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This paper suggests a novel modified Laplace method for removal of noise oscillation term
appearing in the nonlinear equation solutions. The modified method overcomes the noise
oscillation during the iteration procedure by suitable choice of an initial solution. Several examples
are tested, and the obtained results suggest that this newly developed technique could lead to
a promising tool and powerful improvement for many applications in differential and integral
equations.

1. Introduction

Nonlinear science emerged in its present form following a series of decisive analytic,
numerical, and experimental development took place in close interaction in the last three
decades. And the application of many nonlinear science partial differential equations has
attracted a great deal of attention in recent years. For example, partial differential equations
are increasing used to model many problems in biology, chemistry, economic, engineering,
physics, and other areas of applications. Many analytical and numerical techniques have
been developed by various scientists to cope with the nonlinearity of such problems. In
reality, the Laplace transform is one of only few methods that can be useful to linear
systems with periodic or discontinuous driving inputs. In spite of its great usefulness in
solving linear problems, however, the Laplace transform is totally incapable of handling
nonlinear equations because of the difficulties that are caused by the nonlinear terms. Various
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ways have been proposed recently to deal with these nonlinearities such as the Adomian
decomposition method [1–3], the Laplace decomposition method [4, 5], the homotopy
perturbation method [6–14], variational approach [15, 16], Hamiltonian approach [17, 18],
Boubaker polynomials expansion scheme [19, 20], and recently the homotopy perturbation
transform method was proposed by Khan and Wu [21].

In this paper, we proposed a new method to solve any kind of nonlinear equations.
This method is called modified homotopy perturbation transform method (MHPTM). It
is important to note that the modified technique works effectively independent of other
phenomena in some cases, or it may be combined with the powerful phenomena of
the self-canceling “noise terms”. We aim to extend the works of [21] and make further
progress beyond the achievements made so far in this regard. The proposed modification
will accelerate the rapid convergence of the series solution if compared with the standard
homotopy perturbation transformmethod (HPTM), and therefore provides a major progress.
The modified technique has been shown to be computationally efficient in several examples
that are important to researchers in applied fields. In addition, the modified technique
may give the exact solution for nonlinear equations without any need of the so-called
Adomian polynomials. Although the modified technique needs only a slight variation from
the standard homotopy perturbation transform method [21], the results are promising
in that it minimizes the size of calculations needed. While this slight variation is rather
simple, it does demonstrate the reliability and the power of the proposed modification.
The modified homotopy perturbation transform method is much easier to implement
as compared with the Adomian decomposition method and the Laplace decomposition
method, where huge complexities are involved. Several examples are given to reconfirm
the efficiency and accuracy of the proposed modified homotopy perturbation transform
method.

2. Description of the Method

To illustrate the basic idea of this method, we consider a general nonlinear nonhomogeneous
partial differential equation with initial condition of the following form:

Du(x, t) + Ru(x, t) +Nu(x, t) = g(x, t),

u(x, 0) = h(x), ut(x, 0) = f(x),
(2.1)

where f(x), h(x) ∈ C(R), D is the second order linear differential operator D = ∂2/∂t2, R
the linear differential operator of less order than D, N representing the general nonlinear
differential operator, and g(x, t) as the source term.

According to the homotopy perturbation transform method [21], we apply the
Laplace transform (denoted throughout this paper by L) on both sides of (2.1) as
follows:

L[Du(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L
[
g(x, t)

]
. (2.2)
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Using the differentiation property of Laplace transform, we have

s2L[u(x, t)] − su(x, 0) − ut(x, 0) + L[Ru(x, t)] + L[Nu(x, t)] = L
[
g(x, t)

]
,

s2L[u(x, t)] − sh(x) − f(x) + L[Ru(x, t)] + L[Nu(x, t)] = L
[
g(x, t)

]
,

(2.3)

L[u(x, t)] =
h(x)
s

+
f(x)
s2

+
1
s2
L
[
g(x, t)

] − 1
s2
L[Ru(x, t) +Nu(x, t)]. (2.4)

Operating with Laplace inverse on both sides of (2.4) gives

u(x, t) = G(x, t) − L−1
[
1
s2
L[Ru(x, t) +Nu(x, t)]

]
, (2.5)

where G(x, t) represents the term arising from the source term and prescribed initial
condition. The homotopy perturbation transform method [21] admits a solution in the form

u(x, t) =
∞∑

n=0

pnun(x, t). (2.6)

The nonlinear term is decomposed as

Nu(x, t) =
∞∑

n=0

pnHn(u), (2.7)

whereHn are He’s polynomials [22, 23] of u0, u1, u2, u3, . . . , un which can be calculated by the
following formula:

Hn =
1
n!

dn

dpn

[

N

( ∞∑

i=0

piui

)]

p=0

, n = 0, 1, 2, 3, . . . . (2.8)

Using (2.7) and (2.6) in (2.5), we get

∞∑

n=0

pnun(x, t) = G(x, t) − p

(

L−1
[
1
s2
L

[

R
∞∑

n=0

pnun(x, t) +
∞∑

n=0

pnHn(u)

]])

. (2.9)
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Comparing the coefficient of like powers of p, the following approximations are obtained:

p0 : u0(x, t) = G(x, t), (2.10)

p1 : u1(x, t) = − L−1
[
1
s2
L[Ru0(x, t) +H0(u)]

]
,

p2 : u2(x, t) = − L−1
[
1
s2
L[Ru1(x, t) +H1(u)]

]
,

p3 : u3(x, t) = − L−1
[
1
s2
L[Ru2(x, t) +H2(u)]

]
,

...

(2.11)

Clearly, the general recursive relation is given by

pn : un+1(x, t) = −L−1
[
1
s2
L[Run(x, t) +Hn(u)]

]
, n ≥ 0. (2.12)

The initial solution is important, and the choice of (2.10) as the initial solution always leads to
noise oscillation/term during the iteration procedure. It is important to note that these terms
may appear for inhomogeneous problems, whereas homogeneous problems do not generate
noise terms. A necessary condition for the generation of the noise terms for inhomogeneous
problems is that the zeroth component u0 must contain the exact solution u among other
terms. The noise terms are defined as the identical terms, with opposite signs, that may
appear in various components un, n ≥ 1. It was formally shown that by canceling the noise
terms that appear in u0 and u1 from u0, even though u1 contains further terms, the remaining
noncancelled terms of u0 may give the exact solution of the inhomogeneous problem. In order
to overcome this shortcoming, we decompose G(x, t) into two parts as

G(x, t) = G0(x, t) +G1(x, t). (2.13)

Instead of the iteration procedure, (2.10), (2.11), and (2.12), we suggest the following
modification:

p0 : u0(x, t) = G0(x, t),

p1 : u1(x, t) = G1(x, t) − L−1
[
1
s2
L[Ru0(x, t) +H0(u)]

]
,

p2 : u2(x, t) = − L−1
[
1
s2
L[Ru1(x, t) +H1(u)]

]
,

p3 : u3(x, t) = − L−1
[
1
s2
L[Ru2(x, t) +H2(u)]

]
,

...

(2.14)
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The solution through the modified homotopy perturbation transform method highly
depends upon the choice ofG0(x, t) andG1(x, t). Wewill show how to suitably chooseG0(x, t)
and G1(x, t) through the use of examples.

3. Nonlinear Klein-Gordan Equations

In order to elucidate the solution procedure of the modified method and how to choose a
suitable initial solution, we consider first the nonlinear Klein-Gordon equations.

Example 3.1. Consider the following nonlinear Klein-Gordon equation:

utt(x, t) − uxx(x, t) + u2(x, t) = x2t2, (3.1)

u(x, 0) = 0, ut(x, 0) = x. (3.2)

Taking Laplace transform of both sides of (3.1) gives

s2u(x, s) − su(x, 0) − ut(x, 0) =
2!x2

s3
+ L

[
uxx − u2

]
. (3.3)

The initial conditions (3.2) imply

u(x, s) =
x

s2
+
2!x2

s5
+

1
s2
L
[
uxx − u2

]
. (3.4)

The inverse Laplace transform applied to (3.4) results in

u(x, t) = xt +
x2t4

12
+ L−1

[
1
s2
L
[
uxx − u2

]]
. (3.5)

Applying the homotopy perturbation transform method [21], we get

∞∑

n=0

pnun(x, t) = xt +
x2t4

12
+ p

(

L−1
[
1
s2
L

[ ∞∑

n=0

pnunxx(x, t) −
∞∑

n=0

pnHn(u)

]])

, (3.6)
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where Hn(u) are He’s polynomials [22, 23] that represent the nonlinear terms. In view of
(3.6), recursive relation is given as follows:

p0 : u0(x, t) = xt +
x2t4

12
,

p1 : u1(x, t) = L−1
[
1
s2
L[u0xx −H0(u)]

]

= L−1
[
1
s2
L
[
u0xx − u2

0

]]

= − x2t4

12
− x4t10

1080
− x3t7

252
+

t6

180

p2 : u2(x, t) = L−1
[
1
s2
L[u1xx −H1(u)]

]

= L−1
[
1
s2
L[u1xx − 2u0u1]

]

= − t6

180
+
x3t7

252
− 11x4t10

45360
− x2t12

71280
+

37x5t13

7076160
+

x6t16

18662400
.

(3.7)

It is important to recall here that the noise terms appear between the two adjacent
components, for example, x2t4/12 in u0(x, t) and u1(x, t). The noise terms between the
adjacent components can be cancelled using our modified version. The exact solution is

u(x, t) =
∞∑

n=0

un(x, t) = xt. (3.8)

According to the modified homotopy perturbation transform method, we first set

G(x, t) = xt +
x2t4

12
. (3.9)

As suggested before, we split G(x, t) into two parts as

G0(x, t) = xt, G1(x, t) =
x2t4

12
. (3.10)
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According to the iteration algorithm equation (2.14), we obtain

p0 : u0(x, t) = xt,

p1 : u1(x, t) =
x2t4

12
+ L−1

[
1
s2
L[u0xx −H0(u)]

]

=
x2t4

12
+ L−1

[
1
s2
L
[
u0xx − u2

0

]]

=
x2t4

12
− x2t4

12
= 0

pi : ui(x, t) = 0, i = 2, 3, 4, . . . .

(3.11)

One iteration leads to the exact solution u(x, t) = xt. It is obvious from this example that
“noise terms” appeared in the standard homotopy perturbation transform method can be
completely eliminated in our solution procedure.

Example 3.2. Consider the following nonlinear Klein-Gordon equation:

utt(x, t) − uxx(x, t) + u2(x, t) = 2x2 − 2t2 + x4t4,

u(x, 0) = 0, ut(x, 0) = 0.
(3.12)

By applying the aforesaid method subject to the initial conditions, we have

u(x, s) = x2 2!
s3

− 4
s5

+ x4 4!
s7

+
1
s2
L
[
uxx − u2

]
. (3.13)

The inverse of Laplace transform implies that

u(x, t) = x2t2 − t4

6
+ x4 t

6

30
+ L−1

[
1
s2
L
[
uxx − u2

]]
. (3.14)

In view of the homotopy perturbation transform method [21], we have

∞∑

n=0

pnun(x, t) = x2t2 − t4

6
+ x4 t

6

30

+ p

(

L−1
[
1
s2
L

[ ∞∑

n=0

pnunxx(x, t) −
∞∑

n=0

pnHn(u)

]])

,

(3.15)
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where the nonlinear operator is decomposed as in (2.8) in terms of the He’s polynomials.
Matching both sides of (3.15), the components of u can be defined as follows:

p0 : u0(x, t) = x2t2,

p1 : u1(x, t) = − t
4

6
+ x4 t

6

30
+ L−1

[
1
s2
L[u0xx −H0(u)]

]
= 0.

(3.16)

The solution procedure can continue, and we find the remaining components are all zero. We,
therefore, obtain a closed-form solution which is u(x, t) = x2t2.

4. Conclusion

This paper suggests an effective modification of the Laplace transform method. A suitable
choice ofG0(x, t) andG1(x, t) results in an extremely simple solution procedure. Themodified
version is also valid for other nonlinear equations, and this paper can be used as a standard
paradigm for other applications.
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