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This paper considers the problem of controlling the solution of an initial boundary-value problem
for a wave equation with time-dependent sound speed. The control problem is to determine the
optimal sound speed function which damps the vibration of the system by minimizing a given
energy performance measure. The minimization of the energy performance measure over sound
speed is subjected to the equation of motion of the system with imposed initial and boundary
conditions. Using the modal space technique, the optimal control of distributed parameter systems
is simplified into the optimal control of bilinear time-invariant lumped-parameter systems. A
wavelet-based method for evaluating the modal optimal control and trajectory of the bilinear
system is proposed. The method employs finite CAS wavelets to approximate modal control and
state variables. Numerical examples are presented to demonstrate the effectiveness of the method
in reducing the energy of the system.
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1. Introduction

Dynamic stability related to parametric resonance is a very important factor in structural
dynamics. For example, instability caused by parametric resonance is believed to be the
reason for the famous Tacoma bridge collapse in 1940 [1]. A suitable control of the coefficients
may provide an effective protection against this phenomenon.

Control in the coefficients is known to be a very effective method in structures
governed by elliptic equations [1]. However, not much information is known about the effect
produced by control in coefficient for hyperbolic equations [2, 3]. In this paper, we study a
control problem for a structure dynamic system governed by a hyperbolic equation where
the control is a time dependent coefficient.

The model considered in this work is motivated by recent developments in the
area of smart materials [4]. The properties of these materials can be changed by applying
external fields, such as electrical, magnetic, or temperature; this is referred to as a phase
transformation.
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A structure made with such a material is considered where control consists of
eliminating a transient disturbance in the structure by varying the material properties in
the response to the deformation. The modal dynamic of a structure is governed by a scalar
wave equation, where the control variable is the sound speed in the medium. The basic
bilinear optimal control problem becomes the minimization of the energy function of the
system in a given period of time with a minimum sound speed. Using modal expansion,
the optimal control of the distributed parameter system is reduced to the optimal control of
a bilinear time-varying lumped parameter system. The parameterization approach is used
to approximate the state-variable and each component of the control variable using finite-
term wavelets with unknown coefficients. Therefore, the quadratic problem is transformed
into a mathematical programming problem with the objective of minimizing the unknown
coefficients to give suboptimal solution of the problem. A necessary condition for the
optimality of the unknown coefficients is derived as a system of linear algebraic equations
for which the solution is used to obtain the optimal control sound speed and optimal state
function.

The bilinear system is a kind of nonlinear system where some related problems such
as optimal control are much more difficult to solve than those of linear systems. In literature,
many authors [5–9] have tried various methods to overcome the difficulties of solving
bilinear systems. In this paper, the focus will be on obtaining the optimal state solution of a
wave equation governed by a bilinear system using CAS wavelets taking advantage of some
needed properties of this type of wavelets [10, 11]. Compared to conventual method such as
Fourier series or finite elements, CAS wavelets with their local properties enable arbitrary
functions (even with discontinuity) to be approximated more efficient. To demonstrate
the effectiveness of the proposed approach, numerical results will show confirm that the
proposed method significantly minimizes the energy of the system.

2. Optimal Control Problem Setting

LetΩx be an open, bounded, and simply connected subset of n-dimensional Euclidean space
R
n. Let Ωt denote a given time interval (0, tf)with finite terminal time tf . Consider the wave

equation, defined on Q = Ωx ×Ωt:

utt = a(t)Δu, (2.1)

where Δ is the Laplacian operator, and u(x, t) is the disturbance of position x and time t.
The wave speed

√
a(t) is assumed to be a function of time. For simplicity, let u satisfy the

boundary and initial conditions:

u(x, t) = 0, Δu = 0, ∀x ∈ ∂Ωx,

u(x, 0) = w0(x), ut(x, 0) = w1(x), x ∈ Ωx,
(2.2)

where

w0(x) ∈ H2(Ωx) =

{

h(x) :
∂ih

∂xi
∈ L2(Ωx), i = 1, 2

}

, (2.3)

and w1(x) ∈ L2(Ωx).
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Let the admissible control set be

Aad =
{
a(t) : a(t) ∈ L2(Ωt)

}
. (2.4)

Associated with the wave equation (2.1) is the modified energy J[a(t)] at terminal time tf :

J[a(t)] = μ1

∫

Ωx

u2
(
x, tf

)
dx + μ2

∫

Ωx

u2t
(
x, tf

)
dx + μ3

∫

Ωt

a2(t)dt, (2.5)

where μ1, μ2, and μ3 are weighing constants satisfying the condition μ1 + μ2 > 0 and μ3 > 0.
The last term on the right-hand side of (2.5) is a penalty term on control energy.

The optimal control problem is stated as follows: determine the optimal control function
a∗(t) ∈ Aad such that

J[a∗(t)] = min
a(t)∈Aad

J[a(t)] (2.6)

subject to (2.1) and (2.2).

3. Control Problem in Modal Space

We pose the problem at hand as a control problem for an finite system of ordinary differential
equations by using modal space expansion. Let

u(x, t) =
N∑

n=1

zn(t)ϕn(x), (3.1)

where ϕn(x) are normalized eigenfunctions associated with eigenvaluesw2
n. This implies that

ϕn(x) satisfies the eignvalue-problem

Δϕn(x) +w2
nϕn(x) = 0, x ∈ Ωx,

ϕn(x) = 0, x ∈ ∂Ωx,

Δϕn(x) = 0, x ∈ ∂Ωx.

(3.2)

It can be shown that the set ϕn(x) forms an orthonormal set, and hence zn(t) satisfies

d2

dt2
zn(t) + a(t)w2

nzn(t) = 0, n = 1, 2, . . . ,N (3.3)

with initial conditions

zn(0) = z0n,
d

dt
zn(0) = z1n, n = 1, . . . ,N. (3.4)
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In view of the expansion (3.1), the performance index becomes

JN[a(t)] =
N∑

n=1

[

μ1z
2
n

(
tf
)
+ μ2

(
d

dt
zn
(
tf
)
)2

]

+ μ3

∫ tf

0
a2(t)dt. (3.5)

The optimal control problem (2.6) is now modified as follows: determine a∗(t) ∈ Aad such that

JN[a∗(t)] = min
a(t)∈Aad

JN[a(t)] (3.6)

subject to (3.3) and (3.4).

4. Properties of the CAS Wavelets

4.1. CAS Wavelets

Wavelets have been used by many scientists and engineers to solve several problems in areas
such as signal and image processing, control problems, and stochastic problems. Wavelets
are mathematical functions that are constructed using dilation and translation of a single
function called the mother wavelet denoted by ψ(t) and must satisfy certain requirements. If
the dilation parameter is a and translation parameter is b, then we have the following family
of wavelets:

ψa,b(t) = |a|−1/2ψ
(
t − b
a

)
, with a, b ∈ R, a/= 0. (4.1)

Restricting a and b to discrete values, such as a = a−k0 , b = nb0a
−k
0 , a0 > 1, b0 > 0 and n and k

are positive integers, gives

ψk,n(t) = |a0|k/2ψ
(
ak0 t − nb0

)
, (4.2)

where ψk,n(t) form a basis for L2(R). If a0 = 2 and b0 = 1, then it is clear that the set {ψk,n(t)}
forms an orthonormal basis for L2(R).

The CAS wavelets employed in this paper are defined as

ψn,m(t) =

⎧
⎨

⎩
2k/2CASm

(
2kt − n), if

n

2k
≤ t < n + 1

2k
,

0, otherwise,
(4.3)

where

CASm(t) = cos(2mπt) + sin(2mπt). (4.4)
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The set of CAS wavelets forms an orthonormal basis for L2([0, 1]). This implies that any
function f(t) defined over [0, 1] can be expanded as

f(t) =
∞∑

n=0

∑

m∈Z
dn,mψn,m(t)

�
2k−1∑

n=0

M∑

m=−M
dn,mψn,m(t) = DTΨ(t),

(4.5)

where

dn,m =
(
f(t), ψn,m(t)

)
=
∫1

0
f(t)ψn,m(t)dt, (4.6)

and D and Ψ(t) are 2k(2M + 1) × 1 vectors given by

D =
[
d0,−M, d0,(−M+1), . . . , d0,M, d1,−M, . . . , d1,M, . . . , d(2k−1),−M, . . . , d(2k−1),M

]T
,

Ψ(t) =
[
Ψ0,−M,Ψ0,(−M+1), . . . ,Ψ0,M,Ψ1,−M, . . . ,Ψ1,M, . . . ,Ψ(2k−1),−M, . . . ,ΨT

(2k−1),M
]
.

(4.7)

4.2. Operational Matrices of Integration

The integration of the function Ψ(t) in (4.5) is given by

∫ t

0
Ψ(s)ds = PΨ(t), (4.8)

where P is an 2k(2M + 1) × 2k(2M + 1) matrix, called the operational matrix, and is given by
[12]

P =
1

2k+1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

S F F · · · F
O S F · · · F
... O

. . . . . .
...

F

O O · · · O S

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(4.9)
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in which O is a zero matrix and F and S are (2M + 1) × (2M + 1) matrices given by

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · · · · · · · 0

...
. . .

...
. . .

0 · · · 2 · · · 0

...
...

...
. . . . . .

0 · · · · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S =

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 · · · 0 − 1
Mπ

0 · · · 0
1

Mπ

0 0 · · · 0 − 1
(M − 1)π

0 · · · 1
(M − 1)π

0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0 − 1
π

1
π

· · · 0 0

1
π

1
π

· · · 1
π

1
1
π

· · · 1
π

1
π

0 0 · · · 1
π

1
π

0 · · · 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

0
1

(M − 1)π
· · · 0

1
(M − 1)π

0 · · · 0 0

1
Mπ

0 · · · 0
1

Mπ
0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(4.10)

The integration of the product of two CAS function vectors is given by

∫1

0
Ψ(t)Ψ(t)Tdt = I. (4.11)

The product operational matrix of the CAS wavelet is given by

Ψ(t)Ψ(t)TC � C̃Ψ(t), (4.12)

where the matrix C is given in (4.7) and C̃ is an 2k(2M + 1) × 2k(2M + 1) given by [11]

C̃ =

⎡

⎣
C̃1 0

0 C̃2

⎤

⎦, (4.13)
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where C̃i, i = 1, 2 are (2M + 1) × (2M + 1) given by

C̃i =

⎡

⎢
⎢
⎣

ci,0 ci,−1 0

ci,−1 ci,0 ci,1

0 ci,1 ci,0

⎤

⎥
⎥
⎦ for i = 1, 2. (4.14)

5. CAS-Wavelets-Based Approach

To redefine the wavelet functions over the interval [0, tf], we let t = tfτ . Then (3.3), (3.4), and
(3.5), respectively, become

d2

dτ2
zi(τ) +w2

i t
2
fa(τ)zi(τ) = 0, for 0 < τ < 1, i = 1, 2, . . . ,N, (5.1)

zi(0) = zi0,
d

dτ
zi(0) = tfzi1, i = 1, . . . ,N,

JN(a(τ)) =
N∑

i=1

[
μ1z

2
i

(
tf
)
+ t2fμ2

d

dτ
z2i
(
tf
)
]
+ tfμ3

∫1

0
a2(τ)dτ.

(5.2)

Using the expansion in (4.5) gives

d2

dτ2
zi(τ) = �Bi

T �Ψ(τ) = �ΨT (τ) �Bi,

a(τ) = �CT �Ψ(τ) = �ΨT (τ) �C,

zi(0) = �ΦT
i
�Ψ(τ) = �ΨT (τ) �Φi,

d

dτ
zi(0) = ��T

i
�Ψ(τ) = �ΨT (τ) ��i,

(5.3)

where �Bi, �C, �Φi, ��i, and �Ψ(τ) are 2k(2M + 1) × 1 vectors defined as in (4.7). Furthermore,

d

dτ
zi(τ) =

∫ τ

0

d2

ds2
zi(s)ds +

d

dτ
zi(0)

=
∫ τ

0

�Bi
T �Ψ(s)ds + ��T

i
�Ψ(τ)

= �Bi
T
P �Ψ(τ) + ��T

i
�Ψ(τ),

(5.4)
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zi(τ) =
∫ τ

0

d

dτ
zi(s)ds + zi(0)

=
∫ τ

0

(
�Bi
T
P �Ψ(s) + ��T

i
�Ψ(s)

)
ds + �ΦT

i
�Ψ(τ)

= �Bi
T
P
2
�Ψ(τ) + ��T

i
�PΨ(τ) + �ΦT

i
�Ψ(τ)

=
�

ΨT (τ)
(
P 2

)T
�Bi + �ΨT (τ)PT ��i + �ΨT (τ)�Φi.

(5.5)

Substituting (5.5) in (5.1) yields

�Bi
T �Ψ(τ) +w2

i t
2
f
�CT �Ψ(τ)

[
�

ΨT (τ)
(
P 2

)T
�Bi + �ΨT (τ)PT ��i + �ΨT (τ)�Φi

]

= 0 (5.6)

and hence

�Bi
T �Ψ(τ) +w2

i t
2
f
�CT �Ψ(τ)ΨT (τ)

(
P 2

)T
�Bi

+w2
i t

2
f
�CT �Ψ(τ) �ΨT (τ)PT ��i +

�
w2
i t

2
f
�C
T �Ψ(τ)ΨT(τ)�Φi = 0.

(5.7)

Using (4.12) leads to

�Bi
T �Ψ(τ) +w2

i t
2
f
�ΨT (τ)C̃T

(
P 2

)T
�Bi +w2

i t
2
f
�ΨT (τ)C̃TPT ��i +w2

i t
2
f
�ΨT (τ)C̃T �Φi = 0. (5.8)

Multiplying (5.8) by �Ψ(τ), integrating, and using (4.11) give

�Bi +w2
i t

2
f C̃

T
(
P 2

)T
�Bi +w2

i t
2
f C̃

TPT ��i +w2
i t

2
f C̃

T �Φi = 0 (5.9)

or

�Bi = −G−1
(
w2
i t

2
f C̃

TPT ��i +w2
i t

2
f C̃

T �Φi

)
(5.10)

provided that

G =
(
I +w2

i t
2
f C̃

T
(
P 2

)T)−1
(5.11)

exists. Substituting equations (5.4) and (5.5) into equation (3.5) convert the performance
index JN[a(t)] into a function of C̃ and hence to optimize JN[a(t)], we solve

∂JN
∂ci

= 0. (5.12)
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Table 1: Comparison between uncontrolled and controlled performance indices.

Controller a(t) J1[a(t)]
a∗(t) 0.02451
t 0.50858
t2 0.36656
sin t 0.44015
cos t 3.62556

6. Numerical Example

Consider the wave equation

d2

dτ2
z(τ) +w2t2fa(τ)z(τ) = 0, for 0 < τ < 1 (6.1)

with initial conditions

z(0) = 1,
d

dτ
z(0) = 0. (6.2)

For the sake of illustration, the following parameters were assumed:

w1 = π, tf = 1, μ1 = μ2 = μ3 = 1, Ωx = (0, 1),

M = 1, k = 1
(
6 wavelet expansions

)
.

(6.3)

The performance index was computed for the optimal control a∗(t) and compared with the
performance index for the controllers a(t) = t, a(t) = t2, a(t) = sin t, and a(t) = cos t. The
results are summarized in Table 1.

It is observed that the proposed control is effective in significantly reducing the
performance index of the problem.

7. Conclusion

A control for a wave equation where the control is a time dependent coefficient is considered.
A modal space technique simplifies the optimal control of a distributed parameter system
into the optimal control of a bilinear time-invariant lumped-parameter system. A Galerkin
CAS wavelet-based method was developed to solve this bilinear optimal control problem.
The main aspect of the proposed approach resides in converting the optimization problem
into a mathematical programming problem where the necessary conditions of optimality
are derived as a system of algebraic equations . A test example, which includes a variable
coefficient and one-dimensional hyperbolic equation, demonstrates the capability of the
proposed Galerkin-Wavelet approach for solving optimal control problems governed by
bilinear systems. Moreover, the numerical simulations show that the optimal control
procedure led to a substantial damping in the bilinear system energy.
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This method may be extended to treat a more general setting where the coefficients
are x and t dependent. That is, the wave speed function is a controllable function of the form
a(x, t) [13].
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