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The projected-gradient method is a powerful tool for solving constrained convex optimization
problems and has extensively been studied. In the present paper, a projected-gradient method
is presented for solving the minimization problem, and the strong convergence analysis of the
suggested gradient projection method is given.

1. Introduction

In the present paper, our main purpose is to solve the following minimization problem:

min
x∈C

f(x), (1.1)

where C is a nonempty closed and convex subset of a real Hilbert space H, f : H → R is a
real-valued convex function.

Now it is well known that the projected-gradient method is a powerful tool for solving
the above minimization problem and has extensively been studied. See, for instance, [1–8].
The classic algorithm is the following form of the projected-gradient method:

xn+1 = PC

(
xn − γ∇f(xn)

)
, n ≥ 0, (1.2)

where γ > 0 is an any constant, PC is the nearest point projection from H onto C, and ∇f
denotes the gradient of f .

It is known [1] that if f has a Lipschitz continuous and strongly monotone gradient,
then the sequence {xn} generated by (1.2) can be strongly convergent to aminimizer of f inC.
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If the gradient of f is only assumed to be Lipschitz continuous, then {xn} can only be weakly
convergent if H is infinite dimensional. An interesting problem is how to appropriately
modify the projected gradient algorithm so as to have strong convergence? For this purpose,
recently, Xu [9] introduced the following algorithm:

xn+1 = θnh(xn) + (1 − θn)PC

(
xn − γn∇f(xn)

)
, n ≥ 0. (1.3)

Under some additional assumptions, Xu [9] proved that the sequence {xn} converges strong-
ly to a minimizer of (1.1). At the same time, Xu [9] also suggested a regularized method:

xn+1 = PC

(
I − γn

(∇f + αnI
))
xn, n ≥ 0. (1.4)

Consequently, Yao et al. [10] proved the strong convergence of the regularized method (1.4)
under some weaker conditions.

Motivated by the above works, in this paper we will further construct a new projected
gradient method for solving the minimization problem (1.1). It should be pointed out that
our method also has strong convergence under some mild conditions.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. A bounded linear
operator B is said to be strongly positive on H if there exists a constant α > 0 such that

〈Bx, x〉 ≥ α‖x‖2, ∀x ∈ H. (2.1)

A mapping T : C → C is called nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (2.2)

A mapping T : C → C is said to be an averaged mapping, if and only if it can be written as
the average of the identity I and a nonexpansive mapping; that is,

T = (1 − α)I + αR, (2.3)

where α ∈ (0, 1) is a constant and R : C → C is a nonexpansive mappings. In this case, we
call T is α-averaged.

A mapping T : C → C is said to be ν-inverse strongly monotone (ν-ism), if and only if

〈
x − y, Tx − Ty

〉 ≥ ν
∥∥Tx − Ty

∥∥2
, x, y ∈ C. (2.4)

The following proposition is well known, which is useful for the next section.



Journal of Applied Mathematics 3

Proposition 2.1 (See [9]). (1) The composite of finitely many averaged mappings is averaged. That
is, if each of the mappings {Ti}Ni=1 is averaged, then so is the composite T1, . . . , TN . In particular, if T1
is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then the composite T1T2 is α-averaged,
where α = α1α2 − α1α2.

(2) T is ν-ism, then for γ > 0, γT is (ν/γ)-ism.

Recall that the (nearest point or metric) projection from H onto C, denoted by PC,
assigns, to each x ∈ H, the unique point PC(x) ∈ C with the property

‖x − PC(x)‖ = inf
{∥∥x − y

∥
∥ : y ∈ C

}
. (2.5)

We use S to denote the solution set of (1.1). Assume that (1.1) is consistent, that is, S/= ∅. If f
is Frechet differentiable, then x∗ ∈ C solves (1.1) if and only if x∗ ∈ C satisfies the following
optimality condition:

〈∇f(x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (2.6)

where ∇f denotes the gradient of f . Observe that (2.6) can be rewritten as the following VI

〈
x∗ − (

x∗ − ∇f(x∗)
)
, x − x∗〉 ≥ 0, ∀x ∈ C. (2.7)

(Note that the VI has been extensively studied in the literature, see, for instance [11–25].) This
shows that the minimization (1.1) is equivalent to the fixed point problem

PC

(
x∗ − γ∇f(x∗)

)
= x∗, (2.8)

where γ > 0 is an any constant. This relationship is very important for constructing our
method.

Next we adopt the following notation:

(i) xn → x means that xn converges strongly to x;

(ii) xn ⇀ x means that xn converges weakly to x;

(iii) Fix(T) := {x : Tx = x} is the fixed points set of T .

Lemma 2.2 (See [26]). Let {xn} and {yn} be bounded sequences in a Banach spaceX and let {βn} be
a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1. (2.9)
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Suppose

xn+1 =
(
1 − βn

)
yn + βnxn (2.10)

for all n ≥ 0 and

lim sup
n→∞

(∥∥yn+1 − yn

∥
∥ − ‖xn+1 − xn‖

) ≤ 0. (2.11)

Then, limn→∞‖yn − xn‖ = 0.

Lemma 2.3 (See [27] (demiclosedness principle)). LetC be a closed and convex subset of a Hilbert
space H and let T : C → C be a nonexpansive mapping with Fix(T)/= ∅. If {xn} is a sequence in C
weakly converging to x and if {(I − T)xn} converges strongly to y, then

(I − T)x = y. (2.12)

In particular, if y = 0, then x ∈ Fix(T).

Lemma 2.4 (See [28]). Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(
1 − γn

)
an + δn, (2.13)

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(1)

∑∞
n=1 γn = ∞;

(2) lim supn→∞δn/γn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then, limn→∞an = 0.

3. Main Results

Let C be a closed convex subset of a real Hilbert space H. Let f : C → R be a real-
valued Frechet differentiable convex function with the gradient ∇f . Let A : C → H be a
ρ-contraction. Let B : H → H be a self-adjoint, strongly positive bounded linear operator
with coefficient α > 0. First, we present our algorithm for solving (1.1). Throughout, we
assume S/= ∅.

Algorithm 3.1. For given x0 ∈ C, compute the sequence {xn} iteratively by

xn+1 = PC(I + (σA − B)θn)PC

(
I − γ∇f

)
xn, n ≥ 0, (3.1)

where σ > 0, γ > 0 are two constants and the real number sequence {θn} ⊂ [0, 1].

Remark 3.2. In (3.1), we use two projections. Now, it is well-known that the advantage of
projections, which makes them successful in real-word applications, is computational.

Next, we show the convergence analysis of this Algorithm 3.1.



Journal of Applied Mathematics 5

Theorem 3.3. Assume that the gradient ∇f is L-Lipschitzian and σρ < α. Let {xn} be a sequence
generated by (3.1), where γ ∈ (0, 2/L) is a constant and the sequence {θn} satisfies the conditions: (i)
limn→∞θn = 0 and (ii)

∑∞
n=0 θn = ∞. Then {xn} converges to a minimizer x̃ of (1.1) which solves

the following variational inequality:

x̃ ∈ S such that 〈σA(x̃) − B(x̃), x − x̃〉 ≤ 0, ∀x ∈ S. (3.2)

By Algorithm 3.1 involved in the projection, we will use the properties of the metric
projection for proving Theorem 3.3. For convenience, we list the properties of the projection
as follows.

Proposition 3.4. It is well known that the metric projection PC of H onto C has the following basic
properties:

(i) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖, for all x, y ∈ H;

(ii) 〈x − y, PC(x) − PC(y)〉 ≥ ‖PC(x) − PC(y)‖2, for every x, y ∈ H;

(iii) 〈x − PC(x), y − PC(x)〉 ≤ 0, for all x ∈ H, y ∈ C.

The Proof of Theorem 3.3

Let x∗ ∈ S. First, from (2.8), we note that PC(I − γ∇f)x∗ = x∗. By (3.1), we have

‖xn+1 − x∗‖ =
∥∥PC(I + (σA − B)θn)PC

(
I − γ∇f

)
xn − x∗∥∥

≤ ∥∥PC(I + (σA − B)θn)PC

(
I − γ∇f

)
xn − PC(I + (σA − B)θn)PC

(
I − γ∇f

)
x∗∥∥

+ ‖PC(I + (σA − B)θn)x∗ − x∗‖
≤ [

1 − (
α − σρ

)
θn
]‖xn − x∗‖ + θn‖σA(x∗) − B(x∗)‖

=
[
1 − (

α − σρ
)
θn
]‖xn − x∗‖ + (

α − σρ
)
θn

‖σA(x∗) − B(x∗)‖
α − σρ

≤ max
{
‖xn − x∗‖, ‖σA(x∗) − B(x∗)‖

α − σρ

}
.

(3.3)

Thus, by induction, we obtain

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, ‖σA(x∗) − B(x∗)‖

α − σρ

}
. (3.4)

Note that the Lipschitz condition implies that the gradient ∇f is (1/L)-inverse
strongly monotone (ism), which then implies that γ∇f is (1/γL)-ism. So, I − γ∇f is (γL/2)-
averaged. Now since the projection PC is (1/2)-averaged, we see that PC(I − γ∇f) is
((2 + γL)/4)-averaged. Hence we have that

PC =
1
2
I +

1
2
R PC

(
I − γ∇f

)
=

2 − γL

4
I +

2 + γL

4
T =

(
1 − β

)
I + βT, (3.5)



6 Journal of Applied Mathematics

where R, T are nonexpansive and β = (2 + γL)/4 ∈ (0, 1). Then we can rewrite (3.1) as

xn+1 =
(
1
2
I +

1
2
R

)
(I + (σA − B)θn)

[(
1 − β

)
xn + βTxn

]

=
1 − β

2
xn +

β

2
Txn +

(
θn
2
(σA − B) +

R

2
(I + (σA − B)θn)

)
[(
1 − β

)
xn + βTxn

]

=
1 − β

2
xn +

1 + β

2
yn,

(3.6)

where

yn =
2

1 + β

(
θn
2
(σA − B) +

R

2
(I + (σA − B)θn)

)
[(
1 − β

)
xn + βTxn

]
+

β

1 + β
Txn. (3.7)

Set zn = (1 − β)xn + βTxn for all n. Since {xn} is bounded, we deduce {A(xn)}, {B(xn)}, and
{Txn} are all bounded. Hence, there exists a constant M > 0 such that

sup
n

{‖(σA − B)zn‖} ≤ M. (3.8)

Thus,

∥∥yn+1 − yn

∥∥ ≤ 2
1 + β

∥∥∥∥
θn+1
2

(σA − B)zn+1 − θn
2
(σA − B)zn

∥∥∥∥ +
β

1 + β
‖Txn+1 − Txn‖

+
1

1 + β
‖R(θn+1σA + (I − θn+1B))zn+1 − R(I + (σA − B)θn)zn‖

≤ 1
1 + β

(θn+1 + θn)M +
β

1 + β
‖xn+1 − xn‖ + 1

1 + β
‖zn+1 − zn‖

+
1

1 + β
‖θn+1(σA − B)zn+1 − θn(σA − B)zn‖

≤ 2
1 + β

(θn+1 + θn)M + ‖xn+1 − xn‖.

(3.9)

It follows that

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (3.10)

This together with Lemma 2.2 implies that

lim
n→∞

∥∥yn − xn

∥∥ = 0. (3.11)
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So,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

1 + β

2
∥
∥yn − xn

∥
∥ = 0. (3.12)

Since

∥
∥xn − PC

(
I − γ∇f

)
xn

∥
∥ ≤ ‖xn − xn+1‖ +

∥
∥xn+1 − PC

(
I − γ∇f

)
xn

∥
∥

= ‖xn − xn+1‖ +
∥
∥PC(I + (σA − B)θn)PC

(
I − γ∇f

) − PC

(
I − γ∇f

)
xn

∥
∥

≤ ‖xn − xn+1‖ + θn
∥
∥(σA − B)PC

(
I − γ∇f

)
xn

∥
∥,

(3.13)

we deduce

lim
n→∞

∥∥xn − PC

(
I − γ∇f

)
xn

∥∥ = 0. (3.14)

Next we prove

lim sup
k→∞

〈σA(x∗) − B(x∗), xn − x∗〉 ≤ 0, (3.15)

where x∗ is the unique solution of VI (3.2).
Indeed, we can choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈σA(x∗) − B(x∗), xn − x∗〉 = lim
i→∞

〈σA(x∗) − B(x∗), xni − x∗〉. (3.16)

Since {xni} is bounded, there exists a subsequence of {xni}which converges weakly to a point
x̃. Without loss of generality, we may assume that {xni} converges weakly to x̃. Since γ ∈
(0, 2/L), PC(I − γ∇f) is nonexpansive. Thus, from (3.14) and Lemma 2.3, we have xni ⇀ x̃ ∈
Fix(PC(I − γ∇f)) = S. Therefore,

lim sup
n→∞

〈σA(x∗) − B(x∗), xn − x∗〉 = lim
i→∞

〈σA(x∗) − B(x∗), xni − x∗〉

= 〈σA(x∗) − B(x∗), x̃ − x∗〉 ≤ 0.
(3.17)

Finally, we show xn → x̃. By using the property of the projection PC, we have

‖xn+1 − x̃‖2 = ∥∥PC(I + (σA − B)θn)PC

(
I − γ∇f

)
xn − PC(x̃)

∥∥2

≤ 〈
(I + (σA − B)θn)PC

(
I − γ∇f

)
xn − x̃, xn+1 − x̃

〉

=
〈
(I + (σA − B)θn)

(
PC

(
I − γ∇f

)
xn − x̃

)
, xn+1 − x̃

〉

+ θn〈σA(x̃) − B(x̃), xn+1 − x̃〉
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≤ ‖I + (σA − B)θn‖
∥
∥PC

(
I − γ∇f

)
xn − PC

(
I − γ∇f

)
x̃
∥
∥‖xn+1 − x̃‖

+ θn〈σA(x̃) − B(x̃), xn+1 − x̃〉
≤ [

1 − (
α − σρ

)
θn
]‖xn − x̃‖‖xn+1 − x̃‖ + θn〈σA(x̃) − B(x̃), xn+1 − x̃〉

≤ 1 − (
α − σρ

)
θn

2
‖xn − x̃‖2 + 1

2
‖xn+1 − x̃‖2 + θn〈σA(x̃) − B(x̃), xn+1 − x̃〉.

(3.18)

It follows that

‖xn+1 − x̃‖2 ≤ [
1 − (

α − σρ
)
θn
]‖xn − x̃‖2 + 2θn〈σA(x̃) − B(x̃), xn+1 − x̃〉

=
[
1 − (

α − σρ
)
θn
]‖xn − x̃‖2 + (

α − σρ
)
θn

{
2

α − σρ
〈σA(x̃) − B(x̃), xn+1 − x̃〉

}
.

(3.19)

It is obvious that lim supn→∞((2/(α − σρ))〈σA(x̃) − B(x̃), xn+1 − x̃〉 ≤ 0). Then we can apply
Lemma 2.4 to the last inequality to conclude that xn → x̃. The proof is completed.

In (3.1), if we take A = 0 and B = I, then (3.1) reduces to the following.

Algorithm 3.5. For given x0 ∈ C, compute the sequence {xn} iteratively by

xn+1 = PC(1 − θn)PC

(
I − γ∇f

)
xn, n ≥ 0, (3.20)

where σ > 0, γ > 0 are two constants and the real number sequence {θn} ⊂ [0, 1].

From Theorem 3.3, we have the following result.

Theorem 3.6. Assume that the gradient ∇f is L-Lipschitzian and σρ < α. Let {xn} be a sequence
generated by (3.20), where γ ∈ (0, 2/L) is a constant and the sequences {θn} satisfies the conditions:
(i) limn→∞θn = 0 and (ii)

∑∞
n=0 θn = ∞. Then {xn} converges to a minimizer x̃ of (1.1) which is the

minimum norm element in S.

Proof. As a consequence of Theorem 3.3, we obtain that the sequence {xn} generated by (3.20)
converges strongly to x̃ which satisfies

x̃ ∈ S such that 〈−x̃, x − x̃〉 ≤ 0, ∀x ∈ S. (3.21)

This implies

‖x̃‖2 ≤ 〈x, x̃〉 ≤ ‖x‖‖x̃‖, ∀x ∈ S. (3.22)

Thus,

‖x̃‖ ≤ ‖x‖, ∀x ∈ S. (3.23)

That is, x̃ is the minimum norm element in S. This completes the proof.
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