions in known results [10] and the
geometric ones obtained here has been established. Numerical examples have been provided
to show the explicit construction of the reachable subspace and unobservable subspace and
easily-verifiable conditions for the reachability and observability of complex linear impulsive
systems.
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