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We introduce new classes of cyclic mappings and we study the existence and uniqueness of fixed
points for such mappings. The presented theorems generalize and improve several existing results
in the literature.

1. Introduction

The Banach contraction principle is one of the most important results on fixed point theory.
Several extensions and generalizations of this result have appeared in the literature and
references therein, see [1–11]. One of the most interesting extensions was given by Kirk et al.
in [12].

Theorem 1.1 (see [12]). Let A and B be two nonempty closed subsets of a complete metric space
(X, d). Suppose that T : A ∪ B → A ∪ B satisfies

(i) T(A) ⊆ B, T(B) ⊆ A;

(ii) there exists a constant k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ kd(x, y), ∀x ∈ A, y ∈ B. (1.1)

Then T has a unique fixed point that belongs to A ∩ B.
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A mapping satisfying (i) is called cyclic. Recently, many results dealing with cyclic
contractions have appeared in several works (see, e.g., [13–30]). Karpagam and Agrawal
[31, 32] introduced the notion of a cyclic orbital contraction, and obtained a unique fixed
point theorem for such class of mappings (see also [33, 34]).

In what follows, N is the set of positive integers.

Definition 1.2 (see [31]). Let A and B be nonempty subsets of a metric space (X, d), let T :
A ∪ B → A ∪ B be a cyclic mapping such that for some x ∈ A, there exists a kx ∈ (0, 1) such
that

d
(
T2nx, Ty

)
≤ kxd

(
T2n−1x, y

)
, (1.2)

for all n ∈ N and y ∈ A. Then T is called a cyclic orbital contraction.

Theorem 1.3 (see [31]). Let A and B be two nonempty closed subsets of a complete metric space
(X, d), and let T : A ∪ B → A ∪ B be a cyclic orbital contraction. Then T has a unique fixed point
that belongs to A ∩ B.

Very recently, Chen [19] introduced the class of cyclic orbital stronger Meir-Keeler
contraction.

Definition 1.4 (see [19]). Let (X, d) be a metric space. A mapping ψ : [0,∞) → [0, 1) is called
a stronger Meir-Keeler type mapping in X if the following condition holds for all ε ≥ 0, there
exist δε > 0 and γε ∈ (0, 1) such that for all x, y ∈ X, we have

ε ≤ d(x, y) < ε + δε =⇒ ψ
(
d
(
x, y

))
< γε. (1.3)

Definition 1.5 (see [19]). Let A and B be nonempty subsets of a metric space (X, d). Suppose
that T : A ∪ B → A ∪ B is a cyclic map such that for some x ∈ A, there exists a stronger
Meir-Keeler type mapping ψx : [0,∞) → [0, 1) such that

d
(
T2nx, Ty

)
≤ ψx

(
d
(
T2n−1x, y

))
d
(
T2n−1x, y

)
, (1.4)

for all n ∈ N and y ∈ A. Then T is called a a cyclic orbital stronger Meir-Keeler ψx-contraction.

Clearly, if T : A ∪ B → A ∪ B is a cyclic orbital contraction, then T is a cyclic orbital
stronger Meir-Keeler ψx-contraction, where ψx(t) = kx for all t ≥ 0.

Theorem 1.6 (see [19]). Let A and B be two nonempty closed subsets of a complete metric space
(X, d), and let T : A ∪ B → A ∪ B be a cyclic orbital stronger Meir-Keeler ψx-contraction, for some
x ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

In this work, we introduce new classes of cyclic contractive mappings and we study
the existence and uniqueness of fixed points for such mappings. Our obtained results extend
and generalize several existing fixed point theorems in the literature, including Theorems 1.3
and 1.6.
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2. Main Results

We denote by Ψ the class of stronger Meir-Keeler type mappings (see Definition 1.4).
The following lemma will be useful later.

Lemma 2.1. Let (X, d) be a metric space, ψ ∈ Ψ, {xn}, {yn} ⊂ X. If d(xn, yn) → r as n → ∞,
then there exist γ = γr ∈ (0, 1) andN ∈ N such that

ψ
(
d
(
xn, yn

))
< γ, ∀n ≥N. (2.1)

Proof. Since ψ ∈ Ψ, there exist δr > 0 and γ = γr ∈ (0, 1) such that for all x, y ∈ X, we have

r ≤ d(x, y) < r + δr =⇒ ψ
(
d
(
x, y

))
< γr. (2.2)

Since d(xn, yn) → r+ as n → ∞, there existsN ∈ N such that

r ≤ d(xn, yn
)
< r + δr, ∀n ≥N. (2.3)

It follows from (2.2) that

ψ
(
d
(
xn, yn

))
< γr, ∀n ≥N. (2.4)

This makes end to the proof.

Our first result is the following.

Theorem 2.2. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that for some x ∈ A there exists ψx ∈ Ψ such that

d
(
T2nx, Ty

)
≤ ψx

(
d
(
T2n−1x, y

))d
(
T2n−1x, T2nx

)
+ d

(
Ty, y

)

2
, (2.5)

for all n ∈ N and y ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

Proof. At first, since T is a cyclic mapping and x ∈ A, we have {T2nx : n ∈ N} ⊂ A. So, taking
y = T2nx in (2.5), for all n ∈ N, we get

d
(
T2nx, T2n+1x

)
≤ ψx

(
d
(
T2n−1x, T2nx

))d
(
T2n−1x, T2nx

)
+ d

(
T2nx, T2n+1x

)

2

≤ d
(
T2n−1x, T2nx

)
+ d

(
T2nx, T2n+1x

)

2
.

(2.6)

Thus for all n ∈ N, we have

d
(
T2nx, T2n+1x

)
≤ d

(
T2n−1x, T2nx

)
. (2.7)
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Again, taking y = T2nx in (2.5), for all n ∈ N, we get

d
(
T2n+1x, T2n+2x

)
= d

(
T2n+2x, T2n+1x

)

≤ ψx
(
d
(
T2n+1x, T2nx

))d
(
T2n+1x, T2n+2x

)
+ d

(
T2n+1x, T2nx

)

2

≤ d
(
T2n+1x, T2n+2x

)
+ d

(
T2n+1x, T2nx

)

2
.

(2.8)

Thus for all n ∈ N, we have

d
(
T2n+1x, T2n+2x

)
≤ d

(
T2nx, T2n+1x

)
. (2.9)

It follows from (2.7) and (2.9) that {d(Tnx, Tn+1x)} is a decreasing sequence. Then there exists
ε ≥ 0 such that

lim
n→∞

d
(
Tnx, Tn+1x

)
= ε. (2.10)

Applying Lemma 2.1 with r = ε, we obtain that there exist n0 ∈ N and γε ∈ (0, 1) such that

ψx
(
d
(
Tnx, Tn+1x

))
< γε, ∀n ≥ n0. (2.11)

Denote k0 = [(n0 + 1)/2] + 1, where [(n0 + 1)/2] is the integer part of (n0 + 1)/2. By (2.11) and
(2.5), for all k ≥ k0, we have

d
(
T2kx, T2k+1x

)
≤ ψx

(
d
(
T2k−1x, T2kx

))d
(
T2k−1x, T2kx

)
+ d

(
T2k+1x, T2kx

)

2

≤ γε
d
(
T2k−1x, T2kx

)
+ d

(
T2k+1x, T2kx

)

2
.

(2.12)

This implies that

d
(
T2kx, T2k+1x

)
≤
(

γε
2 − γε

)
d
(
T2k−1x, T2kx

)
, ∀k ≥ k0. (2.13)

Note that γε/(2 − γε) ∈ (0, 1). Similarly, from (2.11) and (2.5), for all k ≥ k0, we have

d
(
T2k+2x, T2k+1x

)
≤ ψx

(
d
(
T2k+1x, T2kx

))d
(
T2k+1x, T2k+2x

)
+ d

(
T2kx, T2k+1x

)

2

≤ γε
d
(
T2k+1x, T2k+2x

)
+ d

(
T2kx, T2k+1x

)

2
.

(2.14)
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This implies that

d
(
T2k+1x, T2k+2x

)
≤
(

γε
2 − γε

)
d
(
T2kx, T2k+1x

)
, ∀k ≥ k0. (2.15)

Now, it follows from (2.13) and (2.15) that

d
(
T2k0+nx, T2k0+n+1x

)
≤
(

γε
2 − γε

)n

d
(
T2k0−1x, T2k0x

)
, ∀n ∈ N ∪ {0}. (2.16)

Denote qε = γε/(2 − γε). From (2.16), for all p ∈ N, we have

d
(
T2k0+nx, T2k0+n+px

)
≤

n+p−1∑

i=n

d
(
T2k0+ix, T2k0+i+1x

)

≤ qnε
1 − qε d

(
T2k0−1x, T2k0x

)
−→ 0 as n −→ ∞.

(2.17)

This implies that {Tnx} is a Cauchy sequence. Since (X, d) is complete, A and B are closed,
and {Tnx} ⊂ A∪B, there exists a z ∈ A∪B such that Tnx → z as n → ∞. On the other hand,
since T is a cyclic mapping and x ∈ A, we have {T2nx} ⊂ A and {T2n+1x} ⊂ B. Since A and B
are closed, this implies that z ∈ A ∩ B. On the other hand, since d(T2n−1x, z) → 0 as n → ∞,
by Lemma 2.1, there existN ∈ N and γ0 ∈ (0, 1) such that

ψ
(
d
(
T2n−1x, z

))
< γ0, ∀n ≥N. (2.18)

From (2.5) and (2.18), for all n ≥N, we have

d
(
T2nx, Tz

)
≤ ψx

(
d
(
T2n−1x, z

))d
(
T2n−1x, T2nx

)
+ d(z, Tz)

2

≤ γ0
d
(
T2n−1x, T2nx

)
+ d(z, Tz)

2
.

(2.19)

Letting n → ∞ in the above inequality, we get

d(z, Tz) ≤ γ0d(z, Tz)2
, (2.20)



6 Journal of Applied Mathematics

which implies (since γ0 ∈ (0, 1)) that d(z, Tz) = 0, that is, z is a fixed point of T . To show the
uniqueness of the fixed point, suppose thatw ∈ A ∪ B is also a fixed point of T . Clearly, since
T is a cyclic mapping, we have w = Tw ∈ A ∩ B. Now, from (2.5), for all n ∈ N, we have

d
(
T2nx,w

)
= d

(
T2nx, Tw

)

≤ ψx
(
d
(
T2n−1x,w

))d
(
T2n−1x, T2nx

)
+ d(Tw,w)

2

≤ d
(
T2n−1x, T2nx

)

2
−→ 0 as n −→ ∞.

(2.21)

Thus we have T2nx → w as n → ∞. From the uniqueness of the limit, we have z = w. Thus
z is the unique fixed point of T .

Example 2.3. Let X = [0,∞) with the usual metric d(x, y) = |x − y| for all x, y ∈ X. Consider
A = [0, 1/2] and B = [1/2, 1]. We have A ∩ B = 1/2. Define T : A ∪ B → A ∪ B by

Tx =

⎧
⎨

⎩

1
2

if x ∈ [0, 1),

0 if x = 1.
(2.22)

Fix any x in A. For all n ∈ N and y ∈ A, we have

d
(
T2nx, Ty

)
= 0, (2.23)

that is, (2.49) holds. Applying Theorem 2.2, the mapping T has a unique fixed point which is
z = 1/2.

Our second main result is the following.

Theorem 2.4. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that for some x ∈ A there exists ψx ∈ Ψ such that

d
(
T2nx, Ty

)
≤ ψx

(
d
(
T2n−1x, y

))d
(
T2n−1x, Ty

)
+ d

(
T2nx, y

)

2
, (2.24)

for all n ∈ N and y ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

Proof. Taking y = T2nx in (2.24), for all n ∈ N, we get

d
(
T2nx, T2n+1x

)
≤ ψx

(
d
(
T2n−1x, T2nx

))(
d
(
T2n−1x, T2n+1x

)
+ d

(
T2nx, T2nx

))

2

≤ d
(
T2n−1x, T2n+1x

)

2
≤ d

(
T2n−1x, T2nx

)
+ d

(
T2nx, T2n+1x

)

2
.

(2.25)
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Thus for all n ∈ N, we have

d
(
T2nx, T2n+1x

)
≤ d

(
T2n−1x, T2nx

)
. (2.26)

Again, taking y = T2nx in (2.24), for all n ∈ N, we get

d
(
T2n+1x, T2n+2x

)
= d

(
T2n+2x, T2n+1x

)

≤ ψx
(
d
(
T2n+1x, T2nx

))(
d
(
T2n+1x, T2n+1x

)
+ d

(
T2n+2x, T2nx

))

2

≤ d
(
T2n+2x, T2nx

)

2
≤ d

(
T2n+2x, T2n+1x

)
+ d

(
T2n+1x, T2nx

)

2
.

(2.27)

Thus for all n ∈ N, we have

d
(
T2n+1x, T2n+2x

)
≤ d

(
T2nx, T2n+1x

)
. (2.28)

It follows from (2.26) and (2.28) that {d(Tnx, Tn+1x)} is a decreasing sequence. Then there
exists ε ≥ 0 such that

lim
n→∞

d
(
Tnx, Tn+1x

)
= ε. (2.29)

Applying Lemma 2.1 with r = ε, we obtain that there exist n0 ∈ N and γε ∈ (0, 1) such that

ψx
(
d
(
Tnx, Tn+1x

))
< γε, ∀n ≥ n0. (2.30)

Denote k0 = [(n0 + 1)/2] + 1. By (2.30) and (2.24), for all k ≥ k0, we have

d
(
T2kx, T2k+1x

)
≤ ψx

(
d
(
T2k−1x, T2kx

))(
d
(
T2k−1x, T2k+1x

)
+ d

(
T2kx, T2kx

))

2

≤ γε
d
(
T2k−1x, T2k+1x

)

2
≤ γε

d
(
T2k−1x, T2kx

)
+ d

(
T2kx, T2k+1x

)

2
.

(2.31)

This implies that

d
(
T2kx, T2k+1x

)
≤ qεd

(
T2k−1x, T2kx

)
, ∀k ≥ k0, (2.32)

where qε = γε/(2 − γε) ∈ (0, 1). Similarly, we can show that

d
(
T2k+1x, T2k+2x

)
≤ qεd

(
T2kx, T2k+1x

)
, ∀k ≥ k0. (2.33)
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Now, it follows from (2.32) and (2.33) that

d
(
T2k0+nx, T2k0+n+1x

)
≤ qnε d

(
T2k0−1x, T2k0x

)
, ∀n ∈ N ∪ {0}. (2.34)

As in the proof of Theorem 2.2, we obtain from the above inequality that {Tnx} is a Cauchy
sequence in (X, d), which implies that there exists a z ∈ A ∩ B such that Tnx → z as n → ∞.
On the other hand, by Lemma 2.1, there existN ∈ N and γ0 ∈ (0, 1) such that

ψ
(
d
(
T2n−1x, z

))
< γ0, ∀n ≥N. (2.35)

From (2.24) and (2.35), for all n ≥N, we have

d
(
T2nx, Tz

)
≤ ψx

(
d
(
T2n−1x, z

))d
(
T2n−1x, Tz

)
+ d

(
T2nx, z

)

2

≤ γ0
d
(
T2n−1x, Tz

)
+ d

(
T2nx, z

)

2
.

(2.36)

Letting n → ∞ in the above inequality, we get

d(z, Tz) ≤ γ0d(z, Tz)2
, (2.37)

which implies (since γ0 ∈ (0, 1)) that d(z, Tz) = 0, that is, z is a fixed point of T . Suppose now
that w ∈ A ∩ B is also a fixed point of T . From (2.24), for all n ∈ N, we have

d
(
T2nx,w

)
= d

(
T2nx, Tw

)

≤ ψx
(
d
(
T2n−1x,w

))d
(
T2n−1x, Tw

)
+ d

(
T2nx,w

)

2

≤ d
(
T2n−1x,w

)
+ d

(
T2nx,w

)

2
.

(2.38)

This implies that

d
(
T2nx,w

)
≤ d

(
T2n−1x,w

)
, ∀n ∈ N. (2.39)

Then there exists a ≥ 0 such that d(T2nx,w) → a as n → ∞. On the other hand, we have

∣∣∣d
(
T2nx,w

)
− d

(
T2n−1x,w

)∣∣∣ = d
(
T2n−1x,w

)
− d

(
T2nx,w

)

≤ d
(
T2nx, T2n−1x

)
−→ 0 as n −→ ∞.

(2.40)
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Thus we have d(T2n−1x,w) → a as n → ∞. By Lemma 2.1, there exist q ∈ N and γa ∈ (0, 1)
such that

ψ
(
d
(
T2n−1x,w

))
< γa, ∀n ≥ q. (2.41)

From (2.41) and (2.24), for all n ≥ q, we have

d
(
T2nx,w

)
= d

(
T2nx, Tw

)

≤ ψx
(
d
(
T2n−1x,w

))d
(
T2n−1x, Tw

)
+ d

(
T2nx,w

)

2

≤ γa
d
(
T2n−1x,w

)
+ d

(
T2nx,w

)

2
.

(2.42)

Letting n → ∞, we get

a ≤ γaa, (2.43)

which implies (since γa ∈ (0, 1)) that a = 0. Thus we have d(T2nx,w) → 0 as n → ∞. By the
uniqueness of the limit, we get that w = z. Thus z is the unique fixed point of T .

The following result is an immediate consequence of Theorem 2.2.

Theorem 2.5. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that for some x ∈ A there exists kx ∈ (0, 1) such
that

d
(
T2nx, Ty

)
≤ kx

d
(
T2n−1x, T2nx

)
+ d

(
Ty, y

)

2
, (2.44)

for all n ∈ N and y ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

The following result is an immediate consequence of Theorem 2.4.

Theorem 2.6. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that for some x ∈ A there exists kx ∈ (0, 1) such
that

d
(
T2nx, Ty

)
≤ kx

d
(
T2n−1x, Ty

)
+ d

(
T2nx, y

)

2
, (2.45)

for all n ∈ N and y ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

Now, we present a data dependence result.



10 Journal of Applied Mathematics

Theorem 2.7. Let A and B be nonempty closed subsets of a complete metric space (X, d) and T, S :
A ∪ B → A ∪ B are two mappings satisfying

(i) T is a cyclic mapping;

(ii) T satisfies (2.5);

(iii) S has a fixed point xS ∈ A;

(iv) there exists η > 0 such that d(Tu, Su) ≤ η for all u ∈ A.

Then d(xT , xS) ≤ 3/2η, where xT is the unique fixed point of T .

Proof. From Theorem 2.2, conditions (i) and (ii) imply that T has a unique fixed point xT ∈
A ∩ B. Using (2.5), we have

d(xT , xS) = d(TxT , SxS)

≤ d
(
T2nx, TxT

)
+ d

(
T2nx, TxS

)
+ d(TxS, SxS)

≤ ψx
(
d
(
T2n−1x, xT

))(
d
(
T2n−1x, T2nx

)
+ d(TxT , xT )

)

2

+
ψx

(
d
(
T2n−1x, xS

))(
d
(
T2n−1x, T2nx

)
+ d(TxS, xS)

)

2
+ d(TxS, SxS)

≤ d
(
T2n−1x, T2nx

)
+ d(TxT , xT )

2
+
d
(
T2n−1x, T2nx

)
+ d(TxS, xS)

2
+ d(TxS, SxS).

(2.46)

Letting n → ∞ and using (iv), we get that

d(xT , xS) ≤ 3
2
d(TxS, SxS) ≤ 3

2
η. (2.47)

We introduce now the following class of cyclic contractive mappings. At first define
the following set Let Φ be the set of functions ϕ : [0,∞) → [0,∞) satisfying the following
conditions

(Φ1) ϕ is lower semicontinuous;

(Φ2) ϕ(t) = 0 if and only if t = 0.

Definition 2.8. Let A and B be nonempty subsets of a metric space (X, d). A cyclic map T :
A ∪ B → A ∪ B is said to be a cyclic weakly orbital contraction if for some x ∈ A, there exists
ϕx ∈ Φ such that

d
(
T2nx, Ty

)
≤ d

(
T2n−1x, y

)
− ϕx

(
d
(
T2n−1x, y

))
, ∀y ∈ A, n ∈ N. (2.48)

We have the following result.
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Theorem 2.9. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic weakly orbital contraction. Then T has a unique fixed point that
belongs to A ∩ B.

Proof. Since T is a cyclic weakly orbital contraction, there exist x ∈ A and ϕx ∈ Φ such that
(2.48) is satisfied. Taking y = T2nx in (2.48), for all n ∈ N, we get

d
(
T2nx, T2n+1x

)
≤ d

(
T2n−1x, T2nx

)
− ϕx

(
d
(
T2n−1x, T2nx

))
≤ d

(
T2n−1x, T2nx

)
. (2.49)

Thus for all n ∈ N, we have

d
(
T2nx, T2n+1x

)
≤ d

(
T2n−1x, T2nx

)
. (2.50)

Again, taking y = T2nx in (2.48), for all n ∈ N, we get

d
(
T2n+1x, T2n+2x

)
= d

(
T2n+2x, T2n+1x

)

≤ d
(
T2n+1x, T2nx

)
− ϕx

(
d
(
T2n+1x, T2nx

))

≤ d
(
T2nx, T2n+1x

)
.

(2.51)

Thus for all n ∈ N, we have

d
(
T2n+1x, T2n+2x

)
≤ d

(
T2nx, T2n+1x

)
. (2.52)

Then {d(Tnx, Tn+1x)} is a decreasing sequence, and there exists r ≥ 0 such that

lim
n→∞

d
(
Tnx, Tn+1x

)
= r. (2.53)

Letting n → ∞ in (2.49), using (2.53) and the lower semicontinuity of ϕx, we obtain

r ≤ r − ϕx(r), (2.54)

which implies from condition (Φ2) that r = 0. Then we have

lim
n→∞

d
(
Tnx, Tn+1x

)
= 0. (2.55)

Now, we shall prove that {Tnx} is Cauchy. From (2.55), it is sufficient to show that {T2nx}
is Cauchy. We argue by contradiction, suppose that {T2nx} is not a Cauchy sequence. Then
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there exists ε > 0 and two subsequences {T2n(k)x} and {T2m(k)x} of {T2nx} such that for all k,
n(k) > m(k) > k and

d
(
T2n(k)x, T2m(k)x

)
≥ ε. (2.56)

We can take n(k) the smallest integer such that the above inequality is satisfied. So, for all k,
we have

d
(
T2n(k)−2x, T2m(k)x

)
< ε. (2.57)

Using (2.56) and (2.57), we obtain

ε ≤ d
(
T2n(k)x, T2m(k)x

)

≤ d
(
T2n(k)x, T2n(k)−1x

)
+ d

(
T2n(k)−1x, T2n(k)−2x

)
+ d

(
T2n(k)−2x, T2m(k)x

)

< d
(
T2n(k)x, T2n(k)−1x

)
+ d

(
T2n(k)−1x, T2n(k)−2x

)
+ ε.

(2.58)

Letting k → ∞ and using (2.55), we have

lim
k→∞

d
(
T2n(k)x, T2m(k)x

)
= ε. (2.59)

On the other hand, for all k, we have

∣∣∣d
(
T2n(k)x, T2m(k)+1x

)
− d

(
T2n(k)x, T2m(k)x

)∣∣∣ ≤ d
(
T2m(k)+1x, T2m(k)x

)
. (2.60)

Letting k → ∞, using (2.55) and (2.59), we have

lim
k→∞

d
(
T2n(k)x, T2m(k)+1x

)
= ε. (2.61)

Similarly, for all k, we have

∣∣∣d
(
T2n(k)−1x, T2m(k)x

)
− d

(
T2n(k)x, T2m(k)x

)∣∣∣ ≤ d
(
T2n(k)−1x, T2n(k)x

)
. (2.62)

Letting k → ∞, using (2.55) and (2.59), we have

lim
k→∞

d
(
T2n(k)−1x, T2m(k)x

)
= ε. (2.63)

Now, applying (2.48) with y = T2m(k)x, for all k, we have

d
(
T2n(k)x, T2m(k)+1x

)
≤ d

(
T2n(k)−1x, T2m(k)x

)
− ϕx

(
d
(
T2n(k)−1x, T2m(k)x

))
. (2.64)
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Letting k → ∞ in the above inequality, using (2.59), (2.63), and the lower semi-continuity of
ϕx, we obtain

ε ≤ ε − ϕx(ε), (2.65)

which implies from (Φ2) that ε = 0, a contradiction. Thus we proved that {Tnx} is a Cauchy
sequence. Since (X, d) is complete, A and B are closed, and {Tnx} ⊂ A ∪ B, there exists a
z ∈ A ∪ B such that Tnx → z as n → ∞. On the other hand, since T is a cyclic mapping and
x ∈ A, we have {T2nx} ⊂ A and {T2n+1x} ⊂ B. Since A and B are closed, this implies that
z ∈ A ∩ B. Now, we will prove that z is a fixed point of T . From (2.48), for all n ∈ N, we have

d
(
T2nx, Tz

)
≤ d

(
T2n−1x, z

)
− ϕx

(
d
(
T2n−1x, z

))
. (2.66)

Letting n → ∞ and using the properties of ϕx, we get

d(z, Tz) ≤ d(z, z) − ϕx(d(z, z)) = 0, (2.67)

which implies that d(z, Tz) = 0, that is, z = Tz. Then z is a fixed point of T . Suppose now that
w ∈ A ∩ B is a fixed point of T . From (2.48), for all n ∈ N, we have

d(z,w) = d
(
T2nz, Tw

)
≤ d

(
T2n−1x,w

)
− ϕx

(
d
(
T2n−1x,w

))
. (2.68)

Letting n → ∞, we get

d(z,w) ≤ d(z,w) − ϕx(d(z,w)), (2.69)

which implies that d(z,w) = 0, that is, z = w. Then T has a unique fixed point.

Denote now by Λ the set of functions α : [0,∞) → [0,∞) satisfying

(Λ1) α is locally integrable on [0,∞);

(Λ2) for all ε > 0, we have
∫ε
0 α(s) ds > 0.

The following result is an immediate consequence of Theorem 2.9.

Theorem 2.10. Let A and B be two nonempty closed subsets of a complete metric space (X, d). Let
T : A ∪ B → A ∪ B be a cyclic mapping. Suppose that for some x ∈ A there exists αx ∈ Λ such that

d
(
T2nx, Ty

)
≤ d

(
T2n−1x, y

)
−
∫d(T2n−1x,y)

0
αx(s) ds, (2.70)

for all n ∈ N and y ∈ A. Then T has a unique fixed point that belongs to A ∩ B.

Remark 2.11. Clearly, any cyclic orbital contraction is a cyclic weakly orbital contraction. So
Theorem 1.3 is a particular case of our Theorem 2.9.
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