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1. Introduction

Lattice systems arise in many applications, for example, in chemical reaction theory, image
processing, pattern recognition, material science, biology, electrical engineering, laser systems,
and so forth. A lattice dynamical system (LDS) is an infinite system of ordinary differential
equations (lattice ODEs) or of difference equations. In some cases, they arise from spatial
discretizations of partial differential equations (PDEs), but they possess their own form.

Let k ∈ N be a fixed positive integer. Denote

�2 =

{
u | u =

(
ui

)
i∈Zk , i =

(
i1, i2, . . . , ik

) ∈ Z
k, ui ∈ R,

∑
i∈Zk

u2
i < +∞

}
, (1.1)

where Z is the set of integers. Define a linear operator A acting on �2 in the following way: for
any u = (ui)i∈Zk ∈ �2, i = (i1, i2, . . . , ik) ∈ Z

k,(
Aui

)
i∈Zk = 2ku(i1,i2,...,ik) − u(i1−1,i2,...,ik) − u(i1,i2−1,...,ik) − · · ·

− u(i1,i2,...,ik−1) − u(i1+1,i2,...,ik) − u(i1,i2+1,...,ik) − · · · − u(i1,i2,...,ik+1).
(1.2)

In this paper, we will consider the following first-order lattice dynamical system:

u̇ +Au + λu + g(u) = q, t > 0,

u(0) =
(
u0i
)
i∈Zk = u0,

(1.3)
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where λ > 0, u = (ui)i∈Zk , Au = (Aui)i∈Zk , u̇ = (u̇i)i∈Zk denote the first-order derivative, and
g(u) = (g(ui))i∈Zk , q = (qi)i∈Zk�2. Then, problem (1.3) can be regarded as a discrete analogue of
the following reaction diffusion equation in R

k:

∂tu −Δu + λu + g(u) = q(x), t ≥ 0. (1.4)

One example is the Chafee-Infante equation.
Bates [1] and his collaborators made some results on a global attractor for lattice

dynamical system (LDS). Zhou [2] applied them to a first-order dissipative lattice dynamical
systems analogue to problem (1.3), proved the existence of the global attractor for the LDS,
and considered the finite-dimensional approximation of the attractor. Wang [3] and Zhao
and Zhou [4] studied asymptotic behavior of nonautonomous lattice systems. In standard
definition of exponential attractor, a compact and positively invariant M set is needed for the
semigroup S(t), and the system (S(t),M) possesses a global attractorA. More specifically, the
semigroup S(t) is not compact for all positive t. So, it is difficult to find a compact and positively
invariant M which is not the attractor A. The first-order dissipative lattice dynamical systems
analogue to problem (1.3) is such an example. Babin and Nicolaenko [5] consider reaction-
diffusion systems in unbounded domains, prove the existence of exponential attractors for
such systems, and estimate their fractal dimension. In [5], the compactness assumption plays
a relatively minor role in the whole construction. In [6], Eden et al. provide constructions of
exponential attractor for a Lipschitz α-contraction S on a closed bounded B that satisfies the
discrete squeezing property, where B is not assumed to be compact.

The main novelty of this work is that we make an improvement in the constructions of
exponential attractors is indicated in [6] that if a map S is asymptotically compact on a closed
bounded B that satisfies the discrete squeezing property, then S possesses an exponential
attractor. S is not assumed to be α-contraction in the result. We apply the result to study
an exponential attractor for a first-order dissipative lattice dynamical system. We not only
construct an exponential attractor for the lattice dynamical system and consider its finite-
dimensional approximation, but also obtain an upper bound of its fractal dimension.

2. A key theorem

Let E be a separable Hilbert space with the norm ‖·‖, B ⊆ E be nonempty closed bounded set,
and S : B → B be a Lipschitz continuous map with Lipschitz constant L. In this paper, we will
always denote dist the Hausdorff semi-distance of sets as follows:

dist(B,C) = sup
x∈B

inf
y∈C

‖x − y‖, for any B, C ⊂ E. (2.1)

Definition 2.1. S is asymptotically compact on B if for any {xn}n≥1 ⊆ B, there is a convergent
subsequence of {Snxn} in E.

Remark 2.2. If S is an α-contraction on B, then S is asymptotically compact on B.

Definition 2.3. S is said to satisfy the discrete squeezing property on B if there exists an orthogonal
projection PN of rankN such that for every u and v in B,

∥∥PN(Su − Sv)
∥∥ ≤ ∥∥(I − PN

)
(Su − Sv)

∥∥ =⇒ ∥∥Su − Sv
∥∥ ≤ 1

8
∥∥u − v

∥∥. (2.2)
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Definition 2.4. A compact set M is called as an exponential attractor for (S, B) if

(i) A ⊆ M ⊆ B, where A is the global attractor;

(ii) SM ⊆ M, thatM is positively invariant under S;

(iii) M has finite fractal dimension; and

(iv) there exist universal constants c1, c2 such that for every u ∈ B, for every natural
number n, dist(Snu,M) ≤ c1e

−c2n.

Let P = PN be the orthogonal projection chosen as in the definition of the squeezing
property. Denote

F = max
{
F | all u, v ∈ F satisfying ‖u − v‖ ≤

√
2‖Pu − Pv‖} (2.3)

for the inclusion relation. From the definition of F, we know P |F is one-to-one on F. Clearly,
PF is a bounded closed set of a finite dimensional vector space, and therefore, it is compact.
So, F as the preimage under the continuous map P |F must also be compact.

Let E(k) be a subset of the set Sk+1B, which is formed by a finite union of exceptional sets
of the form F, which is described above, hence all E(k) are compact.

Lemma 2.5. If S is asymptotically compact on B, then

M =
+∞⋃
j,k=1

Sj(E(k)) (2.4)

is relatively compact.

Proof. Let {yn}n≥1 be a sequence inM. Then, two cases will appear as follows.
Case 1. There exists a natural number N0 such that all yn are in

⋃N0
j,k=1S

j(E(k));
Case 2. There exists a subsequence (still denoted by {yn}n≥1) satisfying for every yn, there exists
xn ∈ B such that yn = Snxn.

In Case 1, since E(k) is compact and S is continuous, there exists a convergent
subsequence of {yn}n≥1 that converges in M. In Case 2, since S is asymptotically compact on
B, it is immediate that we can extract from {yn}n≥1 a subsequence that converges in H. So, M
is relatively compact.

Theorem 2.6. Let H be a separable Hilbert space and let B be a nonempty closed bounded subset of E.
Assume that

(i) S is a Lipschitz continuous map with Lipschitz constant L on B;

(ii) S is asymptotically compact on B;

(iii) S satisfies the discrete squeezing property on B (with rank N0), then S has an exponential
attractor on B:

M = A ∪
+∞⋃
j,k=1

Sj(E(k)), (2.5)
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where A is a global attractor for S on B, E(k) is as the above-mentioned. Moreover, the fractal
dimension ofM satisfies

dF(M) ≤ N0 max

{
1,

Log(16L + 1)
2 Log 2

}
. (2.6)

Proof. Note that all the limits point of
⋃+∞

j,k=1S
j(E(k)) belong toA. Together with Lemma 2.5, the

proof follows exactly in the same way as the proof of Theorem 2.1 in [7].

Remark 2.7. In Theorem 2.6, there are two advantages than all the previous results on the
existence of exponential attractor for S:

(i) B is not assumed to be compact;

(ii) if S possesses a global attractor, then S is at least asymptotically compact. So, we only
check that if S satisfies the Lipschitz property and the discrete squeezing property to
obtain the existence of an exponential attractor for S.

3. Exponential attractor

For i = (i1, i2, . . . , ik) ∈ Z
k, we will always denote ‖i‖ = max1≤j≤k|ij | in the following discussion.

For any u = (ui)i∈Zk ∈ �2, i = (i1, i2, . . . , ik) ∈ Z
k, define the operators Bj , Bj , and Aj , j ∈

{1, 2, . . . , k} from �2 to itself as follows: ui = u(i1,i2,...,ik) ∈ �2, j = 1, 2, . . . , k,

(
Bju
)
i
= u(i1,...,ij+1,...,ik) − u(i1,...,ij ,...,ik),(

Bju
)
i
= u(i1,...,ij ,...,ik) − u(i1,...,ij−1,...,ik),(

Aju
)
i
= 2u(i1,...,ij ,...,ik) − u(i1,...,ij+1,...,ik) − u(i1,...,ij−1,...,ik).

(3.1)

Then, we have

A = A1 +A2 + · · · +Ak, Aj = BjBj = BjBj, j = 1, 2, . . . , k. (3.2)

For any u = (ui)i∈Zk , v = (vi)i∈Zk ∈ �2, we define inner product and norm of �2 as follows:

(u, v) =
∑
i∈Zk

uivi, ‖u‖ =

(∑
i∈Zk

∣∣ui

∣∣2)1/2

, (3.3)

then �2 = (�2, (·, ·), ‖·‖) is a Hilbert space. It is obvious that any u = (ui)i∈Zk , v = (vi)i∈Zk ∈ �2,

(Au, v) =
k∑
j=1

(
Bju, Bjv

)
=

k∑
j=1

(
Bju, Bjv

)
,

k∑
j=1

∥∥Bju
∥∥2 ≤ 4k‖u‖2. (3.4)
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We always make the following assumptions on g(s) ∈ C(R):

(H1) g(0) ≡ 0 and g(s)s ≥ 0.

(H2) There exists an increasing continuous function K(r) : R
+ → R

+ with K(0) = 0 such
that

sup
|s|≤r

∣∣g ′(s)
∣∣ ≤ K

(
r2
)
, (3.5)

where R
+ = [0,+∞).

Similar to [2, Theorem 1], we have.

Theorem 3.1. For any initial data u0 ∈ �2, there exists a unique local solution u(t) of problem (1.3)
with u(0) = u0 such that u(t) ∈ C1([0, T], �2) for any T > 0.

In fact, it will be showed in Lemma 3.2 below that the local solution u(t) of problem (1.3)
exists globally, that is, u(t) ∈ C1([0,+∞), �2). It implies that the map

S(t) : u(0) = u0 �−→ u(t), �2 �−→ �2, (3.6)

generates a continuous semigroup from �2 to itself.

Lemma 3.2. Let B0 = B(0, r0) be a closed bounded ball of �2, centered at 0 with radius r0 where

r20 =
1
λ2
∥∥q∥∥2. (3.7)

For any bounded set B of �2, there exists T(B) ≥ 0 such that

S(t)B ⊆ B0, ∀t ≥ T(B). (3.8)

Proof. The proof is easily obtained.

Corollary 3.3. For any t ≥ 0, S(t)B0 ⊆ B0.

We obtain the following lemma after some simple computation.

Lemma 3.4. Let u(t) = (ui)i∈Zk ∈ �2 be a solution of problem (1.3) with initial data u0 = (u0i)i∈Zk ∈
B0. Then, for any t ≥ 0,

∑
‖i‖>N

∣∣ui(t)
∣∣2 ≤ r20e

−λt +
8C0kr

2
0

λN
+

1
λ2

∑
‖i‖≥N/2

∣∣qi∣∣2. (3.9)

From Lemmas 3.2 and 3.4, we have the following.

Theorem 3.5. The semigroup {S(t)}t≥0 is asymptotically compact in �2 and possesses a nonempty
compact global attractorA. Furthermore,A ⊆ B0.

Let S(t)u0 = U(t) and S(t)w0 = W(t). Since u0, w0 ∈ B0, by Corollary 3.3, U(t), W(t) ∈ B0,
for t ≥ 0. Let Z(t) = S(t)u0 − S(t)w0 = U(t) −W(t). Then, Z(t) satisfies

Ż +AZ + λZ + g(U) − g(W) = 0, Z(0) = u0 −w0. (3.10)
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After some simple computation, we obtain the following.

Lemma 3.6 (Lipschitz property). For any u0, w0 ∈ B0 and any T > 0,

∥∥S(T)u0 − S(T)w0
∥∥ ≤ e(K(r20 )−λ)T

∥∥u0 −w0
∥∥. (3.11)

Let n ∈ N be a positive integer. Set

ω =

⎛
⎜⎜⎜⎝

ω(−n,−n,...,−n,−n) ω(−n,−n,...,−n,−n+1) . . . ω(−n,−n,...,−n,n)
ω(−n,−n,...,−n+1,−n) ω(−n,−n,...,−n+1,−n+1) . . . ω(−n,−n,...,−n+1,n)

. . . . . . . . . . . .

ω(n,n,...,n,−n) ω(n,n,...,n,−n+1) . . . ω(n,n,...,n,n)

⎞
⎟⎟⎟⎠ . (3.12)

For convenience, we always denote

En =
{
ω =
(
ωi

)
i∈Zk ∈ �2 | ωi with subscripts of components

of ω which are ordered as in (3.12) and ωi = 0, ‖i‖ > n
}
,

(3.13)

with the same inner product and norm as those of �2.
Let K(x) be the inverse function of K(x) in (H2). Set

T0 = max
{
4
λ
Log 2,

1
λ

(
Log 2 + 2 Log ‖q‖ − 2 Logλ − LogK

(
λ

2

))}
, (3.14)

N0 = min

{
N ∈ N :

8C0k
∥∥q∥∥2

λN
+

1
λ2

∑
‖i‖≥N/2

∣∣qi∣∣2 ≤ 1
2
K
(
λ

2

)}
. (3.15)

Suppose PN is an orthogonal projection of rank (2N + 1)k on �2 such that PN�2 = EN .

Lemma 3.7 (Discrete squeezing property). For any u0, w0 ∈ B0, if

∥∥PN0

(
S
(
T0
)
u0 − S

(
T0
)
w0
)∥∥ ≤ ∥∥(I − PN0

)(
S
(
T0
)
u0 − S

(
T0
)
w0
)∥∥, (3.16)

then

∥∥S(T0)u0 − S
(
T0
)
w0
∥∥ ≤ 1

8
∥∥u0 −w0

∥∥. (3.17)

Proof. DenoteUN0(t) = (I−PN0)u(t),WN0(t) = (I−PN0)w(t) andZN0(t) = (I−PN0)(u(t)−w(t)) =
(I − PN0)Z(t). Taking the inner product (·, ·) in (3.10)with ZN0 , we have

d

dt

∥∥ZN0

∥∥2 + 2λ
∥∥ZN0

∥∥2 + 2
(
g(U) − g(W), ZN0

) ≤ 0, (3.18)

where ‖ZN0‖2 =
∑

‖i‖>N0
|Zi|2. By the mean value theorem,

∣∣(g(U) − g(W), ZN0

)∣∣ ≤ ∑
‖i‖>N0

∣∣g ′(Ui + θi
(
Wi −Ui

))∣∣Zi

∣∣2, (3.19)
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where θi ∈ (0, 1), ‖i‖ > N0. By (H2) and Lemma 3.4, for t ≥ T0,

∣∣g ′(Ui + θi
(
Wi −Ui

))∣∣ ≤ λ

2
, (3.20)

which implies

∣∣(g(U) − g(W), ZN0

)∣∣ ≤ λ

2

∑
‖i‖>N0

∣∣Zi

∣∣2. (3.21)

By (3.18), (3.21), and the Gronwall inequality, we have∥∥ZN0(t)
∥∥2 ≤ e−λ(t−T0)

∥∥u0 −w0
∥∥2, (3.22)

for all t ≥ T0. So, for any u0, w0 ∈ B0, if∥∥PN0

(
S
(
T0
)
u0 − S

(
T0
)
w0
)∥∥ ≤ ∥∥(I − PN0

)(
S
(
T0
)
u0 − S

(
T0
)
w0
)∥∥, (3.23)

then ∥∥S(T0)u0 − S
(
T0
)
w0
∥∥ ≤ 2

∥∥(I − PN0

)(
S
(
T0
)
u0 − S

(
T0
)
w0
)∥∥ ≤ 1

8
∥∥u0 −w0

∥∥. (3.24)

From Theorems 2.6 and 3.5, Lemmas 3.6 and 3.7 in this article, and [7, Theorem 3.1], we
obtain.

Theorem 3.8. The semigroup S(t) determined by problem (1.3) with (H1)-(H2) possesses an exponen-
tial attractor on B0:

M =
⋃

0≤t≤T0
S(t)

(
A ∪

+∞⋃
j,k=1

S
j

0

(
E(k))), (3.25)

whose fractal dimension satisfies

dF(M) ≤ c0
(
2N0 + 1

)k + 1, (3.26)

where T0 is as (3.14), S0 = S(T0), E(k) is defined as in Section 2 and N0 is as (3.15), c0 = max{1,
Log(16e(K(r0)−λ)T0 + 1)/2 Log 2}.

Remark 3.9. Indeed, when K(r20) < λ, by Lemma 3.6, we easily know that S(t) has an expo-
nential attractor of dimension zero on B0, which is an equilibrium point of problem (1.3) (the
global attractor for S(t)).

References

[1] P. W. Bates, K. Lu, and B. Wang, “Attractors for lattice dynamical systems,” International Journal of
Bifurcation and Chaos, vol. 11, no. 1, pp. 143–153, 2001.

[2] S. Zhou, “Attractors for first order dissipative lattice dynamical systems,” Physica D, vol. 178, no. 1-2,
pp. 51–61, 2003.

[3] B. Wang, “Asymptotic behavior of non-autonomous lattice systems,” Journal of Mathematical Analysis
and Applications, vol. 331, no. 1, pp. 121–136, 2007.

[4] C. Zhao and S. Zhou, “Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger
equations on infinite lattices,” Journal of Mathematical Analysis and Applications, vol. 332, no. 1, pp. 32–56,
2007.



8 Journal of Applied Mathematics

[5] A. Babin and B. Nicolaenko, “Exponential attractors of reaction-diffusion systems in an unbounded
domain,” Journal of Dynamics and Differential Equations, vol. 7, no. 4, pp. 567–590, 1995.

[6] A. Eden, C. Foias, and V. Kalantarov, “A remark on two constructions of exponential attractors for
α-contractions,” Journal of Dynamics and Differential Equations, vol. 10, no. 1, pp. 37–45, 1998.

[7] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, “Inertial sets for dissipative evolution equations,”
1991, IMA preprint series.


	Introduction 
	A key theorem
	Exponential attractor
	References

