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By constructing a special cone in C1[0, 2π] and the fixed point theorem, this paper investigates
second-order singular semipositone periodic boundary value problems with dependence on the
first-order derivative and obtains the existence of multiple positive solutions. Further, an example
is given to demonstrate the applications of our main results.

1. Introduction

In this paper, we are concerned with the existence of multiple positive solutions for the
second-order singular semipositone periodic boundary value problems (PBVP, for short):

u′′(t) + a(t)u(t) = f
(
t, u(t), u′(t)

)
, t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(1.1)

where a ∈ C[0, 2π], the nonlinear term f(t, u, v) may be singular at t = 0, t = 2π , and u = 0,
also may be negative for some value of t, u, and v.

In recent years, second-order singular periodic boundary value problems have
been studied extensively because they can be used to model many systems in celestial
mechanics such as the N-body problem (see [1–11] and references therein). By applying the
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Krasnosel’skii’s fixed point theorem, Jiang [5] proves the existence of one positive solution
for the second-order PBVP

u′′(t) +m2u = f(t, u), t ∈ [0, 2π],

u(0) = u(2π), u′(0) = u′(2π),
(1.2)

where m ∈ (0, 1/2) is a constant and f ∈ C([0, 2π] × [0,+∞), [0,+∞)). Zhang and Wang
[6] used the same fixed point theorem to prove the existence of multiple positive solutions
for PBVP (1.2) when f(t, u) is nonnegative and singular at u = 0, not singular at t = 0,
t = 2π . Lin et al. [7] only obtained the existence of one positive solution to PBVP (1.1) when
f(t, u, v) = f(t, u), f is semipositone and singular only at u = 0. All the above works were
done under the assumption that the first-order derivative u′ is not involved explicitly in the
nonlinear term f .

Motivated by the works of [5–7], the present paper investigates the existence of
multiple positive solutions to PBVP (1.1). PBVP (1.1) has two special features. The first one
is that the nonlinearity f may depend on the first-order derivative of the unknown function
u, and the second one is that the nonlinearity f(t, u, v) is semipositone and singular at t = 0,
t = 2π , and u = 0. We first construct a special cone different from that in [5–7] and then
deduce the existence of multiple positive solutions by employing the fixed point theorem on
a cone. Our results improve and generalize some related results obtained in [5–7].

A map u ∈ C1[0, 2π] ∩ C2(0, 2π) is said to be a positive solution to PBVP(1.1) if and
only if u satisfies PBVP (1.1) and u(t) > 0 for t ∈ [0, 2π].

The contents of this paper are distributed as follows. In Section 2, we introduce some
lemmas and construct a special cone, which will be used in Section 3. We state and prove the
existence of at least two positive solutions to PBVP (1.1) in Section 3. Finally, an example is
worked out to demonstrate our main results.

2. Some Preliminaries and Lemmas

Define the set functions

Λ =

⎧
⎨

⎩
a ∈ C[0, 2π] : a � 0, t ∈ [0, 2π],

(∫2π

0
apdt

)1/p

≤ K
(
2q
)
for some p ≥ 1

⎫
⎬

⎭
, (2.1)

where q is the conjugate exponent of p,

K
(
q
)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

q(2π)2/q

(
2

2 + q

)1−2/q( Γ
(
1/q
)

Γ
(
1/2 + 1/q

)

)2

, 1 ≤ q < ∞,

2
π
, q = ∞,

(2.2)

where Γ is the Gamma function.
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Given a ∈ Λ, let G(t, s) be the Green function for the equation

u′′ + a(t)u(t) = 0, t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).
(2.3)

Now, the following Lemma follows immediately from the paper [7].

Lemma 2.1. G(t, s) has the following properties:

(G1) G(t, s) is continuous in t and s for all t, s ∈ [0, 2π];

(G2) G(t, s) > 0 for all (t, s) ∈ [0, 2π] × [0, 2π], G(0, s) = G(2π, s) and ∂G/∂t|(0,s) =
∂G/∂t|(2π,s);

(G3) denote l1 = min0≤t,s≤2πG(t, s) and l2 = max0≤t,s≤2πG(t, s), then l2 > l1 > 0;

(G4) there exist functions h,H ∈ C2[0, 2π] such that

G(t, s) =

⎧
⎨

⎩

(α + 1)H(t)h(s) +
(
β − 1

)
h(t)H(s) + cH(t)H(s) + dh(t)h(s), 0 ≤ s ≤ t ≤ 2π,

αH(t)h(s) + βh(t)H(s) + cH(t)H(s) + dh(t)h(s), 0 ≤ t ≤ s ≤ 2π,
(2.4)

where α, β, c, d are constants, H, h are independent solutions of the linear differential equation
u′′ + a(t)u(t) = 0, and H ′(t)h(t) − h′(t)H(t) = 1;

(G5) G′
t(t, s) is bounded on [0, 2π] × [0, 2π].

Denote l3 = max0≤t,s≤2π |G′
t(t, s)|, then l3 > 0.

Remark 2.2. Using paper [5], we can get G(t, s) when a(t) ≡ m2 and m ∈ (0, 1/2), obtaining

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinm(t − s) + sinm(2π − t + s)
2m(1 − cos 2mπ)

, 0 ≤ s ≤ t ≤ 2π,

sinm(s − t) + sinm(2π − s + t)
2m(1 − cos 2mπ)

, 0 ≤ t ≤ s ≤ 2π,

G′
t(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cosm(t − s) − cosm(2π − t + s)
2(1 − cos 2mπ)

, 0 ≤ s ≤ t ≤ 2π,

− cosm(s − t) + cosm(2π − s + t)
2(1 − cos 2mπ)

, 0 ≤ t < s ≤ 2π,

l1 =
sin 2mπ

2m(1 − cos 2mπ)
, l2 =

sinmπ

m(1 − cos 2mπ)
, l3 =

1
2
.

(2.5)

Let E = {u ∈ C1[0, 2π] : u(0) = u(2π), u′(0) = u′(2π)} with norm ‖u‖ =
max{‖u‖0, ‖u′‖0}, where ‖u‖0 = maxt∈[0,2π]|u(t)|. Then (E, ‖ · ‖) is a Banach space. Let
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σ =: min{l1/l2, l1/l3}, L =: l3/l1, from Lemma 2.1, we know that σ, L are both constants

and 0 < σ < 1, L > 0.
Define

K =
{
u ∈ E : u(t) ≥ σ‖u‖, ∣∣u′(t)

∣
∣ ≤ L‖u‖, ∀t ∈ [0, 2π]

}
,

Ωr = {u ∈ E : ‖u‖ < r}, ∀r > 0.
(2.6)

It is easy to conclude that K is a cone of E and Ωr is an open set of E.

Lemma 2.3 (see [12]). Let E be a Banach space and P a cone in E. Suppose Ω1 and Ω2 are bounded
open sets of E such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and suppose that A : P ∩ (Ω2 \Ω1) → P is a completely
continuous operator such that

(1) infu∈P∩∂Ω1‖Au‖ > 0 and u/=λAu for u ∈ P ∩ ∂Ω1, λ ≥ 1;u/=λAu for u ∈ P ∩ ∂Ω2, 0 <
λ ≤ 1, or

(2) infu∈P∩∂Ω2‖Au‖ > 0 and u/=λAu for u ∈ P ∩ ∂Ω2, λ ≥ 1;u/=λAu for u ∈ P ∩ ∂Ω1, 0 <
λ ≤ 1.

Then A has a fixed point in P ∩ (Ω2 \Ω1).
For convenience, let us list some conditions for later use.

(H0) a(t) ∈ Λ, f : (0, 2π)× (0,+∞)×R → R is continuous and there exists a constantM > 0
such that

0 ≤ f(t, u, v) +M ≤ g(t)h(u, v), ∀(t, u, v) ∈ (0, 2π) × (0,+∞) × R, (2.7)

where g ∈ C((0, 2π), R+), h ∈ C((0,+∞) × R,R+), and 0 <
∫2π
0 g(t)dt < +∞;

(H1) there exist r1 > σ−12πMl2 and a(t) ∈ L[0, 2π] with
∫2π
0 a(t)dt > (≥)r1l−11 such that

M + f(t, u, v) ≥ (>)a(t), ∀t ∈ (0, 2π), u ∈ (0, r1], v ∈ [−(Lr1 + 2πMl3), (Lr1 + 2πMl3)];
(2.8)

(H2) there exists R1 > r1 such that

max{l2, l3}
∫2π

0
g(t)dt < R1M

−1
0 , (2.9)

whereM0 =: max{h(u, v) : u ∈ [σR1 − 2πMl2, R1], v ∈ [−(LR1 + 2πMl3), (LR1 + 2πMl3)]};

(H3) there exists [α∗, β∗] ⊂ (0, 2π) such that

lim
u→+∞

f(t, u, v)
u

= +∞ uniformlywith respect to t ∈ [α∗, β∗
]
, v ∈ R. (2.10)
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3. Main Results

Theorem 3.1. Assume that conditions (H0)–(H3) are satisfied, then PBVP (1.1) has at least two
positive solutions u1, u2 ∈ C1[0, 2π] ∩ C2(0, 2π) such that r1 < ‖u1 + Mω‖ < R1 < ‖u2 + Mω‖,
where ω(t) =:

∫2π
0 G(t, s)ds.

Proof. We consider the following PBVP:

u′′(t) + a(t)u(t) = f
(
t, u(t) −Mω(t), u′(t) −Mω′(t)

)
+M, t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).
(3.1)

It is easy to see that if u ∈ C1[0, 2π] ∩C2(0, 2π) and r1 < ‖u‖ < R1 is a positive solution
of PBVP (3.1)with u(t) > Mω(t) for t ∈ [0, 2π], then x(t) = u(t)−Mω(t) is a positive solution
of PBVP (1.1) and r1 < ‖x +Mω‖ < R1.

As a result, we will only concentrate our study on PBVP (3.1).
Define an operator T : K \ {θ} → E by

(Tu)(t) =:
∫2π

0
G(t, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds, ∀t ∈ [0, 2π], (3.2)

where G(t, s) is the Green function to problem (2.3).

(1) We first show that T : K ∩ (ΩR \ Ωr1) → K is completely continuous for any
R > r1.

For any u ∈ K ∩ (ΩR \Ωr1), from (H1), we have u(t) −Mω(t) ≥ σr1 − 2πMl2 > 0. So,
by Lemma 2.1 and (3.2),

(Tu)(0) = (Tu)(2π), (Tu)′(0) = (Tu)′(2π), (3.3)

(Tu)(t) =
∫2π

0
G(t, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≥ l1
l2
l2

∫2π

0
G(t, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≥ l1
l2

max
τ∈[0,2π]

∫2π

0
G(τ, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

=
l1
l2
‖Tu‖0 ≥ σ‖Tu‖0, ∀t ∈ [0, 2π],

(3.4)
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∣
∣(Tu)′(t)

∣
∣ =

∣
∣
∣
∣
∣

∫2π

0
G′

t(t, s)
[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

∣
∣
∣
∣
∣

≤
∫2π

0

∣
∣G′

t(t, s)
∣
∣[f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≤ l3
l1
l1

∫2π

0

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≤ l3
l1

∫2π

0
G(τ, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

=
l3
l1
(Tu)(τ), ∀t, τ ∈ [0, 2π].

(3.5)

From (3.5), we have (Tu)(t) ≥ (l1/l3)maxτ∈[0,2π]|(Tu)′(τ)| ≥ σ‖(Tu)′‖0. Therefore,
(Tu)(t) ≥ σ‖Tu‖, |(Tu)′(t)| ≤ L‖Tu‖, for all t ∈ [0, 2π], that is, T : K ∩ (ΩR \Ωr1) → K.

Assume that un, u∗ ∈ K ∩ (ΩR \Ωr1) with ‖un − u∗‖ → 0, n → +∞. Thus, from (H1),
we have

lim
n→+∞

f
(
t, un(t) −Mω(t), u′

n(t) −Mω′(t)
)

= f
(
t, u∗(t) −Mω(t), u′

∗(t) −Mω′(t)
)
, t ∈ (0, 2π),

∣∣f
(
t, un(t) −Mω(t), u′

n(t) −Mω′(t)
)∣∣ ≤ M +M1g(t), t ∈ (0, 2π),

[
M +M1g(t)

] ∈ L[0, 2π],

(3.6)

where M1 =: max{h(u, v) : u ∈ [σr1 − 2πMl2, R], v ∈ [−(LR + 2πMl3), (LR + 2πMl3)]}.
Lemma 2.1 and Lebesgue-dominated convergence theorem guarantee that

‖Tun − Tu∗‖ ≤ max{l2, l3}
∫2π

0

∣∣f
(
t, un(t) −Mω(t), u′

n(t) −Mω′(t)
)

−f(t, u∗(t) −Mω(t), u′
∗(t) −Mω′(t)

)∣∣dt −→ 0, n −→ +∞.

(3.7)

So, T : K ∩ (ΩR \Ωr1) → K is continuous.
For any bounded D ⊂ K ∩ (ΩR \ Ωr1), From Lemma 2.1 and (H1), for any u ∈ D, we

have

‖Tu‖ ≤ max{l2, l3}
∫2π

0

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≤ max{l2, l3}
∫2π

0
g(s)h

(
u(s) −Mω(s), u′(s) −Mω′(s)

)
ds

≤ max{l2, l3}M1

∫2π

0
g(s)ds,

(3.8)
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which means the functions belonging to {(TD)(t)} and the functions belonging to {(TD)′(t)}
are uniformly bounded on [0, 2π]. Notice that

∣
∣(Tu)′(t)

∣
∣ ≤ l3M1

∫2π

0
g(s)ds, t ∈ [0, 2π], u ∈ D, (3.9)

which implies that the functions belonging to {(TD)(t)} are equicontinuous on [0, 2π]. From
Lemma 2.1, we have

G′
t(t, s) =

⎧
⎨

⎩

(α + 1)H ′(t)h(s) +
(
β − 1

)
h′(t)H(s) + cH ′(t)H(s) + dh′(t)h(s), 0 ≤ s ≤ t ≤ 2π,

αH ′(t)h(s) + βh′(t)H(s) + cH ′(t)H(s) + dh′(t)h(s), 0 ≤ t < s ≤ 2π,
(3.10)

where α, β, c, d are constants, h,H ∈ C2[0, 2π] are independent solutions of the linear
differential equation u′′ + a(t)u(t) = 0, and H ′(t)h(t) − h′(t)H(t) = 1.

It is easy to see thatG′
t(t, s) is continuous in t and s for 0 ≤ s ≤ t ≤ 2π and 0 ≤ t < s ≤ 2π .

So, for any t1, t2 ∈ [0, 2π], t1 < t2, we have

∫ t1

0

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds −→ 0, as t1 −→ t−2 , or t2 −→ t+1 ,

∫ t2

t1

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds ≤ 2l3

∫ t2

t1

g(s)ds −→ 0, as t1 −→ t−2 , or t2 −→ t+1 ,

∫2π

t2

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s) ds −→ 0, as t1 −→ t−2 , or t2 −→ t+1 .

(3.11)

Therefore,

∣∣(Tu)′(t1) − (Tu)′(t2)
∣∣

=

∣∣∣∣∣

∫2π

0

[
G′

t(t1, s) −G′
t(t2, s)

][
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

∣∣
∣∣∣

≤ M1

∫2π

0

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds

= M1

{∫ t1

0

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds +

∫ t2

t1

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds

+
∫2π

t2

∣∣G′
t(t1, s) −G′

t(t2, s)
∣∣g(s)ds

}

−→ 0, as t1 −→ t−2 or t2 −→ t+1 .

(3.12)

Thus, the functions belonging to {TD′(t)} are equicontinuous on [0, 2π]. By Arzela-Ascoli
theorem, TD is relatively compact in C1[0, 2π].

Hence, T : K ∩ (ΩR \Ωr1) → K is completely continuous for any R > r1.
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(2)We now show that

inf
u∈K∩∂Ωr1

‖Tu‖ > 0, u /=λTu, ∀u ∈ K ∩ ∂Ωr1 , λ ≥ 1. (3.13)

For any u ∈ K ∩ ∂Ωr1 , we have

0 < σr1 − 2πMl2 ≤ u(t) −Mω(t) ≤ r1,
∣
∣u′(t) −Mω′(t)

∣
∣ ≤ ∣∣u′(t)

∣
∣ +M

∣
∣ω′(t)

∣
∣ ≤ Lr1 + 2πMl3, ∀t ∈ [0, 2π].

(3.14)

From (H1) and (3.2),

(Tu)(t) =
∫2π

0
G(t, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≥ l1

∫2π

0
a(s)ds > l1r1l

−1
1 = r1 > 0.

(3.15)

Suppose that there exist λ0 ≥ 1 and u0 ∈ K ∩ ∂Ωr1 such that u0 = λ0Tu0, that is, for
t ∈ [0, 2π],

u0(t) ≥ (Tu0)(t) =
∫2π

0
G(t, s)

[
f
(
s, u0(s) −Mω(s), u′

0(s) −Mω′(s)
)
+M

]
ds

≥ l1

∫2π

0
a(s)ds > l1r1l

−1
1 = r1.

(3.16)

This is in contradiction with u0 ∈ K ∩ ∂Ωr1 and (3.13) holds.

(3) Next, we show that

u/=λTu ∀u ∈ K ∩ ∂ΩR1 , 0 < λ ≤ 1. (3.17)

Suppose this is false, then there exist λ0 ∈ (0, 1] and u0 ∈ K ∩ ∂ΩR1 with u0 = λ0Tu0,
that is, for t ∈ [0, 2π], we have

u0(t) ≤ (Tu0)(t) =
∫2π

0
G(t, s)

[
f
(
s, u0(s) −Mω(s), u′

0(s) −Mω′(s)
)
+M

]
ds,

∣∣u′
0(t)
∣∣ = λ0

∣∣(Tu0)′(t)
∣∣ ≤
∫2π

0

∣∣G′
t(t, s)

∣∣[f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds.

(3.18)

From (H2), we have

0 < σR1 − 2πMl2 ≤ u0(t) −Mω(t) ≤ R1,
∣∣u′

0(t) −Mω′(t)
∣∣ ≤ ∣∣u′

0(t)
∣∣ +M

∣∣ω′(t)
∣∣ ≤ LR1 + 2πMl3, ∀t ∈ [0, 2π].

(3.19)
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Therefore, by (3.18), (3.19), and (H2), it follows that

u0(t) ≤ l2

∫2π

0
g(s)h

(
u0(s) −Mω(s), u′

0(s) −Mω′(s)
)
ds

≤ l2M0

∫2π

0
g(s)ds < R1, ∀t ∈ [0, 2π],

∣
∣u′

0(t)
∣
∣ ≤ l3

∫2π

0
g(s)h

(
u0(s) −Mω(s), u′

0(s) −Mω′(s)
)
ds

≤ l3M0

∫2π

0
g(s)ds < R1, ∀t ∈ [0, 2π].

(3.20)

Thus, ‖u‖ < R1. This is in contradiction with u0 ∈ K ∩ ∂ΩR1 and (3.17) holds.

(4) Choose N∗ = (1 + 2πMl2)[σl1(β∗ − α∗)]−1 + 1. From (H3), there exists R2 >
max{R1, 1} such that

f(t, u, v) ≥ N∗u, ∀u ≥ R2, v ∈ R, t ∈ [α∗, β∗
]
. (3.21)

Now, we show that

inf
u∈K∩∂ΩR

‖Tu‖ > 0, u /=λTu, ∀u ∈ K ∩ ∂ΩR, λ ≥ 1, (3.22)

where R = (R2 + 2πMl2)σ−1.
For any u ∈ K ∩ ∂ΩR, we have

u(t) −Mω(t) ≥ σR − 2πMl2 = R2, ∀t ∈ [0, 2π]. (3.23)

This and (3.21) together with (3.2) imply

(Tu)(t) =
∫2π

0
G(t, s)

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)
+M

]
ds

≥ l1

∫β∗

α∗

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)]
ds

≥ l1N
∗R2
(
β∗ − α∗) > 0.

(3.24)
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Suppose that there exist λ0 ≥ 1 and u0 ∈ K ∩ ∂ΩR such that u0 = λ0Tu0, then, for
t ∈ [α∗, β∗], we have

u0(t) ≥ (Tu0)(t) =
∫2π

0
G(t, s)

[
f
(
s, u0(s) −Mω(s), u′

0(s) −Mω′(s)
)
+M

]
ds

≥ l1

∫β∗

α∗

[
f
(
s, u(s) −Mω(s), u′(s) −Mω′(s)

)]
ds

≥ l1N
∗R2
(
β∗ − α∗) > (R2 + 2πMl2)σ−1 = R.

(3.25)

This is in contradiction with u0 ∈ K ∩ ∂ΩR and (3.22) holds.
Now, (3.13), (3.17), (3.22), and Lemma 2.3 guarantee that T has two fixed points u1 ∈

K ∩ (ΩR1 \Ωr1), u2 ∈ K ∩ (ΩR \ΩR1) with r1 < ‖u1‖1 < R1 < ‖u2‖1 < R. Clear, PBVP (3.1) has
at least two positive solutions u1, u2 ∈ C1[0, 2π] ∩ C2(0, 2π).

Remark 3.2. From the proof of Theorem 3.1, when f(t, u, v) is nonnegative (i.e., M = 0 in
(H0)), Theorem 3.1 still holds.

Corollary 3.3. Assume that (H0)–(H2) hold, then PBVP (1.1) has at least one positive solution u(t)
such that r1 < ‖u +Mω‖ < R1, where ω(t) =:

∫2π
0 G(t, s)ds.

Corollary 3.4. Assume that (H0) and (H3) hold, and
(H4) there exist R1 > σ−12πMl2 such that

max{l2, l3}
∫2π

0
g(t)dt < R1M

−1
0 , (3.26)

whereM0 =: max{h(u, v) : u ∈ [σR1 − 2πMl2, R1] andv ∈ [−(LR1 + 2πMl3), (LR1 + 2πMl3)]}.
Then PBVP (1.1) has at least one positive solution u(t) such that ‖u + Mω‖ > R1, where ω(t) =:
∫2π
0 G(t, s)ds.

Example 3.5. Consider the following second-order singular semipositone PBVP:

u′′ +
1
16

u =
u9/4 + (u′)2 + 1

8πu
√
t(2π − t)

−
√
3

30π
cos

t

12
, t ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

(3.27)

4. Conclusion

PBVP (3.27) has at least two positive solutions u1, u2 ∈ C1[0, 2π]∩C2(0, 2π) and u1(t), u2(t) >
0 for t ∈ [0, 2π].

To see this, we will apply Theorem 3.1 with m = 1/4, f(t, u, v) = ((u9/4 + v2 +
1)/8πu

√
t(2π − t)) − (

√
3/30π) cos(t/12), g(t) = 1/

√
t(2π − t), h(u, v) = (u9/4 + v2 + 1)/8πu,

M = 1/20π .
From Remark 2.2, it is easy to see that l1 = 2, l2 = 2

√
2, l3 = 1/2, σ =

√
2/2, and L = 1/4.
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By simple computation, we easily get 0 ≤ f(t, u, v) +M ≤ g(t)h(u, v) and
∫2π
0 g(t)dt =

π . So (H0) holds.
Taking r1 = 1/2, a(t) = 1/4π

√
t(2π − t), then σ−12πMl2 =

√
2 · 2π · (1/20π) · 2√2 =

2/5 < r1,
∫2π
0 a(t)dt = 1/4 = r1l

−1
1 and for any t ∈ (0, 2π), u ∈ (0, 1/2], v ∈ [−7/40, 7/40],

u9/4 + v2 + 1

8πu
√
t(2π − t)

−
√
3

30π
cos

t

12
+

1
20π

≥ 1/29/4 + 1

4π
√
t(2π − t)

−
√
3

30π
+

1
20π

≥ 1/29/4

4(π)2
−

√
3

30π
+

1
20π

+
1

4π
√
t(2π − t)

>
1

4π
√
t(2π − t)

.

(4.1)

Thus, (H1) holds.
Taking R1 = 4, then for u ∈ [(9/5)

√
2, 4], |v| ≤ 21/20, we have

M0 ≤ 5

72
√
2π

(

29/2 +
(
21
20

)2

+ 1

)

<
5

72
√
2π

(23 + 2 + 1) =
65

36
√
2π

. (4.2)

So, M0max{l2, l3}
∫2π
0 g(t)dt = 2

√
2πM0 < 65/18 < 4 = R1. That is, (H2) holds.

Let [α∗, β∗] = [π/2, π], then it is easy to check that (H3) holds.
Thus all the conditions of Theorem 3.1 are satisfied, so PBVP (3.27) has at least two

positive solutions u1, u2 ∈ C1[0, 2π] ∩ C2(0, 2π) and u1(t), u2(t) > 0 for t ∈ [0, 2π].
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