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This paper proposes new metaheuristic algorithms for an identification problem of nonlinear
friction model. The proposed cooperative algorithms are formed from the bacterial foraging
optimization (BFO) algorithm and the tabu search (TS). The paper reports the search comparison
studies of the BFO, the TS, the genetic algorithm (GA), and the proposed metaheuristics. Search
performances are assessed by using surface optimization problems. The proposed algorithms
show superiority among them. A real-world identification problem of the Stribeck friction model
parameters is presented. Experimental setup and results are elaborated.

1. Introduction

AI-based algorithms have been successfully applied to solve optimal solutions of complex
and NP-hard problems in engineering. For some examples, dated back to 1995, the genetic
algorithm was proposed to solve line-balancing problem to minimize the cycle time of
the line for a given number of workstations [1], similar approach was used to optimize
the determination of an optimal control sequence in model-based predictive control [2],
the simulated annealing and genetic algorithms were used to solve nonlinear controller
parameter optimization for the diving and heading motions of a submarine model [3], and
recently the particle swarm optimization algorithmwas applied to optimize the parameters of
a fuzzy control system that was used for the vibration control problem of a flexible structure
[4], and so forth. Of a particular interest in control, current motion control technologies
demand very high precision in positioning of an object, for example, in CNC machines,
robots, and so forth. Difficulties caused by nonlinear friction arise under very low velocity
motions, in which stick-slip phenomenon pronouncedly exhibits. Control techniques can
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be used to compensate for the problem, and as such an accurate friction model is needed.
To obtain the model it requires careful experimental setup, accurate measurement and
appropriate identification algorithms. Due to strong nonlinearity of the friction model, the
conventional regressive approach is inappropriate.

An identification task can be formulated as an optimization problem solvable by
available optimization algorithms. Artificial intelligence- (AI-) based methods are efficient
candidates of the present technology. There is a wide range of algorithms which has been
applied to solve identification problems. For some instances, the genetic algorithm has been
applied to various problems including the modelling of a laboratory scale process involving
a coupled water tank system and the identification of a helicopter rotor speed controller
[5] and the identification of induction machine parameters [6, 7]; the tabu search and
simulated annealing algorithms were applied to identify the optimal parameter structure for
groundwater models [8]; the adaptive tabu search was applied to harmonic identification
for an active power filter [9]; the particle swarm optimization was applied to solve
various problems including the identification of thermal power plant [10], the calculation
of deformations in soil or rock in geotechnical engineering [11], and the identification of
MIMO FIR systems [12]; the ant colony optimization algorithm was used to identify the
aquifer parameters for the underground water control engineering [13]; the proportionate
affine projection algorithm was applied to the identification of sparse impulse response [14];
recently, the bacterial foraging algorithm was applied for the radiofrequency identification
(RFID) communication system [15].

Among those metaheuristics, evolutionary and bioinspired algorithms have gained
major interests since they are not hard to understand, and programming according to the
procedural lists is not so strict compared with conventional scientific programming. It also
opens a new route to effectively obtain an optimal or suboptimal solution for a complex
system. This paper proposes the use of the tabu search (TS) and the bacterial foraging
optimization (BFO) algorithm in a cooperative manner. Due to the dominant explorative
property of the BFO algorithm, themodified TSwith the BFO built-in is able to start searching
with an elite initial solution. While the sharp focusing property of the TS remains, the
proposed algorithms can move towards the solution very rapidly. Section 2 of the paper
explains the algorithms. The search performance was investigated using some well-known
unconstrained optimization problems on Pentium IV, 2.4GHz, 640Mbytes SD-RAM. The
search results are compared among the BFO, the TS, the genetic algorithm (GA), and the
modified TS denoted as bacterial foraging-tabu search (BTS). Since the GA is well known,
review of the algorithms is omitted herein. The comparative results of performance studies
are presented in Section 3. The proposed algorithms are applied to identify the parameters of
the nonlinear Stribeck friction model. Section 4 presents the experimental setup, results, and
discussions. Conclusions follow in Section 5.

2. Bacterial Foraging-Tabu Search Metaheuristics

2.1. Tabu Search

Tabu search (TS) originated by Glover [16, 17] has become one of the most efficient
metaheuristic methods. It incorporates two major strategies, namely, intensification and
diversification, respectively. Successful applications of the TS have appeared in various fields,
for example, food processing [18], optimal power flow [19], flow shop problem [20], and
so forth. For some complex systems containing many local optima, the simplistic TS is
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usually unable to release the search move from a local entrapment. This problem has been
overcome by different modifications made to the TS. These include the reactive tabu search
[21], probabilistic tabu search [22] and adaptive tabu search (ATS) [23]. The ATS has found
various successful applications such as identification [9], control [24], and signal processing
[25].

The ATS consists of two major additional strategies made to the conventional TS.
These are back-tracking (BT) and adaptive search radius (AR)mechanisms, respectively. The
former assists the TS to release itself from being locked by a local solution. It looks up the
tabu list (TL), that is, short-term memory, for a visited elite solution, and uses this solution
for starting a new search move. The later enhances the focusing characteristic of the TS. This
strategy decreases the search radius gradually when the search comes close to a solution of
high quality having a potential of being the optimal one. However, too short of the search
radius could result in a slow search. Recommendations for selection of search parameters are
in [23]. The ATS algorithm is presented as a part of the proposed algorithms in Section 2.3.

2.2. Bacterial Foraging Optimization

In 2002, Passino developed a new bioinspired optimization algorithm called bacterial
foraging optimization (BFO) [26, 27]. The algorithm imitates the foraging behavior
of E. coli bacteria; the computer codes appear in http://www2.ece.ohio-state.edu/∼
passino/ICbook/ic code.html. The BFO has been applied to various optimization problems
including estimation of harmonics [28], active power filter design [29], transmission loss
reduction [30], and optimal power flow [31]. Unfortunately, the BFO sometimes does not
converge to a high-quality solution, particularly when applied to complicated problems. The
difficulty has been resolved by some researchers [32, 33]whomodified the chemotaxis step of
the BFO to become an adaptive mechanism and, hence, the name adaptive bacterial foraging
optimization, or ABFO. It incorporates an adaptive jumping step denoted as C(i) under a
basic concept of a long step corresponding to a large deviation of the cost value from the
targeted one, and vice versa. The ABFO algorithm consists of 4 main mechanisms as follows.

Chemotaxis

This mechanism imitates the swimming movement of a bacterium. The position of a
bacterium is denoted as θi.

Swarming

When one bacterium presents itself in an elite position, that is, a local hill or valley, it attracts
the others. Simultaneously, each bacterium tries to repel the others nearby. The attractive and
the repellent effects are modeled as weighted summation of exponential terms presenting the
objective function, JCC. The weighting factors are dattract, wattract, hrepellant, and wrepellant and
can be chosen arbitrarily.

Reproduction

The bacteria are classified during the computing process as healthy and unhealthy due to
their cost values. Only the healthy ones reproduce by duplicating themselves at the same
positions.
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Elimination and Dispersal

Themechanism allows the unhealthy bacteria to be discarded. The healthy ones are dispersed
randomly over the search space with the probability Ped.

The original BFO and the ABFO algorithms run iteratively and terminate on the
maximum iteration criterion. The solutions obtained from search are stored in a memory
and eventually sorted to find the optimal solution. From testing the ABFO algorithm, it
demonstrates a strong explorative (or diversification) property. This property is commonly
found in population-based algorithms, and the ABFO algorithm is one of them. In contrast,
single-solution-based algorithms, such as the TS, have strong exploitative property [34–36].
Therefore, both algorithms complement each other in the senses that the ABFO is useful for
provision of an elite initial solution to the TS, and the TS is an efficient tool to track down a
global solution rapidly. The ABFO algorithm is presented as a part of the algorithms in the
next section.

2.3. Bacterial Foraging-Tabu Search

As mentioned, the TS has a dominant focusing characteristic, while the ABFO is strong
in explorative operation. Such properties can complement each other. Since the TS has
straightforward procedures, and moves rapidly towards a local solution, the method forms
the hunting steps for a satisfied solution to the problem. The two algorithms are combined to
form new metaheuristics working in a cooperative manner. The new algorithms are referred
to as bacterial foraging-tabu search or BTS in short. In this new algorithmic form, it is
unnecessary to employ the reproduction mechanism of the ABFO part because ranking the
available solutions to single out one with the minimum cost is an important step. This specific
solution is transferred to the TS part as an initial solution. The procedural list of the BTS
algorithms is as follows.

Step 1. Initialize search parameters: p, search space, S, Nc, Ns, α, dattract, wattract, hrepellant,
wrepellant, R, N, TL, countmax, BT, n re back, best neighbor1, best error, Ri and εi.

Step 2. Randomly or heuristically select an initial solution θi from the search space. Set θi as
the current solution.

Step 3. Compute objective functions J(i, j) according to (2.1) (i = 1, 2, . . . , S). Set Jlast = J(i, j);
j = 1, 2, . . .Nc,

J
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Step 4. Generate randomly ([−1, 1]) the elements of the random vector Δp(i) ∈ �p, then
compute the adaptive step size, C(i, j) using (2.2), and update the solution θi(j +1) according
to (2.3). Compute the objective function for j = j + 1 according to (2.1). Set m = 0,

C
(
i, j
)
=

∣
∣J
(
i, j
)∣∣

∣
∣J
(
i, j
)∣∣ + α

=
1

1 + α/
∣
∣J
(
i, j
)∣∣ , (2.2)

θi(j + 1
)
= θi(j

)
+ C
(
i, j
) Δ(i)
√
ΔT(i)Δ(i)

. (2.3)

Step 5. If J(i, j + 1) < Jlast then Jlast = J(i, j + 1); use the direction of the same random vector
Δ(i) to compute θi(j + 1) and J(i, j + 1). Update m and repeat Step 5 until m > Ns.

Step 6. If j ≤ Nc, go to Step 3.

Step 7. Do minimum sorting of the objective functions J . Define best θ as the solution with
the minimum J . Set S0 = best θ.

Step 8. Generate a neighbourhood around S0 within an initial search radiusR. SetN solutions
as the members of the set S1(r).

Step 9. Evaluate the objective function of each member belonging to S1(r). Define S1 =
best neighbor1 as a solution with the minimum cost, J1.

Step 10. If J1 < J0, store S0 in the TL, assign S0 = S1, otherwise, store S1 in the TL.

Step 11. Invoke the BT when a solution deadlock occurs (the current solution has been
repeated many times as defined by n = 1, 2, . . . ,BT) (Algorithm 1).

Step 12. If the termination criterion based on the J values is met or count > countmax(count =
1, 2, . . . , countmax) exit with the global solution.

Step 13. Invoke the AR when the current solution is relatively close to a local minimum
(Algorithm 2).

Step 14. Updated count. If count ≤ countmax then go to Step 8.

Referring to Step 12, one termination criterion is the maximum number of iterations.
There are other approaches the users may employ, that is, maximum CPU time, maximum
iteration with or without improvement in solution quality, and a solution of sufficient
quality [35]. Another termination criterion is the sufficient solution quality concept, which
is represented by the cost J . The value of the cost J depends on application. For engineering
problems, the cost J can be set from design specifications, component tolerances, and so
forth. The maximum number of iterations (countmax) can be determined from the ratio of
search boundary to search radius of the TS. Some presearch trials are useful to determine an
adjustment to the value of countmax. The above algorithms are general enough for various
optimization problems. Specific alterations for the problem of friction model identification
will be discussed in Section 4.
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BT: if n ≥ BT
n = n + 1
best error = RANK(TL)

look back in the TL, then retrieve the n re backth solution from the TL.
else

n = 0
define S0 = best neighbor

best error = best error
end if

Algorithm 1

AR: if best error < ε1
R = R1 where R < R1.

end
if best error < ε2

R = R2 where R2 < R1 and ε2 < ε1.
end

. . .
if best error < εn

R = Rn where Rn < Rn−1 and εn < εn−1.
end

Algorithm 2

3. Search Performance

This section presents the performance comparison studies among the following algorithms:
adaptive tabu search (ATS), adaptive bacterial foraging optimization (ABFO), bacterial
foraging-tabu search metaheuristics (BTS), and genetic algorithm (GA). Review of the GA
is omitted since the algorithm is well known. Good sources that readers may refer to are [37–
39]. Each of these algorithms performs search on several test functions for 50 trials, and the
results are averaged. Each search trial begins the search with different initial solutions, while
search parameters are kept the same for all trials.

This approach is commonly referred to as multiple-points-single-strategy (MPSS) in
metaheuristic contexts. The test functions adapted are well-known unconstrained problems
for testing optimization algorithms. These include Bohachevsky function (BF), Rastrigin
function (RF), Shekel’s fox-holes function (SF), Schwefel function (SchF), and Shubert
function (ShuF), respectively. Table 1 summarizes these test functions in which Jmin is the
minimum cost required to terminate the search. Search parameter settings for the ATS follow
[23], the for ABFO follow [26], and for the GA followMATLAB-GAToolbox [39]. Tables 2 and
3 summarize the search parameters of the ATS and the ABFO, respectively. These parameters
are adapted for the BTS withNc = 20, in particular.

Table 4 summarizes the average results over 50 trials. There are 2 groups of data
denoted as average search time and average search rounds, respectively. Since the ATS,
ABFO, and GA have different algorithmic approaches, comparisons of their average search
rounds are not meaningful. On the contrary, the ABFO is combined to the ATS in order to
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Table 1: Summary of the unconstrained problems used for performance test.
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Table 2: ATS parameters.

Test
functions N Countmax R BT, n re back

AR

Stage I Stage II Stage III

BF 30 10,000 0.2 5 J < 1 × 10−1, J < 1 × 10−3, —

RF 30 10,000 0.2 5 R = 2 × 10−3 R = 2 × 10−4 —

SF 30 10,000 0.8 5 J < 5, R = 0.5 J < 2, R = 0.1 —

SchF 30 10,000 50 5 J < 100, R = 25 J < 10, R = 10 J < 1, R = 1

ShuF 30 10,000 1.0 5 J < 1, R = 1 × 10−2 J < −1, R = 1 × 10−3 —

Table 3: ABFO parameters.

Test
functions

ABFO parameters

S Nc NS Nre Ned Ped α dattract hrepellant wattract wrepellant

BF 30 20 4 4 2 0.25 10 0.1 0.1 0.2 1

RF 30 200 4 4 2 0.25 100 0.1 0.1 0.2 1

SF 30 500 4 4 2 0.25 0.01 0.1 0.1 0.2 10

SchF 30 2000 4 4 2 0.25 1 0.1 0.1 0.2 10

ShuF 30 1000 4 4 2 0.25 1 0.1 0.1 0.2 10

reduce search rounds and search time. So, it is meaningful to compare the search rounds
consumed by the ATS and the BTS. In average, the proposed BTS consumes search rounds of
63.45% less than the ATS does. Referring to the search time data in Table 4, the BTS spends
search time of 37.15% less than the ATS does, and 68.31% less than the ABFOdoes as averages.
Moreover, the BTS consumes 58.21% less search time than the GA does. In terms of the
number of local entrapment, the BTS encounters the entrapment of 73.43% less than the ATS
does, and produces high-quality solution to the problem. Convergence curves are shown in
Figure 1 for comparison purposes.

Table 5 summarizes the solutions obtained from different methods. It can be noticed
that the ABFO provides solutions with the best quality in an exchange of a considerably long
search time (see Table 4). The proposed BTS provides solutionswith second to the best quality
within the shortest search time (see Table 4). Note that the solutions found by the BTS meet
the criterion of minimum cost. This outstanding performance of the BTS is achieved due to
the explorative characteristic of the ABFO, the exploitative characteristic of the TS, and the
deadlock releasing property of the ATS.

Figure 2 shows a representation of bacteria movements on the search space of the
test functions. Noticeably, large areas of search spaces are explored by the bacteria. In other
words, the BTS can provide a high-quality solution rapidly because the ABFO provides an
elite initial solution to the ATS, and the ATS effectively releases the search from a deadlock or
local entrapment while rapidly focuses the search to the solution.

The BTS has been applied to a constrained parametric search problem, that is, an
identification of the nonlinear friction model. In the next section, experimental setup, and
identification results are presented.
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Table 4: Summary of the results (averaged over 50 trials).

Test
functions

Average search time (seconds) Average search rounds

ATS ABFO BTS GA ATS ABFO (NC) BTS GA

BF 11.66 5.75 6.83 49.12 616.48 20 151.20 1177.18

RF 14.60 48.63 5.81 11.78 868.28 200 323.30 225.54

SF 4.18 146.67 3.69 8.53 139.36 500 25.70 141.28

SchF 408.58 728.87 172.52 868.32 6889.42 2000 1469.14 354.44

ShuF 3.28 182.83 2.80 3.39 68.06 1000 55.28 34.24

Table 5: Solutions obtained from different approaches.

Objective function ATS ABFO BTS GA

BF:

Average 4.5090e−10 1.0833e−10 5.30112e−10 6.0074e−08
Min 7.3184e−11 2.2204e−16 3.569e−12 1.1830e−11
Max 9.4151e−10 8.8759e−10 9.97229e−10 2.9855e−06
Std. 2.7476e−10 2.0742e−10 3.13515e−10 4.2216e−07

RF:

Average 5.3478e−09 1.1534e−10 5.2460e−09 4.9642e−09
Min 2.9051e−10 3.5527e−15 5.9587e−10 1.1486e−10
Max 9.3771e−09 6.7094e−10 9.6620e−09 9.5235e−09
Std. 2.4328e−09 1.4942e−10 2.6721e−09 2.6740e−09

SF:

Average 0.9982 0.9981 0.9983 0.9983

Min 0.9980 0.9980 0.9980 0.9980

Max 0.9989 0.9988 0.9990 0.9990

Std. 0.0002 0.0002 0.0003 0.0003

SchF:

Average 0.0456 0.0139 0.0273 0.0439

Min 0.0006 2.5455e−05 0.0002 0.0008

Max 0.0998 0.0768 0.0944 0.0982

Std. 0.0278 0.0240 0.0341 0.0281

ShuF:

Average −186.7305 −186.7305 −186.7305 −186.7304
Min −186.7309 −186.7309 −186.7309 −186.7309
Max −186.7300 −186.7300 −186.7301 −186.7300
Std. 0.0003 0.0003 0.0003 0.0002

4. Identification Results

4.1. Experimental Setup

A closed loop position control system is a necessary test bed for monitoring stick-slip
phenomenon. The diagram in Figure 3 represents the experimental setup. The linear slide bed
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Figure 1: Convergence curves—(a) BF, (b) RF, (c) SF, (d) SchF, and (e) ShuF.

is the controlled plant consisting of a dc motor, a threaded rod, a reflector, and an ultrasonic
transducer (UC3000-UIE2). The effective moving range of the reflector is 0–400mm with the
home position at the middle. In test mode, the motion control circuit performs an initial test
move of the reflector for the whole range and, eventually, places the reflector at the home
position.

For the reflector to follow a ramp command, a closed loop position control has been
built. The hardware components consist of a PC as a P-controller, a 12-bit ADC, a 2Q-drive



Journal of Applied Mathematics 11

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2
21.510.50−0.5−1−1.5−2

x-axis

y
-a

xi
s

Bacteria movements
on Bohachevsky contour

S = 30
Nc = 20

(a)

2

1.5

1

0.5

0
−0.5

−1

−1.5

−2
21.510.50−0.5−1−1.5−2

x-axis

y
-a

xi
s

Bacteria movements on Rastrigin contour

S = 30
Nc = 20

(b)

Bacteria movements on Shekel foxholes contour
40

30

20

10

0
−10

−20

−30

−40

y
-a

xi
s

403020100−10−20−30−40

x-axis

S = 30
Ne = 20

(c)

500

0

−500
5000−500

y
-a

xi
s

x-axis

Bacteria movements on Schwefel contour

S = 30
Nc = 20

(d)

Bacteria movements on Shubert contour
10

5

0

−5

−10
1050−5−10

S = 30

x-axis

y
-a

xi
s

Nc = 20

(e)

Figure 2: Bacterial search movements—(a) BF, (b) RF, (c) SF, (d) SchF, and (e) ShuF.

circuit, a current sensor, an ultrasonic transducer, a 2nd-order differentiator producing a
speed signal from a position signal, and a few signal conditioning circuits including zero-
span circuits and a bipolar voltage generator, respectively, and a dc power supply. In control
mode, the motion follows an up-down ramp command directing the reflector to move
rightward (positive direction, ramp-up command) and leftward (negative direction, ramp-
down command). The reflector moves in the range of 50–350mm in the control mode. A
desired speed can be set via the keyboard of the PC functioning as a P-controller.
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Figure 3: Circuit diagram representing the experimental setup.
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4.2. Nonlinear Friction Model

When two solid materials translating over one another at very low velocity, a stick-slip
phenomenon occurs. This phenomenon is caused by nonlinear friction characteristics also
known as Stribeck’s effect [40]. An effective model describing the friction can be represented
by the curve in Figure 4, and is referred to as complex friction model or Stribeck model [41–
43]. When an applied force to a mass cannot overcome the static friction, which is represented
by either FS+ or FS− depending on the direction of motion, the mass cannot move.

This situation is referred to as stick mode, and described by the stick-friction force

Fstick(Fin) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fs+, Fin > Fs+

Fin, Fs− ≤ Fin ≤ Fs+

Fs−, Fin < Fs−.

(4.1)

Once the applied force is greater than the static friction, the mass begins moving. After a
certain period of time, the mass keeps up a higher velocity during which it encounters both
Coulomb and viscous frictions. This situation is known as slip mode and described by the
slip-friction force

Fslip(v) =
(
FC + ( FS − FC) · e−(v/vss)

)
· sgn(v) + Fv · v. (4.2)

To cover the whole velocity range, the friction force can be expressed in a compact form as

Ff(v, Fin) =

⎧
⎨

⎩

Fstick(Fin), |v| = 0

Fslip(v), |v|/= 0.
(4.3)
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4.3. Objective Function Implementation

During the search process to identify the friction model parameters, an objective function
(J) has to be evaluated repeatedly. To calculate the objective function, it is assumed that the
translational dynamic can be represented by the mass-spring model as follows:

mẍ = kspring(xi − xd) − Ff(v, Fin) + Fex, (4.4)

in which the parameters FS, FC, FV , vss, and kspring are to be identified. Below is the
procedural list for objective function calculation.

Step 1. Calculate an average displacement xi = (
∑50

j=1 xtest(j))/50.

For ramping-up motion, calculate an approximated force Fmotor = k̂(xi − xd) ≈
3.5(xi − xd).

For ramping-down motion, calculate an approximated force Fmotor = k̂(xi − xd) ≈
2.8(xi − xd).

An approximated force Fmotor = k̂(xi − xd) ≈ 2.8(xi − xd).

Step 2. If (Fmotor ≥ Ffm) then (Ff motor = Ffm).
If (Fmotor ≤ −Ffm) then (Ff motor = −Ffm).
If (−Ffm < Fmotor < Ffm) then (Ff motor = Fmotor).

Step 3. Calculate Fm motor(v) = Kkt (Jm(dv/dt) +Dmv).
If (Fm motor > 30N) then (Fm motor = 30N).
If (Fm motor < −30N) then (Fm motor = −30N).

Step 4. Calculate the following forces:

externally applied force—Fex = Fmotor − Ff motor(Fmotor) − Fm motor(v),

spring force—Fsp = kspring(xi − xd),

internally applied force—Fin = Fex + Fsp,

stick friction force—if (Fin > FS) then (Fstick = FS), if (Fin < −FS) then (Fstick = −FS),
if (−FS ≤ Fin ≤ FS) then (Fstick = Fin), and slip friction force—Fslip(v) = (FC + ( FS −
FC) · e−(v/vss)) · sgn(v) + Fv · v.

Step 5. Calculate velocity and displacement of the mass:
P =

∫
[Fin − Ff(v, Fin)]dt.

If (−dp < P < dp) then (v = 0) otherwise (v = P/m).
xd =

∫
vdt.

Step 6. Calculate the objective function:

J =

√∑n
i=1 (xtest − xd)2

n
. (4.5)

Step 7. Return to main search.
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4.4. Algorithm Implementation

Regarding this identification problem, the mass (m) is known, m = 10.90 kg. There are 5
parameters to be searched, that is, FS, FC, FV , vss, and kspring, respectively. The termination
criterion is either J < 4.5 or countmax = 1, 000. The procedural list below presents the
implemented algorithm for this identification problem.

Step 1. Initialization: search parameters: {p = 5, S = 30, Nc = 20, NS = 4, α = 1 × 103,
dattract = 0.1, wattract = 0.2, hrepellant = 0.1, wrepellant = 0.1, R = 0.15, N = 40, countmax = 1000,
BT = 5 and n re back = 5}, search spaces: {FS = [100–180], FC = [40–80], FV = [0.4–1.0],
vss = [1–7], and kspring = [0.1–1.5]}.

Step 2. Randomly assign real values to the parameters to be searched for S sets. Calculate the
corresponding objective functions. Select the solution set having the best objective function,
and store it in the variable θi.

Step 3. Calculate the objective functions, J(i, j), with Jcc taken into account according to (2.1).
Assign Jlast = J(i, j).

Step 4. Random the value of Δ(i) in [−1, 1]. Use (2.2) to calculate C(i, j). Calculate the next
parameters, θi(j + 1), according to (2.3). Calculate the objective functions J(i, j + 1).

Step 5. Evaluate the objective functions: if (J(i, j + 1) ≤ Jlast) then (Jlast = J(i, j + 1)), otherwise
Jlast remains unchanged. Update J(i, j + 1) by using Δ(i) until iteration count = NS.

Step 6. Repeat Steps 3 to 5 forNc times.

Step 7. Evaluate the objective functions, J. Assign best θ = minimum value of J just found.
Assign the current best solutions as the initial solutions, S0, and their corresponding objective
functions as the initial J0 values.

Step 8. In the neighborhood of S0 with the search radiusR, create randomlyN sets of solutions
and store them in the set S1(r). Calculate the objective functions for all solutions according to
the procedures described in Section 4.3.

Step 9. Based on the objective functions, dominimum sorting for the solutions in S1(r). Assign
best neighbor1 = solutions with minimum objective functions and their objective functions =
J1.

Step 10. If (J1 < J0) then (store S0 in the 2nd–6th columns of TL, and store J0 in the 7th column
of TL), otherwise (store S1 and J1 in the TL).

Step 11 (backtracking mechanism). If the frequency of solution cycling occurrence is equal to
BT, dominimum sorting for the previous solutions stored in the TL, retrieve the 5th backward
solution set, and assign it as the initial solution set for the next search move.

Step 12. If (J < 2 or count = countmax) then (terminate the search, exit and render the best
solutions).
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Figure 5: Identification results of ramp-up command at 5mm/s—(a) convergence curve, (b) displacement,
and (c) force exerted by motor. (Note: positions in the range of 112–295mm).

Step 13 (Adaptive search radius mechanism). If (best error < 15) then (R = 0.0375).
If (best error < 8) then (R = 0.0095).
If (best error < 3) then (R = 0.0025).

Step 14. Go to Step 8 until computing expires.

4.5. Results and Discussions

4.5.1. Identification

Due to the strong nonlinearity in friction force, it is necessary to identify two sets of model
parameters corresponding to rightward and leftward motions. Referring to Figure 5, the
illustrated graphs correspond to the rightwardmotion, that is, ramp-up command of 5mm/s,
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Figure 6: Identification results of ramp-down command at −5mm/s—(a) convergence curve, (b)
displacement, and (c) force exerted by motor. (Note: positions in the range of 325–127mm).

that uses the data in the range of 112–295mm for identification. The convergence curve
in Figure 5(a) indicates that the search terminated by countmax = 1000. The cost of the
returned results is J = 5.3822. The obtained parameters are as follows: {FS = 144.5463N,
FC = 47.8514N, FV = 0.9583Ns/mm, vss = 1.0964mm/s, kspring = 0.96798N/mm}. The
experimental data and the model plots for displacement and force exerted by motor are
illustrated in Figures 5(b) and 5(c), respectively. Good agreement between the experiment
and the model can be observed.

For the leftward motion, that is, ramp-down command of −5mm/s, the graphical
displays of identification results are shown in Figure 6. The data used for identification
are in the range of 325–127mm. As indicated by the convergence curve in Figure 6(a),
the search terminated at the 528th iteration and returned the solutions with the cost J =
4.2114. The obtained parameters are as follows: {FS = −152.2804N, FC = −40.4153N,
FV = −0.9757Ns/mm, vss = −3.21475mm/s, kspring = 0.55384N/mm}. The experimental
data and the model plots in Figures 6(b) and 6(c) show a good agreement.
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Figure 7: Validation results of ramp-up command—(a) displacement (44–112mm), (b) force exerted by
motor (44–112mm), (c) displacement (295–352mm), and (d) force exerted by motor (295–352mm).

4.5.2. Validation

Model validation was conducted for both directions of motion. Figure 7 illustrates the
experimental data and the model plots for the rightward direction covering two ranges, that
is, 44–112mm and 295–352mm. Figures 7(a) and 7(b) display the plots of the displacement
and the force exerted by motor for 44–112mm range. Similarly, the results for 295–352mm
range are shown in Figures 7(c) and 7(d). For the leftward direction covering 352–325mm
and 127–68mm ranges, similar graphical displays are illustrated in Figures 8(a) and 8(b).
Very good agreement among the practical and the theoretical results can be observed.

Furthermore, the friction curves based on model plots are shown against the
experimental data in Figure 9. Very good agreement between the two can be observed.
Therefore, the identifiedmodels are very good representations of the nonlinear friction forces.
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Figure 8: Validation results of ramp-down command—(a) displacement (352–325-mm), (b) force exerted
by motor (352–325mm), (c) displacement (127–68mm), and (d) force exerted by motor (127–68mm).

5. Conclusions

This paper has proposed newmetaheuristics denoted as bacterial foraging-tabu search (BTS),
which are formed from the adaptive bacterial foraging optimization algorithm (ABFO) and
the adaptive tabu search (ATS). The paper has elaborated the search performance assessment
among the ABFO, ATS, GA, and BTS. The proposed BTS algorithms provide superior search
performances as the presentation appears in Section 3. The algorithms have been applied to
identify 5 parameters of the Stribeck friction model. An experimental bed of a closed-loop
position control of a linear slide bed was constructed at the laboratory. The system setup is
described in Section 4. Several test runs of ramp command following control were conducted
for the slide bed to follow ±5mm/s commands such that the slide bed pronouncedly
exhibited stick-slip. The experimental data were split into 2 groups for identification and
validation purposes. Section 4 also elaborates important issues of objective function and
algorithm implementations as well as identification results. As a result of model validation,
very satisfactory model parameters have been identified by the proposed metaheuristics.
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Nomenclature

(A) Algorithms

countmax: Maximum iteration
dattract: Coefficient representing the depth of attractant released
hrepellant: Coefficient representing the height of the repellant effect
n re back: kth backtracking solution retrieved from the TL
p: Number of parameters to be optimized
wattract: Coefficient representing the width of the attractant signal
wrepellant: Coefficient representing the width of the repellant by the cell
AR: Adaptive radius
BT: Frequency of solution cycling
C(i, j): Step size taken in random direction specified by the tumble
J(i, j): Cost value of ith bacterium
N: Number of the neighbourhood
Nc: Number of iterations to be carried out in a chemotactic loop
Ned: Maximum number of elimination and dispersal events
Nre: Number of reproduction loop
NS: Swimming length after which tumbling of bacteria in a chemotactic loop
Ped: Probability with which the elimination and dispersal continues
R: Search radius
S: Number of bacteria in the population
Sr : A half of number of bacteria (S/2)
TL: Tabu list
α: A positive constant
Δ(i): Random vector on [−1, 1]
θi: Position of ith bacterium.



Journal of Applied Mathematics 21

(B) Test Functions

BF: Bohachevsky function
RF: Rastrigin function
SchF: Schwefel function
ShuF: Shubert function
SF: Shekel’s fox-holes function.

(C) Identification Problem

a: Gear ratio = 5.9
i: Motor current (A)
kspring: Gravity constant (N/mm)
l: Ball screw lead = 5mm
m: Mass (kg)
n: Number of data
v: Velocity (mm/s)
vss: Crossover velocity (mm/s)
xi: Displacement of spring (mm)
xd: Displacement of mass (mm)
Dm: Viscous friction coefficient = 2.60 × 10−6 Nm/rad/sec
Fex: External input force (N)
Ff : Friction force (N)
Ff motor: Friction force of motor (N)
Fin: Internal input force (N)
Fm motor: Force equivalent to the inertia of motor (Nm)
Jm: Inertia of motor = 4.17 × 10−6 Kg·m2

Kkt: Inertia to force conversion factor = Kn ×Kv = (2πa/l)2ηbηc
Kn: Linear to angular velocity conversion factor = 2πa/l (rad/m)
Kt: Torque constant of motor = 18.2 × 10−3 N/A
Kv: Torque to ball screw force conversion factor = 2πηbηca/l
FC: Coulomb friction (N)
FS: Static friction (N)
FV : Viscous friction (Ns/mm)
P : Moment (Nm)
Xtest: Displacement from measured (mm)
±dv: Velocity band around zero velocity = ±0.1mm/s
±dp: Notation for the term ±dv ×m
ηb: Gear box efficiency = 0.81
ηc: Ball screw efficiency = 0.925
k̂: Proportional controller gain.
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