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Some new perturbation bounds for both weighted unitary polar factors and generalized
nonnegative polar factors of the weighted polar decompositions are presented without the
restriction that A and its perturbed matrix ˜A have the same rank. These bounds improve the
corresponding recent results.

1. Introduction

Let Cm×n, Cm×n
r , Cm

≥ , C
m
> , and In denote the set of m × n complex matrices, subset of Cm×n

consisting of matrices with rank r, set of the Hermitian nonnegative definite matrices
of order m, subset of Cm

≥ consisting of positive-definite matrices and n × n unit matrix,
respectively. Without specification, we always assume that m > n >max{r, s} and the given
weight matrices M ∈ Cm

> ,N ∈ Cn
>. For A ∈ Cm×n, we denote by R(A), r(A), A∗, A#

MN =
N−1A∗M,A†

MN, ‖A‖ and ‖A‖F the column space, rank, conjugate transpose, weighted
conjugate transpose (or adjoint), weighted Moore-Penrose inverse, unitarily invariant norm,
and Frobenius norm of A, respectively. The definitions of A#

MN and A†
MN can be found in

details in [1, 2]. The weighted polar decomposition (MN-WPD) of A ∈ Cm×n is given by

A = QH, (1.1)

where Q is an (M,N) weighted partial isometric matrix [3, 4] and H satisfies NH ∈ Cn
≥.

In this case, Q and H are called the (M,N) weighted unitary polar factor and generalized
nonnegative polar factor, respectively, of this decomposition.
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Yang and Li [5] proved that the MN-WPD is unique under the condition

R
(

Q#
MN

)

= R(H). (1.2)

In this paper, we always assume that the MN-WPD satisfies condition (1.2).
If M = Im and N = In, then the MN-WPD is reduced to the generalized polar

decomposition and Q and H are reduced to the subunitary polar factor and nonnegative
polar factor, respectively. Further, if r(A) = n, then the MN-WPD is just the polar
decomposition and Q and H are just the unitary polar factor and positive polar factor.

The problem on estimating the perturbation bounds for both polar decomposition and
generalized polar decomposition under the assumption that the matrix and its perturbed
matrix have the same rank [6–15] attracted most attention, and only some attention was
given without the restriction [16, 17]. However, the arbitrary perturbation case seems
important in both theoretical and practical problems. Now we list some published bounds
for (generalized) polar decomposition without the restriction that A and ˜A have the same
rank.

Let A ∈ Cm×n
r , ˜A = A + E ∈ Cm×n

s have the (generalized) polar decompositions A =
QH and ˜A = ˜Q˜H. For the perturbation bound of the (subunitary) unitary polar factors, the
following two results can be found in [16]

∥

∥

∥

˜Q −Q
∥

∥

∥

F
≤ 1

min{σr, σ̃s}‖E‖F, (1.3)

∥

∥

∥

˜Q −Q
∥

∥

∥

F
≤

√
2
2

√

‖A†E‖2F + ‖EA†‖2F +
∥

∥

∥

˜A†E
∥

∥

∥

2

F
+
∥

∥

∥E ˜A†
∥

∥

∥

2

F
. (1.4)

For the nonnegative polar factors, the perturbation bounds obtained by Chen [17] are

∥

∥

∥

˜H −H
∥

∥

∥ ≤
(

σ1 + σ̃1

σr + σ̃s
+ 2
)

‖E‖, (1.5)

∥

∥

∥

˜H −H
∥

∥

∥ ≤ σ1σ̃1

σ1 + σ̃1

(∥

∥

∥EA†
∥

∥

∥ +
∥

∥

∥E ˜A†
∥

∥

∥

)

+ σ1

∥

∥

∥A†E
∥

∥

∥ + σ̃1

∥

∥

∥

˜A†E
∥

∥

∥. (1.6)

It is known that different elements of a vector are usually needed to be given some
different weights in practice (e.g., the residual of the linear system), and the problems with
weights, such as weighted generalized inverses problem and weighted least square problem,
draw more and more attention, see, for example, [1, 2, 18, 19]. As a generalization of the
(generalized) polar decomposition, MN-WPD may be useful for these problems. Therefore,
it is of interest to study MN-WPD and its related properties.

Our goal of this paper is mainly to generalize the perturbation bounds in (1.3)–(1.6) to
those for the weighted polar factors of the MN-WPDs in the corresponding weighted norms.
The rest of this paper is organized as follows.

In Section 2, we list notation and some lemmas which are useful in the sequel. In
Section 3, we present an absolute perturbation bound and a relative perturbation bound
for the weighted unitary polar factors, respectively, and some perturbation bounds for the
generalized nonnegative polar factors are also given in Section 4.
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2. Notation and Some Lemmas

Firstly, we introduce the definitions of the weighted norms.

Definition 2.1. Let A ∈ Cm×n. The norms ‖A‖(MN) = ‖M1/2AN−1/2‖ and ‖A‖F(MN) =
‖M1/2AN−1/2‖F are called the weighted unitarily invariant norm and weighted Frobenius
norm of A, respectively. The definitions of ‖A‖(MN) and ‖A‖F(MN) can be also found in
[20, 21].

Let A ∈ Cm×n
r and ˜A ∈ Cm×n

s have their weighted singular value decompositions (MN-
SVDs):

A = UΣV ∗ = (U1, U2)
(

Σ1 0
0 0

)

(V1, V2)∗ = U1Σ1V
∗
1 , (2.1)

˜A = ˜U˜Σ ˜V ∗ =
(

˜U1, ˜U2

)

(

˜Σ1 0
0 0

)

(

˜V1, ˜V2

)∗
= ˜U1 ˜Σ1 ˜V

∗
1 . (2.2)

Then the MN-WPDs of A = QH and ˜A = ˜Q˜H can be obtained by

Q = U1V
∗
1 , H = N−1V1Σ1V

∗
1 ,

˜Q = ˜U1 ˜V
∗
1 ,

˜H = N−1
˜V1 ˜Σ1 ˜V

∗
1 ,

(2.3)

where U = (U1, U2), ˜U = ( ˜U1, ˜U2) ∈ Cm×m and V = (V1, V2), ˜V = ( ˜V1, ˜V2) ∈ Cn×n satisfy
U∗MU = ˜U∗M ˜U = Im and V ∗N−1V = ˜V ∗N−1

˜V = In, and U1 ∈ Cm×r
r , ˜U1 ∈ Cm×s

s , V1 ∈
Cn×r

r , ˜V1 ∈ Cn×s
s , Σ1 = diag(σ1, σ2, . . . , σr) and ˜Σ1 = diag(σ̃1, σ̃2, . . . , σ̃s). Here σ1 ≥ σ2 ≥ · · · ≥

σr > 0 and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃s > 0 are the nonzero (M,N) weighted singular values of A and
˜A, respectively.

The following three lemmas can be found from [22], [23] and [16], respectively.

Lemma 2.2. Let B1 and B2 be two Hermitian matrices and let P be a complex matrix. Suppose that
there are two disjoint intervals separated by a gap of width at least η, where one interval contains the
spectrum of B1 and the other contains that of B2. If η > 0, then there exists a unique solution X to the
matrix equation B1X −XB2 = P and, moreover,

‖X‖ ≤ 1
η
‖P‖. (2.4)

Lemma 2.3. Let Ω ∈ Cs×s and Γ ∈ Ct×t be two Hermitian matrices, and let E, F ∈ Cs×t. If λ(Ω) ∩
λ(Γ) = ∅, then ΩX −XΓ = ΩE + FΓ has a unique solution X ∈ Cs×t, and, moreover,

‖X‖F ≤ 1
η

√

‖E‖2F + ‖F‖2F, (2.5)

where η = minλ∈λ(Ω), ˜λ∈λ(Γ)(|λ − ˜λ|/
√

|˜λ|2 + |λ|2).
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Lemma 2.4. Let S = (S1, S2) ∈ Cm×m and T = (T1, T2) ∈ Cn×n be both unitary matrices, where
S1 ∈ Cm×r , T1 ∈ Cn×s. Then for any matrix B ∈ Cm×n, one has

‖B‖2F =
∥

∥S∗
1BT1

∥

∥

2
F +

∥

∥S∗
1BT2

∥

∥

2
F +

∥

∥S∗
2BT2

∥

∥

2
F +

∥

∥S∗
2BT2

∥

∥

2
F. (2.6)

3. Perturbation Bounds for the Weighted Unitary Polar Factors

In this section, we present an absolute perturbation bound and a relative perturbation bound
for the weighted unitary polar factors.

Theorem 3.1. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜Q −Q
∥

∥

∥

F(MN)
≤ 1

min{σr, σ̃s}‖E‖F(MN). (3.1)

Proof. By (2.1), and (2.2) the perturbation E can be written as

E = ˜A −A = ˜U1 ˜Σ1 ˜V
∗
1 −U1Σ1V

∗
1 , (3.2)

which together with the facts that U∗
1MU1 = V ∗

1N
−1V1 = Ir and ˜U∗

1M
˜U1 = ˜V ∗

1N
−1
˜V1 = Is

gives

U∗
1MEN−1

˜V1 = U∗
1M

˜U1 ˜Σ1 − Σ1V
∗
1N

−1
˜V1, (3.3)

˜U∗
1MEN−1V1 = ˜Σ1 ˜V

∗
1N

−1V1 − ˜U∗
1MU1Σ1, (3.4)

˜U∗
2MEN−1V1 = − ˜U∗

2MU1Σ1, U∗
2MEN−1

˜V1 = U∗
2M

˜U1 ˜Σ1, (3.5)

˜U∗
1MEN−1V2 = ˜Σ1 ˜V

∗
1N

−1V2, U∗
1MEN−1

˜V2 = −Σ1V
∗
1N

−1
˜V2. (3.6)

Taking the conjugate transpose on both sides of (3.4) and subtracting it from (3.3) leads to

Σ1

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

+
(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

˜Σ1 = U∗
1MEN−1

˜V1 − V ∗
1N

−1E∗M ˜U1.

(3.7)

Applying Lemma 2.2 to (3.7) for the Frobenius norm leads to

∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

F
≤ 1

σr + σ̃s

(∥

∥

∥U∗
1MEN−1

˜V1

∥

∥

∥

F
+
∥

∥

∥V ∗
1N

−1E∗M ˜U1

∥

∥

∥

F

)

. (3.8)
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Since

U∗M
(

˜Q −Q
)

N−1
˜V =

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1 −V ∗

1N
−1
˜V2

U∗
2M

˜U1 0

)

,

˜U∗M
(

˜Q −Q
)

N−1V =

(

˜V ∗
1N

−1V1 − ˜U∗
1MU1 ˜V ∗

1N
−1V2

− ˜U∗
2MU1 0

)

,

(3.9)

it follows from Definition 2.1 and the fact that U∗M1/2, ˜U∗M1/2, N−1/2V , and N−1/2
˜V are all

unitary matrices that

∥

∥

∥

˜Q −Q
∥

∥

∥

2

F(MN)
=
∥

∥

∥U∗M
(

˜Q −Q
)

N−1
˜V
∥

∥

∥

2

F

=
∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

2

F
+
∥

∥

∥V ∗
1N

−1
˜V2

∥

∥

∥

2

F
+
∥

∥

∥U∗
2M

˜U1

∥

∥

∥

2

F
,

(3.10)

∥

∥

∥

˜Q −Q
∥

∥

∥

2

F(MN)
=
∥

∥

∥

˜U∗M
(

˜Q −Q
)

N−1V
∥

∥

∥

2

F

=
∥

∥

∥

˜V ∗
1N

−1V1 − ˜U∗
1MU1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1N

−1V2

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MU1

∥

∥

∥

2

F
.

(3.11)

Adding (3.10) to (3.11) gives

2
∥

∥

∥

˜Q −Q
∥

∥

∥

2

F(MN)
=
∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

2

F
+
∥

∥

∥V ∗
1N

−1
˜V2

∥

∥

∥

2

F
+
∥

∥

∥U∗
2M

˜U1

∥

∥

∥

2

F

+
∥

∥

∥

˜V ∗
1N

−1V1 − ˜U∗
1MU1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1N

−1V2

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MU1

∥

∥

∥

2

F

= 2
∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

2

F
+
∥

∥

∥V ∗
1N

−1
˜V2

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1N

−1V2

∥

∥

∥

2

F

+
∥

∥

∥U∗
2M

˜U1

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MU1

∥

∥

∥

2

F
.

(3.12)

Combing (3.5), (3.6), (3.8), (3.12), Lemma 2.4, and the fact that ‖U∗
1M

˜U1 − V ∗
1N

−1
˜V1‖

2

F
=

‖ ˜V ∗
1N

−1V1 − ˜U∗
1MU1‖

2

F
gets

2
∥

∥

∥

˜Q −Q
∥

∥

∥

2

F(MN)
≤ 2
(

1
σr + σ̃s

)2(∥
∥

∥U∗
1MEN−1

˜V1

∥

∥

∥

F
+
∥

∥

∥V ∗
1N

−1E∗M ˜U1

∥

∥

∥

F

)2

+
1
σ2
r

∥

∥

∥U∗
1MEN−1

˜V2

∥

∥

∥

2

F
+

1
σ̃2
s

∥

∥

∥U∗
2MEN−1

˜V1

∥

∥

∥

2

F

+
1
σ̃2
s

∥

∥

∥

˜U∗
1MEN−1V2

∥

∥

∥

2

F
+

1
σ2
r

∥

∥

∥

˜U∗
2MEN−1V1

∥

∥

∥

2

F

≤
(

2
σr + σ̃s

)2(∥
∥

∥U∗
1MEN−1

˜V1

∥

∥

∥

2

F
+
∥

∥

∥V ∗
1N

−1E∗M ˜U1

∥

∥

∥

2

F

)
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+
1

min
{

σ2
r , σ̃

2
s

}

(

∥

∥

∥U∗
1MEN−1

˜V2

∥

∥

∥

2

F
+
∥

∥

∥U∗
2MEN−1

˜V1

∥

∥

∥

2

F

+
∥

∥

∥

˜U∗
1MEN−1V2

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MEN−1V1

∥

∥

∥

2

F

)

≤ 1
min

{

σ2
r , σ̃

2
s

}

((

∥

∥

∥U∗
1MEN−1

˜V1

∥

∥

∥

2

F
+
∥

∥

∥U∗
1MEN−1

˜V2

∥

∥

∥

2

F

+
∥

∥

∥U∗
2MEN−1

˜V1

∥

∥

∥

2

F

)

+
(

∥

∥

∥

˜U∗
1MEN−1V1

∥

∥

∥

2

F

+
∥

∥

∥

˜U∗
1MEN−1V2

∥

∥

∥

2

F

+
∥

∥

∥

˜U∗
2MEN−1V1

∥

∥

∥

2

F

))

≤ 2
min

{

σ2
r , σ̃

2
s

}

∥

∥

∥M1/2EN−1/2
∥

∥

∥

2

F
=

2
min

{

σ2
r , σ̃

2
s

}‖E‖2F(MN),

(3.13)

which proves the theorem.

Remark 3.2. IfM = Im and N = In in Theorem 3.1, the bound (3.1) is reduced to bound (1.3).

Theorem 3.3. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜Q −Q
∥

∥

∥

F(MN)
≤

√
2
2

√

∥

∥

∥

˜A†
MNE

∥

∥

∥

2

F(NN)
+
∥

∥

∥A
†
MNE

∥

∥

∥

2

F(NN)
+
∥

∥

∥EA
†
MN

∥

∥

∥

2

F(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

2

F(MM)
.

(3.14)

Proof. From the MN-SVDs ofA and ˜A in (2.1) and (2.2) and the facts thatU∗MU = ˜U∗M ˜U =
Im and V ∗N−1V = ˜V ∗N−1

˜V = In, the weighted Moore-Penrose inverses of A and ˜A can be
written as

A†
MN = N−1V1Σ−1

1 U∗
1M, ˜A†

MN = N−1
˜V1 ˜Σ−1

1
˜U∗
1M. (3.15)

Premultiplying the equation ˜A −A = E by A†
MN leads to

A†
MN

˜A −A†
MNA = A†

MNE, (3.16)

that is,

N−1V1Σ−1
1 U∗

1M
˜U1 ˜Σ1 ˜V

∗
1 −N−1V1V

∗
1 = A†

MNE. (3.17)
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By (3.17), we can obtain

U∗
1M

˜U1 ˜Σ1 − Σ1V
∗
1N

−1
˜V1 = Σ1V

∗
1A

†
MNEN−1

˜V1, −V ∗
1N

−1
˜V2 = V ∗

1A
†
MNEN−1

˜V2. (3.18)

Similarly, by ˜A†
MN

˜A − ˜A†
MNA = ˜A†

MNE, ˜AA†
MN − AA†

MN = EA†
MN and ˜A ˜A†

MN − A ˜A†
MN =

E ˜A†
MN , we get

˜Σ1 ˜V
∗
1N

−1V1 − ˜U∗
1MU1Σ1 = ˜Σ1 ˜V

∗
1
˜A†
MNEN−1V1, ˜V ∗

1N
−1V2 = ˜V ∗

1
˜A†
MNEN−1V2, (3.19)

˜Σ1 ˜V
∗
1N

−1V1 − ˜U∗
1MU1Σ1 = ˜U∗

1MEA†
MNU1Σ1, − ˜U∗

2MU1 = ˜U∗
2MEA†

MNU1, (3.20)

U∗
1M

˜U1 ˜Σ1 − Σ1V
∗
1N

−1
˜V1 = U∗

1ME ˜A†
MN

˜U1 ˜Σ1, U∗
2M

˜U1 = U∗
2ME ˜A†

MN
˜U1, (3.21)

respectively. By the first equations in (3.18)–(3.21), we derive

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

˜Σ1 + Σ1

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

= Σ1V
∗
1A

†
MNEN−1

˜V1 −
(

˜V ∗
1
˜A†
MNEN−1V1

)∗
˜Σ1,

(3.22)

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

˜Σ1 + Σ1

(

U∗
1M

˜U1 − V ∗
1N

−1
˜V1

)

= U∗
1ME ˜A†

MN
˜U1 ˜Σ1 − Σ1

(

˜U∗
1MEA†

MNU1

)∗
.

(3.23)

Applying Lemma 2.3 to (3.22) and (3.23), respectively, and noting that

η = min
1≤i≤s,1≤j≤r

σ̃i + σj
√

σ̃2
i + σ2

j

≥ 1, (3.24)

we find that

∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

2

F
≤
∥

∥

∥V ∗
1A

†
MNEN−1

˜V1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1
˜A†
MNEN−1V1

∥

∥

∥

2

F
, (3.25)

∥

∥

∥U∗
1M

˜U1 − V ∗
1N

−1
˜V1

∥

∥

∥

2

F
≤
∥

∥

∥U∗
1ME ˜A†

MN
˜U1

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
1MEA†

MNU1

∥

∥

∥

2

F
. (3.26)
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From (3.12), the second equations in (3.18)–(3.21), (3.25), (3.26), and Lemma 2.4, we deduce
that

2
∥

∥

∥

˜Q −Q
∥

∥

∥

2

F(MN)
≤
∥

∥

∥V ∗
1A

†
MNEN−1

˜V1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1
˜A†
MNEN−1V1

∥

∥

∥

2

F

+
∥

∥

∥U∗
1ME ˜A†

MN
˜U1

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
1MEA†

MNU1

∥

∥

∥

2

F

+
∥

∥

∥V ∗
1A

†
MNEN−1

˜V2

∥

∥

∥

2

F
+
∥

∥

∥U∗
2ME ˜A†

MN
˜U1

∥

∥

∥

2

F

+
∥

∥

∥

˜V ∗
1
˜A†
MNEN−1V2

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MEA†

MNU1

∥

∥

∥

2

F

=
(

∥

∥

∥V ∗
1A

†
MNEN−1

˜V1

∥

∥

∥

2

F
+
∥

∥

∥V ∗
1A

†
MNEN−1

˜V2

∥

∥

∥

2

F

)

+
(

∥

∥

∥

˜V ∗
1
˜A†
MNEN−1V1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1
˜A†
MNEN−1V2

∥

∥

∥

2

F

)

+
(

∥

∥

∥U∗
1ME ˜A†

MN
˜U1

∥

∥

∥

2

F
+
∥

∥

∥U∗
2ME ˜A†

MN
˜U1

∥

∥

∥

2

F

)

+
(

∥

∥

∥

˜U∗
1MEA†

MNU1

∥

∥

∥

2

F
+
∥

∥

∥

˜U∗
2MEA†

MNU1

∥

∥

∥

2

F

)

≤
∥

∥

∥N1/2A†
MNEN−1/2

∥

∥

∥

2

F
+
∥

∥

∥N1/2
˜A†
MNEN

−1/2
∥

∥

∥

2

F

+
∥

∥

∥M1/2E ˜A†
MNM−1/2

∥

∥

∥

2

F
+
∥

∥

∥M1/2EA†
MNM−1/2

∥

∥

∥

2

F

=
∥

∥

∥A
†
MNE

∥

∥

∥

2

F(NN)
+
∥

∥

∥

˜A†
MNE

∥

∥

∥

2

F(NN)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

2

F(MM)

+
∥

∥

∥EA
†
MN

∥

∥

∥

2

F(MM)
,

(3.27)

which proves the theorem.

Remark 3.4. IfM = Im andN = In in Theorem 3.3, the bound (3.14) is reduced to bound (1.4).

4. Perturbation Bounds for the Generalized Nonnegative Polar Factors

In this section, two absolute perturbation bounds and a relative perturbation bound for the
generalized nonnegative polar factors are given.

Theorem 4.1. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤
(

σ1 + σ̃1

σr + σ̃s
+ 2
)

‖E‖(MN). (4.1)

Proof. By (2.1), (2.2), and (2.3), we have

NH2 = A∗MA, N˜H2 = ˜A∗M ˜A, (4.2)
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which give

N˜H
(

˜H −H
)

+N
(

˜H −H
)

H = ˜A∗M
(

˜A −A
)

+
(

˜A −A
)∗
MA. (4.3)

Let ΔH = ˜H −H, we rewrite (4.3)

N˜HΔH +NΔHH = ˜A∗ME + E∗MA, (4.4)

that is,

˜V1 ˜Σ1 ˜V
∗
1ΔH +NΔHN−1V1Σ1V

∗
1 = ˜V1 ˜Σ1 ˜U

∗
1ME + E∗MU1Σ1V

∗
1 . (4.5)

Premultiplying and postmultiplying both sides of (4.5) by, respectively, ˜V ∗
1N

−1 and N−1V1

give

˜Σ1 ˜V
∗
1ΔHN−1V1 + ˜V ∗

1ΔHN−1V1Σ1 = ˜Σ1 ˜U
∗
1MEN−1V1 + ˜V ∗

1N
−1E∗MU1Σ1. (4.6)

Similarly, we have

˜V ∗
1ΔHN−1V2 = ˜U∗

1MEN−1V2, ˜V ∗
2ΔHN−1V1 = ˜V ∗

2N
−1E∗MU1. (4.7)

Applying Lemma 2.2 to (4.6) gives

∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥ ≤ 1
σr + σ̃s

∥

∥

∥

˜Σ1 ˜U
∗
1MEN−1V1 + ˜V ∗

1N
−1E∗MU1Σ1

∥

∥

∥

≤ σ̃1

σr + σ̃s

∥

∥

∥

˜U∗
1MEN−1V1

∥

∥

∥ +
σ1

σr + σ̃s

∥

∥

∥

˜V ∗
1N

−1E∗MU1

∥

∥

∥

≤ σ̃1

σr + σ̃s
‖E‖(MN) +

σ1

σr + σ̃s
‖E‖(MN)

=
σ̃1 + σ1

σr + σ̃s
‖E‖(MN).

(4.8)

Notice that

˜V ∗ΔHN−1V =

(

˜V ∗
1ΔHN−1V1 ˜V ∗

1ΔHN−1V2
˜V ∗
2ΔHN−1V1 0

)

. (4.9)
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Combining (4.7)–(4.9) gives

‖ΔH‖(NN) =
∥

∥

∥

˜V ∗ΔHN−1V
∥

∥

∥

≤
∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥ +
∥

∥

∥

˜V ∗
1ΔHN−1V2

∥

∥

∥ +
∥

∥

∥

˜V ∗
2ΔHN−1V1

∥

∥

∥

≤ σ̃1 + σ1

σr + σ̃s
‖E‖(MN) +

∥

∥

∥

˜U∗
1MEN−1V2

∥

∥

∥ +
∥

∥

∥

˜V ∗
2N

−1E∗MU1

∥

∥

∥

≤ σ̃1 + σ1

σr + σ̃s
‖E‖(MN) + ‖E‖(MN) + ‖E‖(MN)

=
(

σ̃1 + σ1

σr + σ̃s
+ 2
)

‖E‖(MN),

(4.10)

which proves the theorem.

Remark 4.2. IfM = Im and N = In in Theorem 4.1, the bound (4.1) is reduced to bound (1.5).

If r = n, s < n or s = n, r < n or r = s = n, we can easily derive the following three
corollaries.

Corollary 4.3. Let A ∈ Cm×n
n and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤
(

σ1 + σ̃1

σn + σ̃s
+ 1
)

‖E‖(MN). (4.11)

Corollary 4.4. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

n , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤
(

σ1 + σ̃1

σr + σ̃n
+ 1
)

‖E‖(MN). (4.12)

Corollary 4.5. Let A, ˜A = A + E ∈ Cm×n
n , and let A = QH and ˜A = ˜Q˜H be their MN-WPDs of A

and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤ σ1 + σ̃1

σn + σ̃n
‖E‖(MN). (4.13)

If we take the weighted Frobenius norm as the specific weighted unitarily invariant
norm in Theorem 4.1, an alternative absolute perturbation bound can be derived as follows.

Theorem 4.6. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

F(NN)
≤

⎛

⎜

⎝2 +
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

s

σ1 + σ̃s
,

√

σ2
r + σ̃2

1

σr + σ̃1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠‖E‖F(MN). (4.14)
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Proof. Applying Lemma 2.3 to (4.6) gives

∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥

2

F
≤ max

1≤i≤r
1≤j≤s

σ2
i + σ̃2

j
(

σi + σ̃j

)2

(

∥

∥

∥

˜U∗
1MEN−1V1

∥

∥

∥

2

F
+
∥

∥

∥

˜V ∗
1N

−1E∗MU1

∥

∥

∥

2

F

)

≤ 2max
1≤i≤r
1≤j≤s

σ2
i + σ̃2

j
(

σi + σ̃j

)2 ‖E‖
2
F(MN).

(4.15)

From [16], we know

max
1≤i≤r
1≤j≤s

σ̃2
i + σ̃2

j
(

σi + σ̃j

)2
= max

{

σ2
1 + σ̃2

s

(σ1 + σ̃s)
2
,

σ2
r + σ̃2

1

(σr + σ̃1)
2

}

, (4.16)

which together with (4.7), (4.9), and (4.15) gives

‖ΔH‖F(NN) =
∥

∥

∥

˜V ∗ΔHN−1V
∥

∥

∥

F

≤
∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥

F
+
∥

∥

∥

˜V ∗
1ΔHN−1V2

∥

∥

∥

F
+
∥

∥

∥

˜V ∗
2ΔHN−1V1

∥

∥

∥

F

≤
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

s

σ1 + σ̃s
,

√

σ2
r + σ̃2

1

σr + σ̃1

⎫

⎪

⎬

⎪

⎭

‖E‖F(MN)

+
∥

∥

∥

˜U∗
1MEN−1V2

∥

∥

∥

F
+
∥

∥

∥

˜V ∗
2N

−1E∗MU1

∥

∥

∥

F

≤
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

s

σ1 + σ̃s
,

√

σ2
r + σ̃2

1

σr + σ̃1

⎫

⎪

⎬

⎪

⎭

‖E‖F(MN) + ‖E‖F(MN) + ‖E‖F(MN)

=

⎛

⎜

⎝

√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

s

σ1 + σ̃s
,

√

σ2
r + σ̃2

1

σr + σ̃1

⎫

⎪

⎬

⎪

⎭

+ 2

⎞

⎟

⎠‖E‖F(MN).

(4.17)

Hence, we complete the theorem.

Similarly, we can obtain the following three corollaries.

Corollary 4.7. Let A ∈ Cm×n
n and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

F(NN)
≤

⎛

⎜

⎝1 +
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

s

σ1 + σ̃s
,

√

σ2
n + σ̃2

1

σn + σ̃1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠‖E‖F(MN). (4.18)
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Corollary 4.8. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

n , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

F(NN)
≤

⎛

⎜

⎝1 +
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

n

σ1 + σ̃n
,

√

σ2
r + σ̃2

1

σr + σ̃1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎠‖E‖F(MN). (4.19)

Corollary 4.9. Let A, ˜A = A + E ∈ Cm×n
n , and let A = QH and ˜A = ˜Q˜H be their MN-WPDs of A

and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

F(NN)
≤
√
2max

⎧

⎪

⎨

⎪

⎩

√

σ2
1 + σ̃2

n

σ1 + σ̃n
,

√

σ2
n + σ̃2

1

σn + σ̃1

⎫

⎪

⎬

⎪

⎭

‖E‖F(MN). (4.20)

The relative perturbation bound for the generalized nonnegative polar factors is given
in the following theorem.

Theorem 4.10. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

+ σ1

∥

∥

∥A
†
MNE

∥

∥

∥

(NN)
+ σ̃1

∥

∥

∥

˜A†
MNE

∥

∥

∥

(NN)
.

(4.21)

Proof. From the proof of Theorem 3.3, we know that

A†
MN = N−1V1Σ−1

1 U∗
1M, ˜A†

MN = N−1
˜V1 ˜Σ−1

1
˜U∗
1M. (4.22)

Premultiplying and postmultiplying both sides of (4.5) by, respectively, ( ˜A†
MN)∗ and A†

MN

give

M ˜U1 ˜V
∗
1ΔHN−1V1Σ−1

1 U∗
1M +M ˜U1 ˜Σ−1

1
˜V ∗
1ΔHN−1V1U

∗
1M

= M ˜U1 ˜U
∗
1MEN−1V1Σ−1

1 U∗
1M +M ˜U1 ˜Σ−1

1
˜V ∗
1N

−1E∗MU1U
∗
1M

= M ˜U1 ˜U
∗
1MEA†

MN +
(

E ˜A†
MN

)∗
MU1U

∗
1M.

(4.23)

Premultiplying and postmultiplying both sides of (4.23) by, respectively, ˜U∗
1 and U1 give

˜V ∗
1ΔHN−1V1Σ−1

1 + ˜Σ−1
1
˜V ∗
1ΔHN−1V1 = ˜U∗

1MEA†
MNU1 + ˜U∗

1

(

E ˜A†
MN

)∗
MU1, (4.24)
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which together with Lemma 2.2 gives

∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥ ≤ σ1σ̃1

σ1 + σ̃1

(∥

∥

∥

˜U∗
1MEA†

MNU1

∥

∥

∥ +
∥

∥

∥

˜U∗
1

(

E ˜A†
MN

)∗
MU1

∥

∥

∥

)

≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

.

(4.25)

By (4.7) and the facts that AA†
MN = U1U

∗
1M and ˜A ˜A†

MN = ˜U1 ˜U
∗
1M, we have

˜V ∗
1ΔHN−1V2 = ˜U∗

1MEN−1V2 = ˜U∗
1M

˜U1 ˜U
∗
1MEN−1V2

= ˜U∗
1M

˜A ˜A†
MNEN−1V2 = ˜Σ1 ˜V

∗
1
˜A†
MNEN−1V2,

˜V ∗
2ΔHN−1V1 = ˜V ∗

2N
−1E∗MU1 = ˜V ∗

2N
−1E∗MU1U

∗
1MU1

= ˜V ∗
2N

−1
(

A†
MNE

)∗
A∗MU1 = ˜V ∗

2N
−1
(

A†
MNE

)∗
V1Σ1.

(4.26)

It follows from (4.9), (4.25) and (4.26) that

‖ΔH‖(NN) =
∥

∥

∥N1/2ΔHN−1/2
∥

∥

∥ =
∥

∥

∥

˜V ∗ΔHN−1V
∥

∥

∥

≤
∥

∥

∥

˜V ∗
1ΔHN−1V1

∥

∥

∥ +
∥

∥

∥

˜V ∗
1ΔHN−1V2

∥

∥

∥ +
∥

∥

∥

˜V ∗
2ΔHN−1V1

∥

∥

∥

≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

+
∥

∥

∥

˜Σ1 ˜V
∗
1
˜A†
MNEN−1V2

∥

∥

∥ +
∥

∥

∥

˜V ∗
2N

−1
(

A†
MNE

)∗
V1Σ1

∥

∥

∥

≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

+ σ̃1

∥

∥

∥

˜A†
MNE

∥

∥

∥

(NN)
+ σ1

∥

∥

∥A
†
MNE

∥

∥

∥

(NN)
,

(4.27)

which proves the theorem.

Remark 4.11. If M = Im and N = In in Theorem 4.10, the bound (4.21) is reduced to bound
(1.6).

The following three corollaries can be also easily obtained.

Corollary 4.12. Let A ∈ Cm×n
n and ˜A = A + E ∈ Cm×n

s , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

+ σ1

∥

∥

∥A
†
MNE

∥

∥

∥

(NN)
. (4.28)

Corollary 4.13. Let A ∈ Cm×n
r and ˜A = A + E ∈ Cm×n

n , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

+ σ̃1

∥

∥

∥

˜A†
MNE

∥

∥

∥

(NN)
. (4.29)
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Corollary 4.14. Let A ∈ Cm×n
n and ˜A = A + E ∈ Cm×n

n , and let A = QH and ˜A = ˜Q˜H be their
MN-WPDs of A and ˜A, respectively. Then

∥

∥

∥

˜H −H
∥

∥

∥

(NN)
≤ σ1σ̃1

σ1 + σ̃1

(

∥

∥

∥EA
†
MN

∥

∥

∥

(MM)
+
∥

∥

∥E ˜A
†
MN

∥

∥

∥

(MM)

)

. (4.30)

5. Conclusion

In this paper, we obtain the relative and absolute perturbation bounds for the weighted
polar decomposition without the restriction that the original matrix and its perturbed matrix
have the same rank. These bounds are the corresponding generalizations of those for the
(generalized) polar decomposition.
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