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On the basis of the computer symbolic system Maple and the extended hyperbolic function
method, we develop a more mathematically rigorous and systematic procedure for constructing
exact solitary wave solutions and exact periodic traveling wave solutions in triangle form of
various nonlinear partial differential equations that are with physical backgrounds. Compared
with the existing methods, the proposed method gives new and more general solutions. More
importantly, the method provides a straightforward and effective algorithm to obtain abundant
explicit and exact particular solutions for large nonlinear mathematical physics equations. We
apply the presented method to two variant Boussinesq equations and give a series of exact explicit
traveling wave solutions that have some more general forms. So consequently, the efficiency and
the generality of the proposed method are demonstrated.

1. Introduction

The nonlinear phenomena are very important in a variety of scientific fields, especially
in fluid dynamics, solid-state physics, hydrodynamics, plasma physics, elastic dynamics,
acoustics, chemical physics, and nonlinear optics. Nonlinear evolution partial differential
equations are widely used as models to describe complex physical phenomena in
various fields of sciences, especially in fluid mechanics, solid-state mechanics, atmospheric
physics, chemical reaction-diffusion dynamics, ion acoustics, and nonlinear vibration. The
investigation of exact traveling wave solutions to nonlinear evolution partial differential
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equations plays an important role in the study of nonlinear science. The exact solution, if
available, of those nonlinear equations facilitates the verification of numerical solvers and
aids in the stability analysis of solutions. It can also provide much physical information and
more insights into the physical aspects of the nonlinear physical problem. During the past
decades, much effort has been spent on the subject of obtaining the exact analytical solutions
to the nonlinear evolution PDEs. Many powerful methods have been proposed such as the
inverse scattering transformation method [1], the Bäcklund and Darboux transformation
method [2, 3], the Hirota bilinear method [4], the Lie group reduction method [5], the
tanh method [6], the tanh-coth method [7], the sine-cosine method [8, 9], the homogeneous
balance method [10–12], the Jacobi elliptic function method [13, 14], the extended tanh
method [15, 16], the F-expansion method and its extension [17, 18], the Riccati method
[19, 20], and extended improved tanh-function method [21, 22]. With the development of
symbolic computation, the tanh method, the F-expansion method, the sine-Gordon equation
expansion method, and all kinds of auxiliary equation methods attract more and more
researchers. In this paper, we present an effective extension to the projective Riccati equation
method [19, 20] and extended improved tanh-function method [21, 22] and develop an
effective Maple software package “PDESolver” to uniformly construct a series of traveling
wave solutions including solitary wave solutions, singular traveling, rational, triangular
periodic solitons for general nonlinear evolution equations. Our method can be regarded as
an extension of the works by Wazwaz [23, 24] and Soliman [21]. For illustration, we apply
the presented method to two variant Boussinesq equations

Ht + (Hu)x + uxxx = 0,

ut +Hx + uux = 0,
(1.1)

Ht + ux + (Hu)x − αuxxx = 0,

ut +Hx + uux − 3αuxxt = 0,
(1.2)

where H(x, t), u(x, t) are the unknown functions depending on the temporal variable t
and the spatial variable x. These two equations were introduced as models for water
waves and called variant Boussinesq equations I and II, respectively [25]. Their symmetries,
conservation laws, and inverse scattering transformation, and soliton solutions have been
investigated by many authors (see [8, 16] and references therein). Many exact solutions
have been obtained by many researchers using the sine-cosine method [8], the homogeneous
balance method [10], the extended tanh method [16], and the the F-expansion method [17],
respectively. We will give a series of new traveling wave solutions for the two equations.
Some entirely new exact solitary wave solutions and periodic wave solutions of the equations
are obtained.

The paper is organized as follows: in Section 2, we briefly describe what is the
extended hyperbolic function method and how to use it to derive the traveling solutions of
nonlinear PDEs. In Section 3, we apply the extended hyperbolic function method to (1.1) and
(1.2) and establish many rational form solitary wave, rational form triangular periodic wave
solutions. In Section 4, we briefly make a summary to the results that we have obtained.
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2. The Extended Hyperbolic Function Method

Now we would like to outline the main steps of our method for solving nonlinear PDEs.
Consider the coupled Riccati equations

f ′(ξ) = −f(ξ)g(ξ),

g ′(ξ) = ε − rεf(ξ) − g2(ξ),
(2.1)

where ε = ±1 or 0, r is a constant. When ε /= 0, we can obtain the following first integral as
given:

g2(ξ) = ε − 2rεf(ξ) + Cf2(ξ). (2.2)

Step 1. Consider a system of N nonlinear evolution equations (N ≥ 1) with n independent
variables x = (x1, x2, . . . , xn) andm dependent variables u = (u1, u2, . . . , um), given by

Pi

(
u, ∂u, ∂2u, . . . , ∂ru

)
= 0, i = 1, 2, . . . ,N, (2.3)

where Pi, i = 1, 2, . . . ,N, are in general nonlinear functions of their arguments, ∂ju denotes the
coordinates with components ∂ju/(∂xi1∂xi2 · · · ∂xij ) = ui1i2···ij , ij = 1, 2, . . . , n, for j = 1, 2, . . . , k,
corresponding to all jth-order partial derivatives of u with respect to x.

We seek the following formal travelingwave solutions which are of important physical
significance:

u(x, t) = u(ξ), ξ = k1x1 + k2x2 + · · · + knxn + ξ0,

(
n∑
i=1

k2
i /= 0

)
, (2.4)

where ki are constants to be determined later and ξ0 is an arbitrary constant.
Then the nonlinear partial differential equations (2.3) reduce to a nonlinear ordinary

differential equations

Qi

(
u, u′, u′′, . . . uk

)
= 0, i = 1, 2, . . . ,N, (2.5)

where ’ denotes d/dξ.

Step 2. To seek the exact solutions of nonlinear partial differential equations (2.3), we assume
that the solution of the ODEs (2.5) is of the following form.

(a) When ε = ±1 in (2.1), (2.2),

ul(x, t) = ul(ξ) =
ln∑
i=0

al,i

(
f(ξ)

)i +
ln∑
j=1

bl,j
(
f(ξ)

)j−1
g(ξ), l = 1, 2, . . . , m, (2.6)

where the coefficients al,i (i = 0, 1, 2 . . . , ln) and bl,j (j = 1, 2, . . . , ln) are constants to
be determined latter.
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(b) When ε = 0 in (2.1),

ul(x, t) =
ln∑
i=0

al,i

(
g(ξ)

)i
, l = 1, 2, . . . , m, (2.7)

where g ′(ξ) = −g2(ξ) and the coefficients al,i (i = 0, 1, 2 . . . , ln) are constants to be
determined.

Step 3. Balancing the highest-order derivative term and the nonlinear terms in (2.5), we get
balance powers ln (usually positive integer). If some one of ln is a fraction or a negative
integer, say sn is negative, we make the following transformation:

us(ξ) = vsn
s , (2.8)

then return to determine balance power n again.

Step 4. (a) When ε /= 0, substituting (2.6) along with the conditions (2.1) and (2.2) into (2.5).
(b)When ε = 0, substituting (2.7) along with the condition g ′(ξ) = −g2(ξ) into (2.5).
Then eliminating any derivative of (f, g) and any power of g higher than one and

setting the coefficients of powers fi (i = 0, 1, . . . ; ) and fjg (j = 0, 1, . . .) in the case (a) (setting
the coefficients of the different powers g in the case (b)) to zero yield a set of overdetermined
nonlinear algebraic equations with respect to the unknown variables ki, i = 1, 2, . . . , n, al,i (i =
0, 1, 2 . . . , ln), bl,j (j = 1, 2, . . . , ln), r, C. With the aid of Maple, we apply the Wu-elimination
method [26] to solve the above overdetermined system of nonlinear algebraic equations, that
yields the values of ki, i = 1, 2, . . . , n, al,i (i = 0, 1, 2 . . . , ln), bl,j (j = 1, 2, . . . , ln), r, C.

Step 5. We know that the coupled Riccati equations (2.1) admit the following special
solutions.

(a) When ε = 1,

f(ξ) =
1

a cosh ξ + b sinh ξ + r
, g(ξ) =

a sinh ξ + b cosh ξ
a cosh ξ + b sinh ξ + r

, (2.9)

and then g2(ξ) = 1 − 2rf(ξ) + (b2 − a2 + r2)f2(ξ).

(b) When ε = −1,

f(ξ) =
1

a cos ξ + b sin ξ + r
, g(ξ) =

b cos ξ − a sin ξ
a cos ξ + b sin ξ + r

, (2.10)

and then g2(ξ) = −1 + 2rf(ξ) + (b2 + a2 − r2)f2(ξ).

(c) When ε = 0,

f(ξ) =
C

ξ
, g(ξ) =

1
ξ
, (2.11)

where C is constant.
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Thus according to (2.4), (2.6), (2.9), (2.10) (or (2.4), (2.7), (2.11)) and the conclusions
in Step 4, we can obtain the multiple more general exact explicit traveling wave solutions of
nonlinear partial differential equations (2.3).

Remark 2.1. Many types of traveling wave solutions such as tanh ξ, coth ξ, sech ξ, cosech ξ,
tan ξ, cot ξ, sec ξ, cosec ξ, and 1/ξ can be obtained by considering the different values of a, b in
(2.9), (2.10). Our proposed method is a generalization of the tanh method [6], the extended
tanh method, the tanh-coth method [7, 15], the extended tanh-function method [27], the
extended improved tanh-function method [21], and the recent works of Wazwaz [23, 24].

The proposed method supplies a unified formulation to construct abundant traveling
wave solutions to nonlinear evolution partial differential equations of special physical
significance. Furthermore, the presentedmethod is readily computerizable by using symbolic
software Maple. Based on the extended hyperbolic function method and computer symbolic
software, we develop a Maple software package “PDESolver.” Compared with packages
RATH, ERATH, AJFM, TRWS, and RAEEM, “PDESolver” is more effective. “PDESolver”
can obtain more exact traveling wave solutions.

3. Exact Solutions of the Variant Boussinesq Equations

As an example of the use of Maple software package “PDESolver,” we first consider the
variant Boussinesq equations (1.1).

According to the above method, to seek traveling wave solutions of (1.1), we make the
transformation

u(x, t) = u(ξ), H(x, t) = H(ξ), ξ = kx +ωt + ξ0, (3.1)

and thus (1.1) becomes

ωH ′(ξ) + k(Hu)′(ξ) + k3u′′′(ξ) = 0,

ωu′(ξ) + kH ′(ξ) + ku(ξ)u′(ξ) = 0.
(3.2)

Firstly we assume that the solutions of (3.1) are of the form

H(x, t) = H(ξ) =
m∑
i=0

a1,i
(
f(ξ)

)i +
m∑
j=1

b1,j
(
f(ξ)

)j−1
g,

u(x, t) = u(ξ) =
n∑
i=0

a1,i
(
f(ξ)

)i +
n∑
j=1

b1,j
(
f(ξ)

)j−1
g,

(3.3)
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where a1,i, b1,j , i = 0, 1, 2, . . . , m, j = 1, 2, . . . , m, and a2,i, b2,j , i = 0, 1, 2, . . . , m, j = 1, 2, . . . , m,
are constants to be determined latter, f and g satisfy (2.1), (2.2), and ε = ±1. We can get the
balancing powers m = 2, n = 1. So we have

H(ξ) = a1,0 + a1,1f(ξ) + a1,2f
2(ξ) + b1,1g(ξ) + b1,2f(ξ)g(ξ),

u(ξ) = a2,0 + a2,1f(ξ) + b2,1g(ξ),
(3.4)

where a1,0, a1,1, a1,2, b1,1, b1,2, a2,0, a2,1, b2,1 are constants to be determined later.
With the aid of Maple, substituting (3.4) along with (2.1) and (2.2) into (3.2), yields

a set of algebraic equations for fi(ξ)gj(ξ). Setting the coefficients of these terms fi(ξ)gj(ξ) to
zero yields a set of overdetermined nonlinear algebraic equations with respect to a1,0, a1,1,
a1,2, b1,1, b1,2, a2,0, a2,1, b2,1, k, ω, and r:

−2k(b1,2 + a2,1b2,1) = 0,

−k
(
b22,1 + 2a1,2 + a2

2,1

)
= 0,

−3k
(
2k2a2,1 + b1,2b2,1 + a1,2a2,1

)
= 0,

−3k
(
b1,2a2,1 + a1,2b2,1 + 2k2b2,1

)
= 0,

kb22,1εr − ka2,0a2,1 −ωa2,1 − ka1,1 = 0,

ε(−ka2,1b2,1 + ka2,0b2,1r + kb1,1r − kb1,2 +ωb2,1r) = 0,

3kb1,2εr + 3ka2,1b2,1εr − kb1,1 − ka2,0b2,1 −ωb2,1 = 0,

−ka1,1a2,0 − kb1,2εb2,1 − k3a2,1ε − ka1,0a2,1 −ωa1,1 + 2kb1,1εrb2,1 = 0,

−2kb1,1b2,1 − 2ka1,1a2,1 − 2ka1,2a2,0 + 6k3a2,1εr − 2ωa1,2 + 4kb1,2εrb2,1 = 0,

5kb1,2εra2,1 + 5ka1,2b2,1εr − 2ωb1,2 + 12k3b2,1εr − 2kb1,2a2,0 − 2kb1,1a2,1 − 2ka1,1b2,1 = 0,

ε
(
k3b2,1εr −ωb1,2 + ka1,0b2,1r + kb1,1ra2,0 +ωb1,1r − kb1,2a2,0 − ka1,1b2,1 − kb1,1a2,1

)
= 0,

3ka1,1b2,1εr − ka1,0b2,1 − 3k3b2,1ε
2r2 − kb1,1a2,0 − 2kb1,2εa2,1 −ωb1,1

+ 3ωb1,2εr − 4k3b2,1ε + 3kb1,2εra2,0 + 3kb1,1εra2,1 − 2ka1,2b2,1ε = 0.
(3.5)

To get a nontrivial solution of (1.1), we assume that k /= 0 and a2
1,1 + a2

1,2 + b21,1 + b21,2 +
a2
2,1 + b22,1 /= 0. By making use of the Maple software package “PDESolver” which is based on

the Wu-elimination method [26], we solve (3.5) and get the following nontrivial solutions
with the aid of the computer program Maple 12.

Set ξ = kx +ωt + ξ0, and k(/= 0), ω, r are real constants.
When ε = 1.
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Case 1. r = r, a1,0 = 0, a1,1 = k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = k, b1,1 = 0, b1,2 = k2, b2,1 = −k.
By applying these to (3.4), one gets a solution of (1.1):

H1(x, t) =
k2r

a cosh ξ + b sinh ξ + r
− k2

(a cosh ξ + b sinh ξ + r)2
+

k2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
,

u1(x, t) = −ω
k

+
k

a cosh ξ + b sinh ξ + r
− k(a sinh ξ + b cosh ξ)
(a cosh ξ + b sinh ξ + r)

.

(3.6)

Case 2. r = r, a1,0 = 0, a1,1 = k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = k, b1,1 = 0, b1,2 = −k2, b2,1 = k.
By applying these to (3.4), one gets a solution of (1.1):

H2(x, t) =
k2r

a cosh ξ + b sinh ξ + r
− k2

(a cosh ξ + b sinh ξ + r)2
− k2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
,

u2(x, t) = −ω
k

+
k

a cosh ξ + b sinh ξ + r
+

k(a sinh ξ + b cosh ξ)
a cosh ξ + b sinh ξ + r

.

(3.7)

Case 3. r = r, a1,0 = 0, a1,1 = k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = −k, b1,1 = 0, b1,2 = k2, b2,1 = k.
By applying these to (3.4), one gets a solution of (1.1):

H3(x, t) =
k2r

a cosh ξ + b sinh ξ + r
− k2

(a cosh ξ + b sinh ξ + r)2
+

k2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
,

u3(x, t) = −ω
k

− k

a cosh ξ + b sinh ξ + r
+

k(a sinh ξ + b cosh ξ)
a cosh ξ + b sinh ξ + r

.

(3.8)

Case 4. r = r, a1,0 = 0, a1,1 = k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = −k, b1,1 = 0, b1,2 = −k2,
b2,1 = −k. By applying these to (3.4), one gets a solution of (1.1):

H4(x, t) =
k2r

a cosh ξ + b sinh ξ + r
− k2

(a cosh ξ + b sinh ξ + r)2
− k2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
,

u4(x, t) = −ω
k

− k

a cosh ξ + b sinh ξ + r
− k(a sinh ξ + b cosh ξ)
a cosh ξ + b sinh ξ + r

.

(3.9)
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Case 5. r = (ω+ka2,0)/k2, a1,0 = (−k4+ω2+2ωka2,0+k2a2
2,0)/k

2, a1,1 = 2ω+2ka2,0, a1,2 = −2k2,
a2,0 = a2,0, a2,1 = −2k, b1,1 = 0, b1,2 = 0, b2,1 = 0. By applying these to (3.4), one gets a solution
of (1.1):

H5(x, t) =
−k4 + (ω + ka2,0)

2

k2
+

2ω + 2ka2,0

(a cosh ξ + b sinh ξ + ((ω + ka2,0)/k2))

− 2k2

(a cosh ξ + b sinh ξ + ((ω + ka2,0)/k2))2
,

u5(x, t) = a2,0 − 2k
a cosh ξ + b sinh ξ + ((ω + ka2,0)/k2)

,

(3.10)

where a2,0 is an arbitrary real constant.

Case 6. r = −((ω + ka2,0)/k2), a1,0 = (−k4 + ω2 + 2ωka2,0 + k2a2
2,0)/k

2, a1,1 = −2ω − 2ka2,0,
a1,2 = −2k2, a2,0 = a2,0, a2,1 = 2k, b1,1 = 0, b1,2 = 0, b2,1 = 0. By applying these to (3.4), one gets
a solution of (1.1):

H6(x, t) =
−k4 + (ω + ka2,0)

2

k2
− 2(ω + ka2,0)
a cosh ξ + b sinh ξ − ((ω + ka2,0)/k2)

− 2k2

(a cosh ξ + b sinh ξ − ((ω + ka2,0)/k2))2
,

u6(x, t) = a2,0 +
2k

a cosh ξ + b sinh ξ − ((ω + ka2,0)/k2)
.

(3.11)

Case 7. r = 0, a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = 0, b1,1 = 0, b1,2 = 0, b2,1 = 2k.
By applying these to (3.4), one gets a solution of (1.1):

H7(x, t) = − 2k2

(a cosh ξ + b sinh ξ)2
,

u7(x, t) = −ω
k

+
2k(a sinh ξ + b cosh ξ)
a cosh ξ + b sinh ξ

.

(3.12)

Case 8. r = 0, a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = 0, b1,1 = 0, b1,2 = 0, b2,1 = −2k.
By applying these to (3.4), one gets a solution of (1.1):

H8(x, t) = − 2k2

(a cosh ξ + b sinh ξ)2
,

u8(x, t) = −ω
k

− 2k(a sinh ξ + b cosh ξ)
a cosh ξ + b sinh ξ

.

(3.13)

While taking a = 1, b = 0 in solutionsH7, u7 (3.12) andH8, u8 (3.13), we can obtain the
exact soliton solutions obtained in [10] by homogeneous balance method. While taking a = 0,
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b = 1 in solutionsH7, u7 (3.12) andH8, u8 (3.13), we obtain singular traveling wave solutions
of csch2ξ, coth ξ type corresponding to the soliton solutions of sech2ξ, tanh ξ type. Thus the
results obtained in [10] are special cases of this paper. We would like to emphasize that the
solutionsH5, u5 andH6, u6 are solutions that have an entirely new form and proposed firstly
in this paper. It should be pointed out that the solutions H1, u1(3.6) to H4, u4 (3.9) have a
more general form than those that appeared in previous literatures. While setting a = 1, b = 0
(or a = 0, b = 1, resp.) in some of these solutions, we can obtain all solutions in hyperbolic
function form presented in literatures [8, 16]. Since there are some parameters that can take
different values, these solutions include abundant new information.

When ε = −1.

Case 9. r = r, a1,0 = 0, a1,1 = −k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = k, b1,1 = 0, b1,2 = k2,
b2,1 = −k. By applying these to (3.4), one gets a solution of (1.1):

H9(x, t) = − k2r

a cos ξ + b sin ξ + r
− k2

(a cos ξ + b sin ξ + r)2
+

k2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u9(x, t) = −ω
k

+
k

a cos ξ + b sin ξ + r
− k(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
.

(3.14)

Case 10. r = r, a1,0 = 0, a1,1 = −k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = k, b1,1 = 0, b1,2 = −k2,
b2,1 = k. By applying these to (3.4), one gets a solution of (1.1):

H10(x, t) = − k2r

a cos ξ + b sin ξ + r
− k2

(a cos ξ + b sin ξ + r)2
− k2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u10(x, t) = −ω
k

+
k

a cos ξ + b sin ξ + r
+

k(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
.

(3.15)

Case 11. r = r, a1,0 = 0, a1,1 = −k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = −k, b1,1 = 0, b1,2 = k2,
b2,1 = k. By applying these to (3.4), one gets a solution of (1.1):

H11(x, t) = − k2r

a cos ξ + b sin ξ + r
− k2

(a cos ξ + b sin ξ + r)2
+

k2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u11(x, t) = −ω
k

− k

a cos ξ + b sin ξ + r
+
k(−a sin ξ + b cos ξ)
a cos ξ + b sin ξ + r

.

(3.16)

Case 12. r = r, a1,0 = 0, a1,1 = −k2r, a1,2 = −k2, a2,0 = −(ω/k), a2,1 = −k, b1,1 = 0, b1,2 = −k2,
b2,1 = −k. By applying these to (3.4), one gets a solution of (1.1):

H12(x, t) = − k2r

a cos ξ + b sin ξ + r
− k2

(a cos ξ + b sin ξ + r)2
− k2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u12(x, t) = −ω
k

− k

a cos ξ + b sin ξ + r
− k(−a sin ξ + b cos ξ)

a cos ξ + b sin ξ + r
.

(3.17)
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Case 13. r = (ka2,0+ω)/k2, a1,0 = (k4+k2a2
2,0+2ka2,0 ω+ω2)/k2, a1,1 = −2ka2,0−2ω, a1,2 = −2k2,

a2,0 = a2,0, a2,1 = 2k, b1,1 = 0, b1,2 = 0, b2,1 = 0. By applying these to (3.4), one gets a solution of
(1.1):

H13(x, t) =
k4 + (ω + ka2,0)

2

k2
+

−2ka2,0 − 2ω
a cos ξ + b sin ξ + ((ka2,0 +ω)/k2)

− 2k2

(a cos ξ + b sin ξ + ((ka2,0 +ω)/k2))2
,

u13(x, t) = a2,0 +
2k

a cos ξ + b sin ξ + ((ka2,0 +ω)/k2)
,

(3.18)

where a2,0 is an arbitrary real constant.

Case 14. r = −((ka2,0 + ω)/k2), a1,0 = (k4 + k2a2
2,0 + 2ka2,0 ω + ω2)/k2, a1,1 = 2ka2,0 + 2ω,

a1,2 = −2k2, a2,0 = a2,0, a2,1 = −2k, b1,1 = 0, b1,2 = 0, b2,1 = 0. By applying these to (3.4), one gets
a solution of (1.1):

H14(x, t) =
k4 + (ω + ka2,0)

2

k2
+

2ka2,0 + 2ω
a cos ξ + b sin ξ − ((ka2,0 +ω)/k2)

− 2k2

(a cos ξ + b sin ξ − ((ka2,0 +ω)/k2))2
,

u14(x, t) = a2,0 − 2k
a cos ξ + b sin ξ − ((ka2,0 +ω)/k2)

,

(3.19)

where a2,0 is an arbitrary real constant.

Case 15. r = 0, a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = 0, b1,1 = 0, b1,2 = 0, b2,1 = 2k.
By applying these to (3.4), one gets a solution of (1.1):

H15(x, t) = − 2k2

(a cos ξ + b sin ξ)2
,

u15(x, t) = −ω
k

+
2k(−a sin ξ + b cos ξ)

a cos ξ + b sin ξ
.

(3.20)

Case 16. r = 0, a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = 0, b1,1 = 0, b1,2 = 0, b2,1 = −2k.
By applying these to (3.4), one gets a solution of (1.1):

H16(x, t) = − 2k2

(a cos ξ + b sin ξ)2
,

u16(x, t) = −ω
k

− 2k(−a sin ξ + b cos ξ)
a cos ξ + b sin ξ

.

(3.21)

When ε = 0.
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Balancing the highest-order derivative term and the nonlinear terms in (2.5), we get
balance powers m = 2, n = 1. By the method described in Section 2 Step 4(b), we get a set
of overdetermined nonlinear algebraic equations with respect to a1,0, a1,1, a1,2, a2,0, a2,1, k, ω,
and r:

−k
(
2a1,2 + a2

2,1

)
= 0,

−3ka2,1

(
a1,2 + 2k2

)
= 0,

−ωa1,1 − ka1,1a2,0 − a2,1ka1,0 = 0,

−2ωa1,2 − 2ka1,1a2,1 − 2ka1,2a2,0 = 0,

−a2,1ω − ka1,1 − a2,1ka2,0 = 0.

(3.22)

Solving (3.22), we get the following.

Case 17. a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = 2k. By applying these to (2.7), one
gets a solution of (1.1):

H17(x, t) = − 2k2

(kx +ωt + ξ0)
2
,

u17(x, t) = −ω
k

+
2k

kx +ωt + ξ0
.

(3.23)

Case 18. a1,0 = 0, a1,1 = 0, a1,2 = −2k2, a2,0 = −(ω/k), a2,1 = −2k. By applying these to (2.7),
one gets a solution of (1.1):

H18(x, t) = − 2k2

(kx +ωt + ξ0)
2
,

u18(x, t) = −ω
k

+
2k

kx +ωt + ξ0
.

(3.24)

The periodic wave solutions of triangle function types H9, u9 (3.14) to H16, u16 (3.21)
and the solitary wave solutions of rational function form H17, u17 (3.23), H18, u18 (3.24) have
not been appeared in [10]. The periodic wave solutions H13, u13 (3.18) and H14, u14 (3.19)
have the entirely new form and proposed firstly in this paper. The periodic wave solutions
of triangle function types H9, u9 (3.14) to H12, u12 (3.17) have more general form than those
obtained in literatures [8, 16]. While taking a = 1, b = 0 (or a = 0, b = 1, resp.) in some of
these solutions, we will obtain all the periodic wave solutions in triangle function form that
have been obtained in literatures [8, 16, 17].

We next deal with the variant Boussinesq equation (1.2) in a similar way to (1.1).



12 Journal of Applied Mathematics

Using transformation (3.1), we reduce (1.2) to a system of nonlinear ODEs:

ωH ′(ξ) + ku′ + (Hu)′(ξ) − αk3u′′′(ξ) = 0,

ωu′(ξ) + kH ′(ξ) + ku(ξ)u′(ξ) − 3αk3u′′′(ξ) = 0.
(3.25)

Firstly we assume that the solutions of (3.25) are of the form (3.3) with f and g
satisfying (2.1), (2.2), and ε = ±1. We can get the balancing powers m = 2, n = 2. So we
have

H(ξ) = a1,0 + a1,1f(ξ) + a1,2f(ξ)
2 + b1,1g(ξ) + b1,2f(ξ)g(ξ),

u(ξ) = a2,0 + a2,1f(ξ) + a2,2f(ξ)
2 + b2,1g(ξ) + b2,2f(ξ)g(ξ),

(3.26)

where ξ = kx + ωt + ξ0, and a1,0, a1,1, a1,2, a2,0, a2,1, a2,2, b1,1, b1,2, b2,1, b2,2 are constants to be
determined later.

Substituting (3.26)with (2.1) and (2.2) into (3.25) and using the Maple yield

4kb2,2
(
18γωk − a2,2

)
= 0,

2k
(
36γωa2,2k − b22,2 − a2

2,2

)
= 0,

4k
(
6γb2,2k2 − a1,2b2,2 − a2,2b1,2

)
= 0,

4k
(
6γa2,2k

2 − b2,2b1,2 − a1,2a2,2

)
= 0,

−3k
(
30kγωa2,2r − 6kγωa2,1 + b2,2b2,1 − b22,2r + a2,1a2,2

)
= 0,

−k(−18kγωb2,1 + 180kγωb2,2r + 3a2,2b2,1 + 3a2,1b2,2 − 7a2,2b2,2r
)
= 0,

−ka1,1 − kb2,1b2,2 − ka2,0a2,1 + 3γωk2a2,1 −ωa2,1 + kb22,1r = 0,

−2k2γa2,1 + 10k2γa2,2r + a1,1a2,2 − 2b1,2rb2,2 + a1,2a2,1 + b2,1b1,2 + b2,2b1,1 = 0,

−ka1,0a2,1 + γk3a2,1 − kb1,2b2,1 − kb1,1b2,2 − ka1,1a2,0 −ωa1,1 − ka2,1 + 2kb1,1rb2,1 = 0,

− k
(
60k2γb2,2r − 6k2γb2,1 − 7b1,2ra2,2 + 3a1,2b2,1 + 3a2,1b1,2

−7a1,2b2,2r + 3a2,2b1,1 + 3a1,1b2,2
)
= 0,

− 2ka1,2 − 2ωa2,2 − 2ka2,0a2,2 − 18γωk2a2,1r + 4kb2,1b2,2r − kb22,2

− kb22,1 + 24γωk2a2,2 − ka2
2,1 = 0,
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− ka2,0b2,2 + kb1,1r − kb1,2 + 3γωk2b2,2 +ωb2,1r − ka2,1b2,1

−ωb2,2 − 3γωk2b2,1r + ka2,0b2,1r = 0,

− 2kb1,2 + 60γωk2b2,2 + 5ka2,1b2,2r − 2ka2,1b2,1 − 2ka2,0b2,2

− 36γωk2b2,1r + 90γωk2b2,2r
2 − 3ka2,2b2,2 − 2ωb2,2 + 5ka2,2b2,1r = 0,

− 2ka1,2a2,0 − 2kb1,1b2,1 − 2kb1,2b2,2 + 4kb1,2rb2,1 − 2ka1,0a2,2

+ 8γk3a2,2 − 2ωa1,2 + 4kb1,1rb2,2 − 6γk3a2,1r − 2ka1,1a2,1 − 2ka2,2 = 0,

− kb1,2a2,0 + ka1,0b2,1r − ka1,1b2,1 − kb1,1a2,1 + kb2,1r + γk3b2,2

−ωb1,2 + kb1,1ra2,0 − kb2,2 − ka1,0b2,2 +ωb1,1r − γk3b2,1r = 0,

12γωk2b2,1 + 3ka2,0b2,2r + 3ka2,1b2,1r + 9γωk2b2,1r
2 − 2ka2,1b2,2

− 45γωk2b2,2r −ωb2,1 − kb1,1 + 3kb1,2r − ka2,0b2,1 − 2ka2,2b2,1 + 3ωb2,2r = 0,

5kb1,2ra2,1 − 2ka1,0b2,2 − 2kb2,2 − 3kb1,2a2,2 − 2ka1,1b2,1

− 2ωb1,2 − 12γk3b2,1r + 5ka1,1b2,2r + 5kb1,1ra2,2 + 30γk3b2,2r
2

− 2kb1,1a2,1 + 20γk3b2,2 + 5ka1,2b2,1r − 2kb1,2a2,0 − 3ka1,2b2,2 = 0,

− ka1,0b2,1 − kb1,1a2,0 + 3kb1,2ra2,0 − 2ka1,2b2,1 − kb2,1 − 2kb1,2a2,1

+ 3ωb1,2r − 2kb1,1a2,2 + 4γk3b2,1 + 3kb1,1ra2,1 −ωb1,1 + 3ka1,1b2,1r

− 15γk3b2,2r + 3ka1,0b2,2r − 2ka1,1b2,2 + 3kb2,2r + 3γk3b2,1r
2 = 0.

(3.27)

With the aid of the computer program Maple 12, make use of the Maple software
package PDESolver developed by the authors, which is based on theWu-elimination method
[26]; solving (3.27), one gets the following nontrivial solutions.

Set ξ = kx +ωt + ξ0, and k(/= 0), ω, r are real constants.
For ε = 1, there are 7 solutions.

Case 1. ε = 1, r = r, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = −3k2αr, a1,2 = 3αk2, a2,0 =
(−k2 + 18αω2k2 − 6ω2)/6ωk, a2,1 = −18kαωr, a2,2 = 18αωk, b1,1 = 0, b1,2 = 3αk2, b2,1 = 0,
b2,2 = 18αωk. By applying these to (3.26), one gets a solution of the PDEs (1.2):

H1(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
− 3k2αr

a cosh ξ + b sinh ξ + r
+
3αk2(1 + a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
,

u1(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
− 18kαωr

a cosh ξ + b sinh ξ + r
+
18αωk(1 + a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ + r)2
.

(3.28)
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Case 2. ε = 1,r = r, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = −3k2αr, a1,2 = 3αk2, a2,0 =
(−k2 + 18γω2k2 − 6ω2)/6ωk, a2,1 = −18kαωr, a2,2 = 18αωk, b1,1 = 0, b1,2 = −3αk2, b2,1 = 0,
b2,2 = −18αωk. By applying these to (3.26), one gets a solution of the PDEs (1.2):

H2(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
− 3k2αr

a cosh ξ + b sinh ξ + r
− 3αk2(a sinh ξ + b cosh ξ − 1)

(a cosh ξ + b sinh ξ + r)2
,

u2(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
− 18kαωr

a cosh ξ + b sinh ξ + r
− 18αωk(a sinh ξ + b cosh ξ − 1)

(a cosh ξ + b sinh ξ + r)2
.

(3.29)

Case 3. ε = 1, r = 0, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = 0, a1,2 = 3αk2, a2,0 = (−k2 +
18αω2k2 − 6ω2)/6ωk, a2,1 = 0, a2,2 = 18αωk, b1,1 = 0, b1,2 = 3αk2, b2,1 = 0, b2,2 = 18αωk. By
applying these to (3.26), one gets a solution of the PDEs (1.2):

H3(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
+

3αk2

(a cosh ξ + b sinh ξ)2
+
3αk2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ)2
,

u3(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
+

18αωk

(a cosh ξ + b sinh ξ)2
+
18αωk(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ)2
.

(3.30)

Case 4. ε = 1, r = 0, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = 0, a1,2 = 3αk2, a2,0 = (−k2 +
18αω2k2 − 6ω2)/6ωk, a2,1 = 0, a2,2 = 18αωk, b1,1 = 0, b1,2 = −3αk2, b2,1 = 0, b2,2 = −18αωk. By
applying these to (3.26), one gets a solution of the PDEs (1.2):

H4(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
+

3αk2

(a cosh ξ + b sinh ξ)2
− 3αk2(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ)2
,

u4(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
+

18αωk

(a cosh ξ + b sinh ξ)2
− 18αωk(a sinh ξ + b cosh ξ)

(a cosh ξ + b sinh ξ)2
.

(3.31)

Case 5. ε = 1, r = 0, a1,0 = (−36ω2 + 72αω2k2 + k2)/36ω2, a1,1 = 0, a1,2 = 6αk2, a2,0 = (−k2 −
6ω2 + 72αω2k2)/6ωk, a2,1 = 0, a2,2 = 36αωk, b1,1 = 0, b1,2 = 0, b2,1 = 0, b2,2 = 0. By applying
these to (3.26), one gets a solution of the PDEs (1.2):

H5(x, t) =
−36ω2 + 72αω2k2 + k2

36ω2
+

6αk2

(a cosh ξ + b sinh ξ)2
,

u5(x, t) =
−k2 − 6ω2 + 72αω2k2

6ωk
+

36αωk

(a cosh ξ + b sinh ξ)2
.

(3.32)
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Case 6. ε = 1, r = 1, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = −6αk2, a1,2 = 6αk2, a2,0 =
(−k2 + 18αω2k2 − 6ω2)/6ωk, a2,1 = −36αωk, a2,2 = 36αωk, b1,1 = 0, b1,2 = 0, b2,1 = 0, b2,2 = 0.
By applying these to (3.26), one gets a solution of the PDEs (1.2):

H6(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
− 6αk2

(a cosh ξ + b sinh ξ + 1)
+

6αk2

(a cosh ξ + b sinh ξ + 1)2
,

u6(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
− 36αωk

(a cosh ξ + b sinh ξ + 1)
+

36αωk

(a cosh ξ + b sinh ξ + 1)2
.

(3.33)

Case 7. ε = 1, r = −1, a1,0 = (−36ω2 + 18αω2k2 + k2)/36ω2, a1,1 = 6αk2, a1,2 = 6αk2, a2,0 =
(−k2 + 18αω2k2 − 6ω2)/6ωk, a2,1 = 36αωk, a2,2 = 36αωk, b1,1 = 0, b1,2 = 0, b2,1 = 0, b2,2 = 0. By
applying these to (3.26), one gets a solution of the PDEs (1.2):

H7(x, t) =
−36ω2 + 18αω2k2 + k2

36ω2
+

6αk2

(a cosh ξ + b sinh ξ − 1)
+

6αk2

(a cosh ξ + b sinh ξ − 1)2
,

u7(x, t) =
−k2 + 18αω2k2 − 6ω2

6ωk
+

36αωk

(a cosh ξ + b sinh ξ − 1)
+

36αωk

(a cosh ξ + b sinh ξ − 1)2
.

(3.34)

While taking a = 1, b = 0 in solutions H5, u5 (3.32), we can get the soliton solutions
in sech2ξ, sech2ξ form obtained in [10] by homogeneous balance method. While taking a =
1, b = 0 in solutions H5, u5 (3.32), we can get the singular traveling soliton-like solutions in
csch2ξ, csch2ξ form. It should be emphasized that the solutionsH1, u1 (3.28) andH2, u2 (3.29)
are entirely new solutions that have not been proposed in previous literatures. We also should
point out that H3, u3 (3.30), H4, u4 (3.31), H7, u7 (3.33), H8, u8 (3.34) include all soliton solu-
tions in hyperbolic function form obtained in [8, 16]. Because there are some parameters that
can take different values, these solutions possess more new information.

For ε = −1.

Case 8. ε = −1, r = r, a1,0 = −((36ω2 + 18αω2k2 − k2)/36ω2), a1,1 = 3k2αr, a1,2 = 3αk2,
a2,0 = −(k2 + 18αω2k2 + 6ω2)/6ωk, a2,1 = 18kαωr, a2,2 = 18αωk, b1,1 = 0, b1,2 = 3αk2, b2,1 = 0,
b2,2 = 18αωk. By applying these to (3.26), one gets a solution of the PDEs (1.2):

H8(x, t) = − 36ω2 + 18αω2k2 − k2

36ω2
+

3k2αr

(a cos ξ + b sin ξ + r)

+
3αk2

(a cos ξ + b sin ξ + r)2
+
3αk2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u8(x, t) = − k2 + 18αω2k2 + 6ω2

6ωk
+

18kαωr

(a cos ξ + b sin ξ + r)

+
18αωk

(a cos ξ + b sin ξ + r)2
+
18αωk(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
.

(3.35)



16 Journal of Applied Mathematics

Case 9. ε = −1, r = r, a1,0 = −((36ω2 + 18αω2k2 − k2)/36ω2), a1,1 = 3k2αr, a1,2 = 3αk2,
a2,0 = −((k2 + 18αω2k2 + 6ω2)/6ωk), a2,1 = 18kαωr, a2,2 = 18αωk, b1,1 = 0, b1,2 = −3αk2,
b2,1 = 0, b2,2 = −18αωk. By applying these to (3.26), one gets a solution of the PDEs (1.1):

H9(x, t) = − 36ω2 + 18αω2k2 − k2

36ω2
+

3k2αr

(a cos ξ + b sin ξ + r)

+
3αk2

(a cos ξ + b sin ξ + r)2
− 3αk2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
,

u9(x, t) = − k2 + 18αω2k2 + 6ω2

6ωk
+

18kαωr

(a cos ξ + b sin ξ + r)

+
18αωk

(a cos ξ + b sin ξ + r)2
− 18αωk(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ + r)2
.

(3.36)

Case 10. ε = −1, r = 0, a1,0 = −((36ω2 + 18αω2k2 − k2)/36ω2), a1,1 = 0, a1,2 = 3αk2, a2,0 =
−((k2+18αω2k2+6ω2)/6ωk), a2,1 = 0, a2,2 = 18αωk, b1,1 = 0, b1,2 = 3αk2, b2,1 = 0, b2,2 = 18αωk.
By applying these to (3.26), one gets a solution of the PDEs (1.2):

H10(x, t) = −36ω
2 + 18αω2k2 − k2

36ω2
+

3αk2

(a cos ξ + b sin ξ)2
+
3αk2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ)2
,

u10(x, t) = −k
2 + 18αω2k2 + 6ω2

6ωk
+

18αωk

(a cos ξ + b sin ξ)2
+
18αωk(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ)2
.

(3.37)

Case 11. ε = −1, r = 0, a1,0 = −((36ω2+18αω2k2−k2)/36ω2), a1,1 = 0, a1,2 = 3αk2, a2,0 = −((k2+
18αω2k2 + 6ω2)/6ωk), a2,1 = 0, a2,2 = 18αωk, b1,1 = 0, b1,2 = −3αk2, b2,1 = 0, b2,2 = −18αωk. By
applying these to (3.26), one gets a solution of the PDEs (1.2):

H11(x, t) = −36ω
2 + 18αω2k2 − k2

36ω2
+

3αk2

(a cos ξ + b sin ξ)2
− 3αk2(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ)2
,

u11(x, t) = −k
2 + 18αω2k2 + 6ω2

6ωk
+

18αωk

(a cos ξ + b sin ξ)2
− 18αωk(−a sin ξ + b cos ξ)

(a cos ξ + b sin ξ)2
.

(3.38)

Case 12. ε = −1, r = 0, a1,0 = −((36ω2 + 72αω2k2 − k2)/36ω2), a1,1 = 0, a1,2 = 6αk2, a2,0 =
−((k2 + 72αω2k2 + 6ω2)/6ωk), a2,1 = 0, a2,2 = 36αωk, b1,1 = 0, b1,2 = 0, b2,1 = 0, b2,2 = 0. By
applying these to (3.26), one gets a solution of the PDEs (1.2):

H12(x, t) = −36ω
2 + 72αω2k2 − k2

36ω2
+

6αk2

(a cos ξ + b sin ξ)2
,

u12(x, t) = −k
2 + 72αω2k2 + 6ω2

6ωk
+

36αωk

(a cos ξ + b sin ξ)2
.

(3.39)
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The periodic wave solutions of triangle function H8, u8 (3.35) and H9, u9 (3.36) are
entirely new periodic wave solutions that have not been obtained in other literatures. The
periodic wave solutions of triangle function H10, u10 (3.37) to H12, u12 have more general
form than those obtained in literatures [8, 16]. All of the above periodic wave solutions have
not been obtained in literature [10].

For R = 0, we can deduce that the solution of (3.25) is of the form

H(ξ) = a1,0 + a1,1g(ξ) + a1,2g(ξ)
2,

u(ξ) = a2,0 + a2,1g(ξ) + a2,2g(ξ)
2,

(3.40)

where ξ = kx +ωt + ξ0 and a1,0, a1,1, a1,2, a2,0, a2,1, a2,2 are constants to be determined later.
Substituting (3.40) along with the condition g ′(ξ) = −g2(ξ) into (3.25) yields a set of

nonlinear algebraic equations:

2ka2,2(36αωk − a2,2) = 0,

4ka2,2

(
6αk2 − a1,2

)
= 0,

3ka2,1(6αωk − a2,2) = 0,

−ωa2,1 − ka2,0a2,1 − ka1,1 = 0,

3k
(
2αa2,1k

2 − a1,2a2,1 − a2,2a1,1

)
= 0,

−ωa1,1 − ka2,1 − ka1,1a2,0 − ka1,0a2,1 = 0,

−2ωa2,2 − ka2
2,1 − 2ka2,0a2,2 − 2ka1,2 = 0,

−2ωa1,2 − 2ka2,2 − 2ka1,1a2,1 − 2ka1,2a2,0 − 2ka1,0a2,2 = 0.

(3.41)

With the aid of the computer program Maple 12, make use of the Maple software
package PDESolver by the authors, which is based on the Wu-elimination method [26];
solving (3.41), one gets the following nontrivial solutions.

Case 13. ε = 0, r = r, a1,0 = (−36ω2 + k2)/36ω2, a1,1 = 0, a1,2 = 6αk2, a2,0 = −((k2 + 6ω2)/6ωk),
a2,1 = 0, a2,2 = 36αωk. By applying these to (3.40), one gets a solution of the PDEs (1.2):

H13(x, t) =
−36ω2 + k2

36ω2
+

6αk2

(kx +ωt + ξ0)
2
,

u13(x, t) = −k
2 + 6ω2

6ωk
+

36αωk

(kx +ωt + ξ0)
2
.

(3.42)

The solitary wave solutionsH13, u13 are in rational function form and have not been obtained
in literatures [8, 10, 16].
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4. Summary and Conclusions

In summary, we propose an effective and a readily computerizable method to uniformly
construct a series of traveling wave solutions for nonlinear evolution partial differential
equations in mathematical physic, and develop a symbolic computational software package
“PDESolver.” As an application of the proposed method, we deal with two types of variant
Boussinesq equations. Some more general forms of exact explicit traveling wave solutions
for two variant Boussinesq equations are obtained. We not only obtain all known exact
solitary wave solutions, periodic wave solutions, and singular traveling wave solutions but
also find abundant new exact solitary wave solutions, singular traveling wave solutions, and
periodic traveling wave solutions of triangle function. Since there are some parameters that
can take different values, these solutions admit abundant new information. Because these two
variant Boussinesq equations are integrable, all solitary wave solutions are stable. All known
results in [8, 10, 16, 17] are improved and completed. Although the procedure has many
advantages than other methods such as the tanh method [6], the extended tanh method, the
tanh-coth method [7, 15], the extended tanh-function method [27], the extended improved
tanh-function method [21], and the recent method proposed by Wazwaz [23, 24], there exist
some limitations in our procedure. We cannot obtain nontraveling wave solution by using
the method presented in this paper. Comparing with the Jacobi elliptic function method, the
F-expansion method, and the improved F-expansion method, our method failed to obtain
elliptic function doubly periodic wave solutions.
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