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The reliable treatment of homotopy perturbation method (HPM) is applied to solve the Klein-
Gordon partial differential equation of arbitrary (fractional) orders. This algorithm overcomes the
difficulty that arises in calculating complicated integrals when solving nonlinear equations. Some
numerical examples are presented to illustrate the efficiency of this technique.

1. Introduction

The Klein-Gordon equation plays a significant role in mathematical physics and many
scientific applications such as solid-state physics, nonlinear optics, and quantum field theory
[1, 2]. The equation has attracted much attention in studying solitons [3–6] and condensed
matter physics, in investigating the interaction of solitons in a collisionless plasma, the
recurrence of initial states, and in examining the nonlinear wave equations [7].

The HPM, proposed by He in 1998, has been the subject of extensive studies and was
applied to different linear and nonlinear problems [8–13]. This method has the advantage of
dealing directly with the problem without transformations, linearization, discretization, or
any unrealistic assumption, and usually a few iterations lead to an accurate approximation
of the exact solution [13]. The HPM has been used to solve nonlinear partial differential
equations of fractional order (see, e.g., [14–16]). Some other methods for series solution
that are used to solve nonlinear partial differential equations of fractional order include the
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Adomian decomposition method [17–19], the variational iteration method [20–22], and the
homotopy analysis method [23–25].

Recently, Odibat and Momani [26] suggested a reliable algorithm for the HPM for
dealing with nonlinear terms to overcome the difficulty arising in calculating complicated
integrals. In [27], this algorithm is utilized to study the behavior of the nonlinear sine-Gordon
equation with fractional time derivative. Our aim here is to apply the reliable treatment of
HPM to obtain the solution of the initial value problem of the nonlinear fractional-order
Klein-Gordon equation of the form

Dα
t u(x, t) + aD

β
xu(x, t) + bu(x, t) + cuγ(x, t) = f(x, t), x ∈ R, t > 0, α, β ∈ (1, 2], (1.1)

subjected to the initial condition

u(k)(x, 0) = gk(x), x ∈ R, k = 0, 1, (1.2)

where Dα
t denotes the Caputo fractional derivative with respect to t of order α, u(x, t) is

unknown function, and a, b, c, and γ are known constants with γ ∈ R, γ /= ± 1.

2. Basic Definitions

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cμ, μ ∈ R, if there exists a
real number p > μ, such that f(t) = tpf1(t), where f1(t) ∈ C(0,∞), and it is said to be in the
space Cm

μ if f (m) ∈ Cμ,m ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function
f(t) ∈ Cμ, μ ≥ −1 is defined as [28]

Jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ, α > 0, t > 0,

J0f(t) = f(t).

(2.1)

The operator Jα satisfy the following properties, for f ∈ Cμ, μ ≥ −1, α,β ≥ 0, and γ > −1:

(1) JαJβf(t) = Jα+βf(t),

(2) JαJβf(t) = JβJαf(t),

(3) Jαtγ = (Γ(γ + 1)/Γ(γ + α + 1))tα+γ .

Definition 2.3. The fractional derivative in Caputo sense of f(t) ∈ Cm
−1m, m ∈ N, t > 0 is

defined as

D
β
t f(t) =

⎧⎪⎪⎨
⎪⎪⎩
Jm−β dm

dtm
f(t), m − 1 < β < m,

dm

dtm
f(t), β = m.

(2.2)
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The operator Dβ satisfy the following properties, for f ∈ Cm
μ , μ ≥ −1, and γ, β ≥ 0:

(1) Dβ
t [J

βf(t)] = f(t),

(2) Jβ[Dβ
t f(t)] = f(t) −∑m−1

k=0 f (k)(0)(tk/k!), t > 0,

(3) Dβ
t t

γ = (Γ(γ + 1)/Γ(γ − β + 1))tγ−β.

3. The Homotopy Perturbation Method (HPM)

Consider the following equation:

A(u(x, t)) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

whereA is a general differential operator, u(x, t) is the unknown function, and x and t denote
spatial and temporal independent variables, respectively. B is a boundary operator, f(r) is
a known analytic function, and Γ is the boundary of the domain Ω. The operator A can be
generally divided into linear and nonlinear parts, say L andN. Therefore, (3.1) can be written
as

L(u) +N(u) − f(r) = 0. (3.3)

In [9], He constructed a homotopy v(r, p) : Ω × [0, 1] → R which satisfies

H
(
v, p
)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
L(v) +N(v) − f(r)

]
= 0, r ∈ Ω, (3.4)

or

H
(
v, p
)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0, r ∈ Ω, (3.5)

where p ∈ [0, 1] is an embedding parameter,and u0 is an initial guess of u(x, t)which satisfies
the boundary conditions. Obviously, from (3.4) and (3.5), one has

H(v, 0) = L(v) − L(u0),

H(v, 1) = L(u) +N(u) − f(r) = 0.
(3.6)

Changing p from zero to unity is just that change of v(r, p) from u0(r) to u(r). Expanding
v(r, p) in Taylor series with respect to p, one has

v = v0 + pv1 + p2v2 + · · · . (3.7)
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Setting p = 1 results in the approximate solution of (3.1)

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (3.8)

The reliable treatment of the classical HPM suggested by Odibat and Momani [26] is
presented for nonlinear function N(u) which is assumed to be an analytic function and has
the following Taylor series expansion:

N(u) =
∞∑
i=0

aiu
i. (3.9)

According to [26], the following homotopy is constructed for (1.1):

Dα
t u = p

(
L(u) − f(r)

)
+

∞∑
i=0

piaiu
i, p ∈ [0, 1]. (3.10)

The basic assumption is that the solution of (3.10) can be written as a power series in p,

u = u0 + pu1 + p2u2 + · · · . (3.11)

Substituting (3.11) into (3.10) and equating the terms with identical powers of p, we obtain
a series of linear equations in u0, u1,u2, . . ., which can be solved by symbolic computation
software. Finally, we approximate the solution u(x, t) =

∑∞
n=0 un(x, t) by the truncated series

Un(x, t) =
n−1∑
i=1

ui(x, t). (3.12)

4. Numerical Implementation

In this section, some numerical examples are presented to validate the solution scheme.
Symbolic computations are carried out using Mathematica.

Example 4.1. Consider the fractional-order cubically nonlinear Klein-Gordon problem

Dα
t u −D

β
xu + u3 = f(x, t), x ≥ 0, t > 0, α, β ∈ (1, 2],

u(x, 0) = 0, ut(x, 0) = 0,

f(x, t) = Γ(α + 1)xβ − Γ
(
β + 1

)
tα + x3βt3α,

(4.1)

with the exact solution u(x, t) = xβtα.
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According to the homotopy (3.10), we obtain the following set of linear partial
differential equations of fractional order:

p0 :Dα
t u0 = 0, u0(x, 0) = 0, u0t(x, 0) = 0,

p1 :Dα
t u1 = D

β
xu0 + f(x, t), u1(x, 0) = 0, u1t(x, 0) = 0,

p2 :Dα
t u2 = D

β
xu1, u2(x, 0) = 0, u2t(x, 0) = 0,

p3 :Dα
t u3 = D

β
xu2 − u3

0, u3(x, 0) = 0, u3t(x, 0) = 0,

p4 :Dα
t u4 = D

β
xu3 − 3u2

0u1, u4(x, 0) = 0, u4t(x, 0) = 0,

...

(4.2)

Case 1 (α ∈ (1, 2] and β = 2). Solving (4.2), we obtain

u0 = 0,

u1 = tαx2 − 2t2α
Γ(1 + α)
Γ(1 + 2α )

+ t4αx6 Γ(1 + 3α)
Γ(1 + 4α)

,

u2 = 30t5αx4 Γ(1 + 3α)
Γ(1 + 5α)

+ 2t2α
Γ(1 + α)
Γ(1 + 2α)

,

...

(4.3)

Figure 1 gives the comparison between the HPM 6th-order approximate solution of problem
(4.1) in Case 1 with β = 2, α = 1.99, 1.95, 1.90, and 1.85 and the solution of corresponding
problem of integer order denoted by u2,2 at t = 0.5.

Case 2 (α = 2 and β ∈ (1, 2]). Solving (4.2), we have

u0 = 0,

u1 = t2xβ +
1
56

t8x3β − 1
12

Γ
(
1 + β

)
t4,

u2 =
Γ
(
1 + 3β

)
(5040)Γ

(
1 + 2β

) t10x2β +
1
12

Γ
(
1 + β

)
t4,

...

(4.4)

Figure 2 gives the comparison between the HPM 6th-order approximate solution of problem
(4.1) in Case 2 with α = 2, β = 1.99, 1.95, 1.90, and 1.85 and the solution of corresponding
problem of integer order denoted by u2,2 at t = 0.5.
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Figure 1: u(x, 0.5) of Example 4.1 Case 1 for 6th-order HPM approximation as parameterized by α.
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Figure 2: u(x, 0.5) of Example 4.1 Case 2 for 6th-order HPM approximation as parameterized by β.

Case 3 (both α and β ∈ (1, 2]). Solving (4.2), we have

u0 = 0,

u1 = tαxβ + t4αx3β Γ(1 + 3α)
Γ(1 + 4α)

− t2α
Γ(1 + α)Γ

(
1 + β

)
Γ(1 + 2α)

,

u2 = t5αx2β Γ(1 + 3α)Γ
(
1 + 3β

)
Γ(1 + 5α)Γ

(
1 + 2β

) + t2α
Γ(1 + α)Γ

(
1 + β

)
Γ(1 + 2α)

,

...

(4.5)
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Figure 3: u(x, 0.5) of Example 4.1 Case 3 for 6th-order HPM approximation as parameterized by α and β.

Figure 3 gives the comparison between the HPM 6th-order approximate solution of
problem (4.1) in Case 3 with α and β taking the values 1.99, 1.95, 1.90, and 1.85 and the
solution of corresponding problem of integer order denoted by u2,2 at t = 0.5.

Example 4.2. Consider the fractional-order cubically nonlinear Klein-Gordon problem

Dα
t u = D

β
xu − 3

4
u +

3
2
u3, x ≥ 0, t > 0, α, β ∈ (1, 2],

u(x, 0) = −sech(x), ut(x, 0) =
1
2
sech(x) tanh(x).

(4.6)

The corresponding integer-order problem has the exact solution u2,2 = −sech(x + t/2) [29].

According to the homotopy (3.10), we obtain the following set of linear partial
differential equations of fractional order:

p0 :Dα
t u0 = 0, u0(x, 0) = −sech(x), u0t(x, 0) =

1
2
sech(x) tanh(x),

p1 :Dα
t u1 = u0xx − 3

4
u0, u1(x, 0) = 0, u1t(x, 0) = 0,

p2 :Dα
t u2 = u1xx − 3

4
u1, u2(x, 0) = 0, u2t(x, 0) = 0,

p3 :Dα
t u3 = u2xx − 3

4
u2 +

3
2
u3
0, u3(x, 0) = 0, u3t(x, 0) = 0,

...

(4.7)
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Figure 4: u(x, 0.3) of Example 4.2 Case 1 for 4th-order HPM approximation as parameterized by α.

Case 1 (α ∈ (1, 2] and β = 2). Solving (4.7), we have

u0 = −sech(x) + 1
2
sech(x) tanh(x)t,

u1 =
tα

Γ(α + 1)
sech(x)

(
3
4
+ sech2(x) − tanh2(x)

)

+
tα+1sech(x) tanh(x)

Γ(α + 2)

(
1
2

(
−4sech2(x) +

(
−sech2(x) + tanh2(x)

) )
− 3
8

)
,

u2 =
t2α

Γ(2α + 1)
sech(x)

(
− 9
16

− 3
2
sech2(x) − 5sech4(x)

)

+
t2α

Γ(2α + 1)
sech(x)tanh2(x)

(
3
2
+ 18sech2(x) − tanh2(x)

)

+
t2α+1

Γ(2α + 2)
sech(x) tanh(x)

(
9
32

+
15
4
sech2(x) +

61
2
sech4(x)

)

+
t2α+1

Γ(2α + 2)
sech(x)tanh3(x)

(
−3
4
− 29sech2(x) +

1
2
tanh2(x)

)
,

...

(4.8)

and the solution is obtained as

u = u0 + u1 + u2 + · · · . (4.9)

Figure 4 gives the comparison between the HPM 4th-order approximate solution of problem
(4.6) in Case 1 with β = 2, α = 1.99, 1.95, 1.90, and 1.85 and the solution of corresponding
problem of integer order denoted by u2,2 at t = 0.3.
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Case 2 (α = 2 and β ∈ (1, 2]). As the attempt to evaluate Caputo fractional derivative of
the functions sech(x) and tanh(x) yields hypergeometric function, we substitute sech(x) and
tanh(x) by some terms of its Taylor series. Substituting the initial conditions and solving (4.7)
for u0, u1, u2, . . ., the components of the homotopy perturbation solution for (4.6) are derived
as follows:

u0 = −
(
1 − x2

2
+
5x4

24
− 61x6

720
+
277x8

8064

)
+
1
2
t

(
x − 5x3

3
+
61x5

120
− 277x7

1008
+
5052x9

362880

)
,

u1 = t2
(

3
8
− tx

16
− 3x2

16
+
5tx3

96
+
5x4

64
− 61tx5

1920
− 61x6

1920
+
277tx7

16128
+
277x8

21504
− 50521tx9

5806080

)

+ x−β
(

t2x2

2Γ
(
3 − β

) − 5t3x3

12Γ
(
4 − β

) − t2x4

2Γ
(
5 − β

) + 61t3x5

12Γ
(
6 − β

) + 61t2x6

2Γ
(
7 − β

)
)

+ x−β
(
− 1385t3x7

12Γ
(
8 − β

) − 1385t2x8

2Γ
(
9 − β

) + 50521t3x9

12Γ
(
10 − β

)
)
,

...

(4.10)

As the Caputo fractional derivative can not be evaluated for negative powers of the variable
at hand, and noting that β ∈ (1, 2], we can only evaluate the first two components of the series
as illustrated. Thus, we suggest to generalize not only the derivatives in the integer-order
problem to its fractional form, but also to generalize the conditions as well. For example, a
generalized expansion of sech (x) in a fractional form can be written as

sech
β

(x) = 1 − xβ

Γ
(
β + 1

) + 5x2β

Γ
(
2β + 1

) − 61x3β

Γ
(
3β + 1

) + 277x4β

Γ
(
4β + 1

) − · · · , (4.11)

for which we have limβ→ 2sechβ (x) = sech (x). Substituting the generalized form of the initial
conditions and solving (4.7) for u0, u1, u2, . . ., the components of the homotopy perturbation
solution for this case are derived as follows:

u0 =

(
1 − xβ

2
+
5x2β

24
− 61x3β

720
+
277x4β

8064

)

+
1
2
t

(
xβ − 5xβ+1

3
+
61x2β+1

120
− 277x3β+1

1008
+
5052x4β+1

362880

)
,
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u1 =
3t2

8
− t3x

16
− x4β

16

(
277t2

21504
− 50521t3x

5806080

)
+
Γ
(
β + 1

)
4

t2 − 5Γ
(
β + 2

)
72

t3x

+ xβ

(
−3t2
16

− 5t3x
96

− 61t3x
1920

+
61Γ
(
3β + 1

)
t2

1440Γ
(
2β + 1

) − 277t3xΓ
(
3β + 2

)
12096Γ

(
2β + 2

)
)

+ x3β

(
− 61t2

1920
+
277t3x
16128

− 277t2Γ
(
4β + 1

)
16128Γ

(
3β + 1

) + 50521t3xΓ
(
4β + 2

)
4354560Γ

(
3β + 2

)
)
,

...

(4.12)

and the solution is obtained as

u = u0 + u1 + u2 + · · · . (4.13)

Figure 5 gives the comparison between the HPM 4th-order approximate solution of problem
(4.6) in Case 2 with α = 2, β = 1.99, 1.95, 1.90, and 1.85 and the solution of corresponding
problem of integer order denoted by u2,2 at t = 0.3.

Case 3 (both α and β ∈ (1, 2]). Carrying out the same procedure as in Case 2, we get

u0 =

(
1 − xβ

2
+
5x2β

24
− 61x3β

720
+
277x4β

8064

)

+
1
2
t

(
xβ − 5xβ+1

3
+
61x2β+1

120
− 277x3β+1

1008
+
5052x4β+1

362880

)
,

u1 =
tα

Γ(α + 1)

(
3
4
− 3
8
xβ +

5x2β

32
− 61x3β

960
+
277x4β

10752
+
Γ
(
β + 1

)
2

)

+
tα

Γ(α + 1)

(
−5x

βΓ
(
2β + 1

)
24Γ
(
β + 1

) +
61x2βΓ

(
3β + 1

)
720Γ

(
2β + 1

) − 277x3βΓ
(
4β + 1

)
8064Γ

(
3β + 1

)
)

− 3tα+1

8Γ(α + 2)

(
x − 5xβ+1

6
+
61x2β+1

120
− 277x3β+1

1008
+
5052x4β+1

362880

)

+
t2α+1

2Γ(α + 1)Γ(α + 2)

(
−5
6
xΓ
(
β + 2

)
+
61xβ+1

120
Γ
(
2β + 2

)
Γ
(
β + 2

)
)

+
t2α+1

2Γ(α + 1)Γ(α + 2)

(
−277x

2β+1

1008
Γ
(
3β + 2

)
Γ
(
2β + 2

) + 50521x3β+1Γ
(
4β + 2

)
362880Γ

(
3β + 2

)
)
,

...

(4.14)
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Figure 5: u(x, 0.3) of Example 4.2 Case 2 for 4th-order HPM approximation as parameterized by β.
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Figure 6: u(x, 0.3) of Example 4.2 Case 3 for 4th-order HPM approximation as parameterized by α and β.

and the solution is thus obtained as

u = u0 + u1 + u2 + · · · . (4.15)

Figure 6 gives the comparison between the HPM 4th-order approximate solution of problem
(4.6) in Case 3 with α, β = 1.99, 1.95, 1.90, and 1.85 and the solution of corresponding problem
of integer order denoted by u2,2 at t = 0.3.

5. Conclusion

The reliable treatment HPM is applied to obtain the solution of the Klien-Gordon partial
differential equation of arbitrary (fractional) orders with spatial and temporal fractional



12 Journal of Applied Mathematics

derivatives. The main advantage of this algorithm is the capability to overcome the
difficulty arising in calculating complicated integrals when dealing with nonlinear problems.
The numerical examples carried out show good results, and their graphs illustrate the
continuation of the solution of fractional-order Klien-Gordon equation to the solution of the
corresponding second-order problem when the fractional-order parameters approach their
integer limits.
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