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The present paper deals with a dynamic reaction model of a fishery. The dynamics of a fishery
resource system in an aquatic environment consists of two zones: a free fishing zone and a reserve
zone. To protect fish population from over exploitation, a control instrument tax is imposed. The
existence of its steady states and their stability are studied. The optimal harvest policy is discussed
next with the help of Pontryagin’s maximum principle. Our theoretical results are confirmed by
numerical simulation.

1. Introduction

With the growing need of human for more food and energy, several resources have been
increasingly exploited. It has caused wide public concern to protect the ecosystem. A
scientific management of commercial exploitation of the biological resource like fisheries and
forestry is necessitated. The first attempt of mathematical modelling of resource management
problems was made in the article by Hotelling [1], who dealt with the economies of
exhaustible resources using the calculus of variations, which was not a very familiar topic for
the researchers as Hotelling’s article was largely ignored until the 1973 energy crisis which led
to a surge of interest in the field [2]. The techniques and issues associated with bioeconomic
exploitation of these resources have been discussed in detail by Clark [3, 4]. During the last
few decades, several investigations regarding fishing resource have been conducted [5–16].
Dubey et al. [17] proposed and analyzed a mathematical model as follows:

x′(t) = rx(t)
(
1 − x(t)

K

)
− σ1x(t) + σ2y(t) − qEx(t),

y′(t) = sy(t)
(
1 − y(t)

L

)
+ σ1x(t) − σ2y(t),

(1.1)
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where x(t) and y(t) represent biomass densities of the same fish population inside the free
fishing zone, and reserve area, respectively, at a time t. Let the fish subpopulation of the free
fishing zone migrate into reserve area at a rate σ1 and the fish subpopulation of the reserve
area migrate into free fishing zone at a rate σ2. q is the catch ability coefficient of the fish
population in free fishing zone, and E denotes the effort devoted to the harvesting. Kar and
Misra [18]modified the model proposed in [17] by Dubey et al.

On the other hand, regulation of exploitation of biological resources has become a
problem of major concern nowadays in view of the dwindling resource stocks and the de-
teriorating environment. Exploitation of marine fisheries naturally involves the problems of
law enforcement. Several governing instruments are suggested for the choice of a regulatory
control variable. These are imposition of taxes and license fees, leasing of property rights,
seasonal harvesting, direct control, and so forth. Various issues associated with the choice of
an optimal governing instrument and its enforcement in fishery were discussed by Anderson
and Lee [19]. Pradhan and Chaudhuri [20] studied a dynamic reaction model of a fishery.
A regulatory agency controls exploitation of the fishery by imposing a tax per unit biomass
of the landed fish. Ganguli and Chaudhuri [21] studied the bionomic exploitation of single
species fishery using taxation as a control variable. Pradhan and Chaudhuri [22] studied a
dynamic reaction model of two-species fishery with taxation as a control instrument. It deals
with a dynamic reactionmodel of a fishery consisting of two competing species, each of which
obeys the logistic law of growth. A regulatory agency controls exploitation of the fishery by
imposing a tax per unit biomass of the landed fish. Kar [23] discussed a problem of selective
harvesting in a ratio-dependent predator-prey fishery in which both the predator and prey
obey the logistic law of growth. Kar [24] also studied a ratio-dependent prey-predator mod-
el with selective harvesting of prey species. A regulatory agency controls exploitation by
imposing a tax per unit biomass of the prey species.

In order to keep a sustainable fishing resource. We will take some actions in fishing
areas to protect certain fish stocks by restricting the fishermen’s fishing action. Such restric-
tion would be implemented in the form of taxation. Following [22], we take E as dynamic
(i.e., time-dependent) governed variable. We assume that the fish population in the free fish-
ing zone is subject to a harvesting effort governed by the differential equations. To conserve
fish populations, the regulatory agency imposes a tax τ > 0 per unit biomass of the landed
fish. (τ < 0 denotes the subsidies given to the fishermen). Keeping these aspects in view, the
dynamics of the system may be governed by the following system of equations:

x′(t) = rx(t)
(
1 − x(t)

K

)
− σ1x(t) + σ2y(t) − qE(t)x(t),

y′(t) = sy(t)
(
1 − y(t)

L

)
+ σ1x(t) − σ2y(t),

E′(t) =
{
αβ
[
q
(
p − τ

)
x(t) − c

] − γ
}
E(t),

x(0) > 0, y(0) > 0, E(0) > 0, 0 < α ≤ 1, 0 ≤ β < 1,

(1.2)

where γ is constant rate of depreciation of capital. α and β are coefficients of proportionality,
αβ is called the stiffness parameter measuring the strength of reaction of effort to the
perceived rent; for further details about the biological sense of α and β, we refer to [23, 24]. p
is the constant price per unit biomass of the fish species, and c is the constant cost per unit of
harvesting effort.
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From [17], we know that there is no migration of fish population from reserve area to
free fishing zone (i.e., σ2 = 0) and r − σ1 < 0, then ẋ(t) < 0. Similarly, if there is no migration
of fish population from free fishing zone to reserve area (i.e., σ1 = 0) and s − σ2 < 0, then
ẏ(t) < 0. Hence throughout our analysis, we assume that

r − σ1 > 0, s − σ2 > 0. (1.3)

The aim of this paper is to find a proper taxation policy which would give the best
possible benefit through harvesting to community while preventing the extinction of the
fishing species. The structure of this paper is as follows. In the next section, we study the
steady-state existence of positive equilibrium. In Section 3, by analyzing the corresponding
characteristic equations, we discuss the local stability of equilibria. In Section 4, the global
stability of the system is discussed by constructing a suitable Lyapunov function. In Section 5,
optimal tax policy is discussed using Pontryagin’s maximum principle [25]. In Section 6, we
try to interpret our results by numerical simulation. At last, we give some discussions.

2. Existence of Equilibria

We find the steady-states of (1.2) by equating the derivatives on the left-hand sides to zero
and solving the resulting algebraic equations. This gives three possible steady states, namely:
P0(0, 0, 0), P1(x, y, 0), and P2(x∗, y∗, E∗). Existence of P0(0, 0, 0) is obviously. We will consider
the existence of P1(x, y, 0) in the following. We know that x and y are the positive solutions
of the following equations:

σ2y(t) =
rx2(t)
K

− (r − σ1)x(t),

σ1x(t) = (σ2 − s)y(t) +
sy2(t)

L
.

(2.1)

From [17], we get a cubic equation in x(t) as

ax3(t) + bx2(t) + cx(t) + d = 0, (2.2)

where

a =
sr2

Lσ2
2K

2
,

b = −2sr(r − σ1)
Lσ2

2K
,

c =
s(r − σ1)2

Lσ2
2

− (s − σ2)r
Kσ2

,

d =
(s − σ2)

σ2
(r − σ1) − σ1.

(2.3)



4 Journal of Applied Mathematics

Please note that there may be many possibilities that the above equation has positive
solutions. We assume that the following inequalities hold:

s(r − σ1)2

Lσ2
<

(s − σ2)r
K

,

(s − σ2)(r − σ1) < σ1σ2,

(2.4)

then above equation has a unique positive solution x(t) = x.
Knowing the value of x, the value of y can then be computed from (2.1). It may be

noted here that for y to be positive, we must have

rx

K
> r − σ1. (2.5)

Then we have following theorem.

Theorem 2.1. If inequalities (2.4) and (2.5) are satisfied, then (1.2) has a nonnegative equilibrium
P1(x, y, 0).

Next, we will consider the existence of the positive equilibrium P2(x∗, y∗, E∗), where
x∗, y∗, and E∗ are positive solutions of

rx(t)
(
1 − x(t)

K

)
− σ1x(t) + σ2y(t) − qE(t)x(t) = 0,

sy(t)
(
1 − y(t)

L

)
+ σ1x(t) − σ2y(t) = 0,

αβ
{
q
(
p − τ

)
x(t) − c

} − γ = 0.

(2.6)

From (2.6), we obtain

x∗ =
αβc + γ

αβ
(
p − τ

)
q
> 0 (2.7)

for

p > τ, (2.8)

y∗ =
(s − σ2) +

√
(s − σ2)2 + 4(s/L)σ1x∗

2s/L
> 0. (2.9)

Again, if

(r − σ1)rαβq
(
p − τ

)
K
(
αβc + γ

) > 1, (2.10)
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then

E∗ =
1

qx∗

{(
r − rx∗

K
− σ1

)
x∗ + σ2y

∗
}

> 0. (2.11)

Thus we have following theorem.

Theorem 2.2. If (2.8) and (2.10) are satisfied, then (1.2) has a unique interior equilibrium point
P2(x∗, y∗, E∗).

3. Local Stability Analysis

We first consider the local stability of equilibria. The variational matrix of the system (1.2)
is

M
(
x, y, E

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r − 2rx(t)
K

− σ1 − qE(t) σ2 −qx(t)

σ1 s − 2sy(t)
L

− σ2 0

αβqE(t)
(
p − τ

)
0 αβ

{
q
(
p − τ

)
x(t) − c

} − γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.1)

At P0(0, 0, 0), the characteristic equation of M0(0, 0, 0) is

(
a1 − μ

)(
μ2 + a2μ + a3

)
= 0, (3.2)

where

a1 = −(αβc + γ
)
,

a2 = −(r − σ1 + s − σ2),

a3 = (r − σ1)(s − σ2) − σ1σ2.

(3.3)

In this cubic equation, one root is a1 < 0, the sum of other two roots is −a2 > 0. So (3.2)
at least has one positive root. Therefore, P0 is unstable. We get the following theorem.

Theorem 3.1. The equilibrium P0 of (1.2) is unstable.

At P1(x, y, 0), the characteristic equation ofM1(x, y, 0) is

(
d1 − μ

)(
μ2 + d2μ + d3

)
= 0, (3.4)
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where

d1 = αβq
(
p − τ

)
x − (γ + αβc

)
,

d2 = −
(
σ1x

y
+
sy

L
+
σ2y

x
+
rx

K

)
< 0,

d3 =
sσ2y

2

xL
+
x2σ1r

Ky
+
srx y

KL
> 0.

(3.5)

Similarly, one of the eigenvalues of the variational matrixM1(x, y, 0) is αβq(p−τ)x−(αβc+γ).
This eigenvalue is positive or negative according to whether τ < (1/qx)(pqx − (αβc + γ)/αβ)
or τ > (1/qx)(pqx− (αβc+γ)/αβ). The sum of other two roots is −d2 > 0; the product of other
two roots is d3 > 0. So (3.4) has two positive roots. Therefore, P1 is unstable. Then we have
following theorem.

Theorem 3.2. If inequalities (2.4) and (2.5) are satisfied, then the equilibrium P1 of (1.2) is unstable.

To determine the local stability character of the interior equilibrium P2(x∗, y∗, E∗), we
compute the variational M2(x∗, y∗, E∗) about (x∗, y∗, E∗)

M2
(
x∗, y∗, E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r − 2rx∗

K
− σ1 − qE∗ σ2 −qx∗

σ1 s − 2sy∗

L
− σ2 0

αβqE∗(p − τ
)

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.6)

The characteristic equation of the variational matrix M2(x∗, y∗, E∗) is given by

μ3 +m1μ
2 +m2μ +m3 = 0, (3.7)

where

m1 =
rx∗

K
+ σ2

y∗

x∗ +
sy∗

L
+ σ1

x∗

y∗ > 0,

m2 =
(
rx∗

K
+ σ2

y∗

x∗

)(
sy∗

L
+ σ1

x∗

y∗

)
+ q2x∗αβE∗(p − τ

) − σ1σ2,

m3 =
(
sy∗

L
+ σ1

x∗

y∗

)(
p − τ

)
q2αβx∗E∗ > 0.

(3.8)

By the Routh-Hurwitz criterion, it follows that all eigenvalues of (3.7) have negative real
parts if and only if

m1 > 0, m3 > 0, m1m2 > m3. (3.9)
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Here, m1 > 0, m3 > 0, and

m1m2 −m3 =
{(

rx∗

K
+ σ2

y∗

x∗

)(
sy∗

L
+ σ1

x∗

y∗

)
− σ1σ2

}(
sy∗

L
+ σ1

x∗

y∗ +
rx∗

K
+ σ2

y∗

x∗

)

+
(
rx∗

K
+ σ2

y∗

x∗

)
q2x∗αβE∗(p − τ

)

=

(
rsx∗y∗

KL
+ σ1

rx∗2

Ky∗ + σ2
sy∗2

Lx∗

)(
sy∗

L
+ σ1

x∗

y∗ +
rx∗

K
+ σ2

y∗

x∗

)

+
(
rx∗

K
+ σ2

y∗

x∗

)
q2x∗αβE∗(p − τ

)

> 0.

(3.10)

Hence P2(x∗, y∗, E∗) is locally asymptotically stable. We get the following theorem.

Theorem 3.3. If (2.8) and (2.10) are satisfied, then the unique interior equilibrium point P2(x∗,
y∗, E∗) of (1.2) is locally asymptotically stable.

4. Global Stability

In this section, we will consider the global stability of the unique interior equilibrium of
system (1.2) by constructing a suitable Lyapunov function. We have the following theorem.

Theorem 4.1. If (2.8) and (2.10) are satisfied, then the unique interior equilibrium point P2(x∗,
y∗, E∗) of (1.2) is globally asymptotically stable.

Proof. Define a Lyapunov function

V
(
x(t), y(t), E(t)

)
=
(
(x(t) − x∗) − x∗ ln

x(t)
x∗

)
+ e1

((
y(t) − y∗) − y∗ ln

y(t)
y∗

)

+ e2

(
(E(t) − E∗) − E∗ ln

E(t)
E∗

)
,

(4.1)

where e1 and e2 are positive constants to be chosen suitably in the subsequent steps. It can
be easily verified that V (x(t), y(t), E(t)) is zero at the equilibrium point and positive for all
other positive values of x(t), y(t), and E(t).

Differentiating V with respect to t along the solutions of (1.2), a little algebraic
manipulation yields

dV

dt
=

(x(t) − x∗)
x(t)

dx(t)
dt

+ e1

(
y(t) − y∗)

y(t)
dy(t)
dt

+ e2
(E(t) − E∗)

E(t)
dE(t)
dt

. (4.2)



8 Journal of Applied Mathematics

Choosing e1 = σ2y
∗/σ1x

∗, e2 = 1/αβ(p − τ), a little algebraic manipulation yields

dV

dt
= − r

K
(x(t) − x∗)2 − sσ2y

∗

Lσ1x∗
(
y(t) − y∗)2 − σ2

x∗x(t)y(t)
(
x∗y(t) − y∗x(t)

)2
< 0. (4.3)

So P2(x∗, y∗, E∗) is globally asymptotically stable. The proof is complete.

5. Optimal Harvest Policy

The objective of the regulatory agency is to maximize the total discounted net revenues
that the society drives due to the harvesting activity. Symbolically, this objective amounts
to maximizing the present value J of a continuous time stream of revenues given by

J =
∫∞

0
e−δt
(
pqx(t) − c

)
E(t)dt, (5.1)

where δ denotes the instantaneous annual rate of discount.
Our objective is to determine a tax policy τ = τ(t) to maximize J subject to the state

(1.2) and the control constraint

τmin ≤ τ(t) ≤ τmax (5.2)

on the control variable τ(t).
We apply Pontryagin’s maximum principle in Burghes and Graham [26] to obtain the

optimal equilibrium solution to this control problem. TheHamiltonian of this control problem
is

H = e−δt
(
pqx(t) − c

)
E(t) + λ1(t)

{
rx(t)

(
1 − x(t)

K

)
− σ1x(t) + σ2y(t) − qE(t)x(t)

}

+ λ2(t)
{
sy(t)

(
1 − y(t)

L

)
+ σ1x(t) − σ2y(t)

}

+ λ3(t)
{
αβ
[
q
(
p − τ

)
x(t) − c

]
E(t) − γE(t)

}
,

(5.3)

where λ1(t), λ2(t), and λ3(t) are adjoint variables. Hamiltonian H must be maximized for
τ(t) ∈ [τmin, τmax]. Assuming that the control constraints are not binding (i.e., the optimal
solution does not occur at τ(t) = τmin or τmax), we have singular control [27] given by

∂H

∂τ
= λ3(t)

(−αβqx(t)E(t)) = 0 =⇒ λ3(t) = 0. (5.4)
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Now the adjoint equations are

dλ1(t)
dt

= −∂H
∂x

= −e−δtpqE(t) − λ1(t)
{
r − 2rx(t)

K
− σ1 − qE(t)

}
− λ2(t)σ1, (5.5)

dλ2(t)
dt

= −∂H
∂y

= −λ1(t)σ2 − λ2(t)
{
s − 2sy(t)

L
− σ2

}
, (5.6)

dλ3(t)
dt

= −∂H
∂E

= −
{
e−δt
(
pqx(t) − c

) − λ1(t)qx(t)
}
= 0. (5.7)

From (5.7), we obtain

λ1(t) = e−δt
(
p − c

qx(t)

)
. (5.8)

To obtain an optimal equilibrium solution, we shall rewrite (5.6) by considering the interior
equilibrium as

dλ2(t)
dt

= A2e
−δt +A1λ2(t), (5.9)

where

A1 =
2sy∗

L
+ σ2 − s, A2 =

(
c

qx∗ − p

)
σ2. (5.10)

The solution of this linear equation is

λ2(t) = K0e
A1t − A2

A1 + δ
e−δt. (5.11)

The shadow price (the term “shadow price” refers to the fact that the asset’s value is not its
direct sale value but the value imputed from its future productivity [4]) λ2(t)eδt is bounded
as t → ∞ if K0 = 0. Then

λ2(t) = − A2

A1 + δ
e−δt. (5.12)

Similarly,

λ1(t) = − B2

B1 + δ
e−δt, (5.13)

where

B1 =
2rx∗

K
+ σ1 + qE∗ − r, B2 =

σ1A2

A1 + δ
− pqE∗. (5.14)
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Substituting the value of λ1(t) from (5.8) into (5.13), we get

p − c

qx∗ = − B2

B1 + δ
. (5.15)

Now using the values of x∗, y∗, and E∗ from Section 3 into (5.15), we get an equation
for τ(t). Let τδ be a solution (if it exists) of this equation. Using this value of τ(t) = τδ, we get
the optimal equilibrium point (xδ, yδ, Eδ).

The existence of an optimal equilibrium solution has been created, which satisfies the
necessary conditions of the maximum principle. As stated by Clark [3], an optimal approach
path, which is composed of the combination of bang-bang control and nonequilibrium sin-
gular controls, is fairly difficult to find. Faced with the same difficulty, Clark [3] researched
a simple model of two ecologically independent fish populations. The present model is far
more complex than the model mentioned by Clark. So we only consider an optimal equilib-
rium.

From the above analysis carried out in this section, we observe the following.

(1) From (5.4), (5.12), and (5.13), we note that λi(t)eδt(i = 1, 2) is independent of time
in an optimum equilibrium. Hence they satisfy the transversality condition at ∞,
that is, they remain bounded as t → ∞.

(2) Considering the interior equilibrium, (5.7) can be written as

λ1qx
∗ =
(
pqx∗ − c

)
e−δt = e−δt

∂π

∂E
. (5.16)

This implies that the total users cost of harvest per unit effort is equal to the
discounted values of the future price at the steady-state effort level.

(3) From (5.15), we get

pqx∗ − c = −B2qx
∗

B1 + δ
−→ 0 as δ −→ ∞. (5.17)

Thus, the net economic revenue π(x∞, y∞, E∞, t) = 0.

This shows that an infinite discount rate results in the complete dissipation of eco-
nomic revenue. For zero discount rate, it is indicated that the present value of continuous
time stream gains its maximum value.

6. Numerical Example

In this section, we use Matlab 7.0 to simulate a numerical example to illustrate our results.
Let r = 1.5, s = 2.7, K = 200, L = 250, σ1 = 0.5, σ2 = 0.4, q = 0.2, c = 10, γ = 10, α = 0.8,

β = 0.4, p = 19, and δ = 0.03, in appropriate units.
Then for the above values of the parameter, optimal tax becomes τδ = 15.1 and

corresponding stable optimal equilibrium is (52.88, 223.90, 11.48). The time-paths of the free
fishing zone x(t), reserve area y(t), and effort E(t) are shown in Figure 1, and the three
dimensional phase space portrait is depicted in Figure 2. From the solution curves, we infer
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Figure 1: Solution curves corresponding to the tax τδ = 15.1, beginning with x = 50, y = 150, and E = 100.
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Figure 2: Phase space trajectories corresponding to the optimal tax τδ = 15.1, with reference to the different
initial levels, we know that the optimal equilibrium (52.88, 223.90, 11.48) is asymptotically stable.

that the system is globally stable about the interior equilibrium point. Biological meaning is
that this optimal tax system achieves relatively balance and all the fish population may be
maintained at an appropriate equilibrium level.

In Figures 3–5, variation of free fishing zone, reserve area, and harvesting effort against
time are plotted for different tax levels. From these plots, we observe that as the rate of tax
increases, free fishing zone populations and reserve area populations increase while harvest-
ing effort decreases as expected.

We take τ = 0 and τ = 15.1. Now taking the tax τ = 0 in (2.6), we have x∗ = 10.86,
y∗ = 215.29, and E∗ = 44.26, respectively. But for the optimal tax τ = 15.1, we have x∗ = 52.88,
y∗ = 223.90, and E∗ = 11.48.

From these results, it is clear that if the fishermen have to pay no tax, then they use a
large amount of effort compared to the case when the fishermen have to pay the optimal tax.
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Figure 3: Variation of free fishing zone population with time for different tax levels.
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Figure 4: Variation of reserve area population with time for different tax levels.

As a result, the steady-state values of the two species for the case of τ = 0 are much less than
those for the case of τ = 15.1.

The computer analyzed results for the time course display of the two species x and y
and the phase space trajectory for τ = 0 and τ = 15.1 using these parameter values is also
shown in Figures 3–5.
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Figure 5: Variation of harvesting effort with time for different tax levels.
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Figure 6: The trend of population x(t) and E(t) in the tax τδ = 15.1 rates when the reserved zone not set
up.

By comparing Figures 1 and 6, we can see that, in the model without reserve area,
there exists oscillation of fish population in free fishing zone for a long time when they tend
to positive equilibrium. However, in our model, fish population tend to positive equilibrium
quickly in reserved zone, which is beneficial for population protection.



14 Journal of Applied Mathematics

7. Discussion

In this paper, we study an optimal harvesting problem for fishery resource with prey
dispersal in a two-patch environment: one is a free fishing zone and the other is a reserve
zone, focusing attention on the use of taxation as an optimal governing instrument to control
exploitation of the fishery. In Sections 3 and 4, we have discussed the local and global stability
of the system. It has been observed that, in the case of no taxation, even under continuous
harvesting in the free fishing zone, the fish population may be maintained at an appropriate
equilibrium level. On the other hand, in the case of taxation, populationmay be also sustained
at an appropriate equilibrium level. But from Figures 3 and 4, we know that as the rate
of tax increases free fishing zone populations and reserved area populations increase while
harvesting effort decreases. This situation is in accordance with reality. In the model without
reserve area, there exists oscillation of fish population in free fishing zone for a long time
when they tend to positive equilibrium. However, in our model, fish population tend to
positive equilibrium quickly in reserved zone, which is beneficial for population protection.
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