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The aim of this work is to establish the existence of infinitely many solutions
to gradient elliptic system problem, placing only conditions on a potential
function H, associated to the problem, which is assumed to have an oscilla-
tory behaviour at infinity. The method used in this paper is a shooting tech-
nique combined with an elementary variational argument. We are concerned
with the existence of upper and lower solutions in the sense of Hernández.

1. Introduction

We prove the existence of infinitely many solutions for the following prob-
lem:

−∆pu = f(x,u,v), −∆qv = g(x,u,v) in Ω,

u = v = 0 on ∂Ω.
(1.1)

We assume that Ω is a smooth bounded domain of R
N, N ≥ 1, p,q > 1, and

f,g : Ω×R
2 → R be given functions which we specify later.

The prototype model (1.1) turns up in many mathematical settings as
non-Newtonian fluids, population evolution, reaction-diffusion problems,
porous media, and so forth. Much attention has been given to the existence
of solutions of systems (1.1), by using different approaches. When (1.1) does
not have a variational structure, we can notice the existence results obtained
in [3, 4]. More recently, in [1], we derived the solvability of problem (1.1),
under some lower limit conditions associated to F and G, where

F(x,u,v) =

∫u

0

f(x,t,v)dt, G(x,u,v) =

∫v

0

g(x,u,s)ds. (1.2)
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When the system has a variational structure, that is, f = ∂H/∂u and g =

∂H/∂v, the existence of solutions for (1.1) can be established via varia-
tional approaches, under appropriate conditions (cf. [5, 6, 7, 11]). An inte-
resting result in this direction was obtained in [2]. By using variational
methods, the authors show how the changes in the sign of (∂H/∂u)(x, ·, ·)
and (∂H/∂v)(x, ·, ·) lead to multiple positive solutions of the system.

The goal of this paper is to show that the same approach in [1] can be
applied to deal with the question of existence of infinitely many solutions
for the following gradient system:

−∆pu =
∂H

∂u
(u,v)+h1, −∆qv =

∂H

∂v
(u,v)+h2 in Ω,

u = v = 0 on ∂Ω.

(1.3)

Placing only some lower limit conditions on the potential function H associ-
ated to (1.3), which is assumed to have an oscillatory behaviour at infinity.

2. Main result

We make the following assumptions:

∀u ∈ R,
∂H

∂u
(u, ·) is an increasing function on R, (2.1)

∀v ∈ R,
∂H

∂v
(·,v) is an increasing function on R, (2.2)

∀(u,v) ∈ R
2, such that u ·v ≥ 0, (2.3)

we have

H(u,v) ≥ 0, (2.4)

lim inf
m→+∞

H
(
εm1/p,εm1/q

)
m

< µp,q, (2.5)

lim sup
m→+∞

H
(
εm1/p,εm1/q

)
m

= +∞, (2.6)

where ε = 1,−1 and µp,q = min(µp,µq) such that µp and µq are the follow-
ing constants:

µp =
(p−1)

p

[
2

b−a

∫1

0

ds
p
√

1−sp

]p

,

µq =
(q−1)

q

[
2

b−a

∫1

0

dt
q
√

1−tq

]q

,

(2.7)
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with b−a = min(bi −ai) and P = Π[ai,bi] is the smallest cube such that
P ⊃ Ω. Observe that for N = 1, pµp and qµq are the first eigenvalue of −∆p

and −∆q, respectively, when Ω =]a,b[.

Example 2.1. The function H such that

H(u,v) =
(
sin |u|p

)2
|u|α +

(
sin |v|q

)2
|v|β (2.8)

satisfies the hypotheses (2.1), (2.3), (2.5), and (2.6), when α > p or β > q.

The main result of this paper is the following statement.

Theorem 2.2. Under the assumptions (2.1), (2.3), (2.5), and (2.6),
problem (1.3) has two sequences (un,vn) and (un,vn) solutions in
(W1,p

0 (Ω)×W
1,q
0 (Ω))∩(L+∞ (Ω)×L+∞ (Ω)) for any (h1,h2) in L+∞ (Ω)×

L+∞ (Ω), and satisfy

max
(

sup
Ω

un;sup
Ω

vn

)
−→ +∞, min

(
inf
Ω

un; inf
Ω

vn

)
−→ −∞. (2.9)

The method used in this paper is a shooting technique combined with an
elementary variational argument. We will be concerned with the existence of
a sequence of negative subsolutions {(u0n,v0n)}n and a sequence of nonneg-
ative supersolutions {(u0

n,v0
n)}n, in the sense of Hernández’s definition [7],

which are both of class C1 and satisfy

+∞ ←− min
Ω

u0
n ≥ max

Ω
u0n −→ −∞,

+∞ ←− min
Ω

v0
n ≥ max

Ω
v0n −→ −∞.

(2.10)

3. Construction of a sequence of super-subsolutions

Definition 3.1. A pair [(u0,v0),(u0,v0)] is a weak sub-supersolution for the
Dirichlet problem (1.3), if the following conditions are satisfied:(

u0,v0

) ∈ (
W1,p(Ω)×W1,q(Ω)

)∩(
L+∞ (Ω)×L+∞ (Ω)

)
,(

u0,v0
) ∈ (

W1,p(Ω)×W1,q(Ω)
)∩(

L+∞ (Ω)×L+∞ (Ω)
)
,

−∆pu0 −f
(
x,u0,v

)≤0≤−∆pu0 −f
(
x,u0,v

)
in Ω, ∀v∈[

v0,v0
]
,

−∆qv0 −f
(
x,u,v0

)≤0≤−∆qv0 −f
(
x,u,v0

)
in Ω, ∀u∈[

u0,u0
]
,

u0 ≤ u0, v0 ≤ v0 in Ω,

u0 ≤ 0 ≤ u0, v0 ≤ 0 ≤ v0 on ∂Ω.

(3.1)
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Similar definitions can be found in Diaz and Herrero [8]. For all M > 0,

we note that

Ĥ(u,v) = H(u,v)+M(v+u). (3.2)

Notice that if H satisfies assumption (2.5) then the same holds for Ĥ.

Proposition 3.2. Under hypotheses (2.3) and (2.5) there exist the se-
quences dn, d ′

n, mn, and m ′
n such that

(a) m
1/p
n ≥ dn ≥ 0, ∀n ∈ N,

lim sup
∫dn+1

dn

ds

p

√
pĤ

(
dn+1,m

1/q
n+1

)
−pĤ

(
s,m

1/q
n+1

) >

∫1

0

ds
p
√

1−sp

[
pµp

]−1/p
,

(3.3)
and such that for all n ∈ N we have

lim
n→+∞

dn

dn+1
= 0. (3.4)

(b) m ′
n

1/q ≥ d ′
n ≥ 0, ∀n ∈ N we have

lim sup
∫d ′

n+1

d ′
n

dt

q

√
qĤ

(
m

1/p
n+1,d

′
n+1

)
−qĤ

(
m

1/p
n+1, t

) >

∫1

0

dt
q
√

1−tq

[
qµq

]−1/q
,

(3.5)
and such that for all n ∈ N we have

lim
n→+∞

d ′
n

d ′
n+1

= 0. (3.6)

Proof. We only prove (a); the proof of (b) is similar.
(1) Let a fixed real d > 0. Under the hypothesis (2.5), there exists some

number µ > 0 such that

lim
m→+∞ inf

pĤ
(
m1/p,m1/q

)
m

< µ < pµp,q ≤ pµp, (3.7)

then there exists some sequence {mk}k such that

lim
k→+∞ µmk −pĤ

(
m

1/p
k ,m

1/q
k

)
= +∞. (3.8)

(2) We consider the sequence of functions [F(·,mk)]k, where

F
(
s,mk

)
= µs−pĤ

(
s1/p,m

1/q
k

)
. (3.9)

Hence from (3.8), for k > 0 sufficiently large, we have
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F
(
mk,mk

)
= µmk −pĤ

(
m

1/p
k ,m

1/q
k

)
> 0. (3.10)

Then for all k ∈ N there exists dk > 0 satisfying d
p
k ∈ [dp,mk] and such that

for all s ∈ [dp,mk], we have

F
(
s,mk

) ≤ F
(
d

p
k,mk

)
, (3.11)

that is,

µs−pĤ
(
s1/p,m

1/q
k

) ≤ µd
p
k −pH

(
dk,m

1/q
k

)
, (3.12)

then

pĤ
(
dk,m

1/q
k

)
−pĤ

(
s1/p,m

1/q
k

) ≤ µ
(
d

p
k −s

)
. (3.13)

Thus, from (2.3) and (3.11), we get

F
(
mk,mk

) ≤ F
(
d

p
k,mk

) ≤ dk. (3.14)

Hence, from (3.8) and (3.14), we obtain

lim
k→+∞ dk = +∞. (3.15)

Let s = ωp, where ω ∈ [d,dk] ⊂ [d,m
1/p
k ], we obtain

pĤ
(
dk,m

1/q
k

)
−pĤ

(
ω,m

1/q
k

) ≤ µε

(
d

p
k −ωp

)
, (3.16)

that is,

1
p
√

d
p
k −ωp

[µ]−1/p ≤ 1

p

√
pĤ

(
dk,m

1/q
k

)
−pĤ

(
ω,m

1/q
k

) . (3.17)

Then integrating on [d,dk], we obtain that for all k > 0, (d,dk,mk) satisfies

∫1

d/dk

dω
p
√

1−ωp
[µ]−1/p ≤

∫dk

d

dω

p

√
pĤ

(
dk,m

1/q
k

)
−pĤ

(
ω,m

1/q
k

) . (3.18)

Consequently, for d = d0, there exist k0 sufficiently large, dk0
, and mk0

such
that (d0,dk0

,mk0
) satisfies (3.18) and d0/dk0

≤ 1/k0. Now, let d = dk0
,

then there exist k1 sufficiently large, dk1
, and mk1

such that (dk0
,dk1

,mk1
)

satisfies (3.18), and dk0
/dk1

≤ 1/k1. By iteration there exist some subse-
quences of {dk}k and {mk}k, respectively, denoted dn := dkn and mn := mkn

such that for all n ∈ N, (dn,dn+1,mn+1) satisfies (3.18) and dn/dn+1 ≤
1/kn. Hence,

lim
n→+∞

dn

dn+1
= 0. (3.19)
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Thus, from (3.18), we have∫1

0

dω
p
√

1−ωp
[µ]−1/p ≤ lim sup

∫dn+1

dn

dω

p

√
pĤ

(
dn+1,m

1/q
n+1

)
−pĤ

(
ω,m

1/q
n+1

) .

(3.20)

This is the conclusion of Proposition 3.2. �

Remark 3.3. We observe that

p
√

p−1

∫1

0

ds
p
√

1−sp

[
pµp

]−1/p
=

q
√

q−1

∫1

0

dt
q
√

1−tq

[
qµq

]−1/q

=
b−a

2
.

(3.21)

Consequently,

b−a

2
< lim sup

∫dn+1

dn

dω

p

√
pĤ

(
dn+1,m

1/q
n+1

)
−pĤ

(
ω,m

1/q
n+1

) . (3.22)

3.1. Construction of a sequence of supersolutions {(u0
n,v0

n)}n>1

Proposition 3.4. Suppose that (dn)n and (mn)n satisfy Proposition 3.2,

and that for all n ∈ N we have

inf
s∈[dn−1,m

1/p
n ]

∂H

∂u

(
s,m1/q

n

)
+M ≥ 0. (3.23)

Then, there exists some n0 ∈ N such that for all n ≥ n0 the following
problem:

−
(
|u ′|p−2u ′) ′

=
∂H

∂u

(
u,m1/q

n

)
+M in (a,b),

u(a) = dn, u ′(a) = 0 on [a,b],

(3.24)

has a solution ûn satisfying ûn ∈ C1([a,b]), (|û
′
n|p−2û

′
n) ′ ∈ C([a,b]),

with m
1/p
n ≥ ûn ≥ dn−1 for all n ∈ N and

0 < û0 < · · · < ûn < ûn+1 < · · ·+∞. (3.25)

Proof. Assume that (dn)n and (mn)n, the sequences defined in Proposition
3.2, satisfy (3.23).
Step 1. We define the functions

ϕp(s) := sign(s)|s|p−1,

Ψ∗
p(s) :=

∫s

0

ϕ−1
p (t)dt =

∫s

0

sign(t)|t|1/(p−1)dt =
p−1

p
|s|p/(p−1).

(3.26)
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Now, we consider the initial value problem

−
(
ϕn(u ′)

) ′
=

(
∂H

∂u

(
u,m1/q

n

)
+M

)
,

u(a) = dn, u ′(a) = 0,

(3.27)

where m
1/p
n > dn−1.

Since problem (3.27) is equivalent to the system

u ′ = ϕ−1
p (v), v ′ = −

(
∂H

∂u

(
u,m1/q

n

)
+M

)
, (3.28)

with initial conditions

u(a) = dn, v(a) = 0, (3.29)

it follows that the existence of a solution un of (3.27) and its continuity on
the same maximal interval are standard facts (see [1]). We set

tn := sup
{
t ∈ ]a,b], such that un is defined and un > dn−1 on [a,t]

}
.

(3.30)
Of course, it is tn > a. Integrating (3.27) on [a,t], for any t ∈ ]a,tn[, we
obtain that

ϕp

(
u ′

n(t)
)

= ϕp

(
u ′

n(a)
)
−

∫t

a

(
∂H

∂u

(
un(s),m1/q

n

)
+M

)
ds. (3.31)

Hence, from (3.23), we get

u ′
n(t) ≤ 0. (3.32)

This implies that u ′
n = ϕ−1

p (vn) is of class C1 on [a,tn[. So that ϕp(u ′
n) =

−|u ′
n|p−1 can be differentiated.

Assume now by contradiction that

tn <
b+a

2
. (3.33)

By (3.32) there exists

lim
t→t−

n

un(t) = dn−1. (3.34)

Hence, we can denote

un

(
tn

)
:= dn−1, (3.35)

and hence un can be continued as a solution to tn.
Accordingly, multiplying (3.27) by u ′

n, we obtain
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p−1

p

(
−

∣∣u ′
n(t)

∣∣p) ′
=

d

dt

(
Ĥ

(
un(t),m1/q

n

))
, (3.36)

where

Ĥ(u,v) = H(u,v)+Mu. (3.37)

Integrating (3.36) on [a,t] ⊂ [a,tn], we obtain

−
p
√

p−1u ′
n(t) =

p

√
pĤ

(
dn,m

1/q
n

)
−pĤ

(
un(t),m

1/q
n

)
. (3.38)

Integrating again (3.38) on [a,tn], we deduce that

p
√

p−1

∫tn

a

−u ′
n(t)

p

√
pĤ

(
dn,m

1/q
n

)
−pĤ

(
un(t),m

1/q
n

)dt ≤ tn −a. (3.39)

Then we obtain

p
√

p−1

∫dn

dn−1

ds

p

√
pĤ

(
dn,m

1/q
n

)
−pĤ

(
s,m

1/q
n

) ≤ tn −a. (3.40)

It follows from Proposition 3.2 and Remark 3.3 that for all n ≥ n0, we have

b−a

2
<

p
√

p−1

∫dn

dn−1

ds

p

√
pĤ

(
dn,m

1/q
n

)
−pĤ

(
s,m

1/q
n

) ≤ tn −a. (3.41)

This implies that tn > (b+a)/2. Hence we obtain a contradiction.
This shows that, there exits a sequence {un}n satisfying for all n ≥ n0,

un ∈ C1

([
a,

a+b

2

])
,

(∣∣u ′
n

∣∣p−2
u ′

n

) ′
∈ C

([
a,

a+b

2

])
,

−
(∣∣u ′

n

∣∣p−2
u ′

n

) ′
(t) =

∂H

∂u

(
un(t),m1/q

n

)
+M in

[
a,

a+b

2

]
,

m1/p
n ≥ un ≥ dn−1 in

[
a,

a+b

2

]
, u ′

n(a) = 0.

(3.42)

Step 2. We note by {ûn}n the following functions such that

ûn(t) =




un

(
3a+b

2
−t

)
if t ∈

[
a,

a+b

2

]
,

un

(
t−

b−a

2

)
if t ∈

[
a+b

2
,b

]
.

(3.43)
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It is a trivial matter to claim that the sequence {ûn}n satisfies

∀n ≥ n0, ûn ∈ C1
(
[a,b]

)
,

(∣∣û ′
n

∣∣p−2
û

′
n

) ′
∈ C

(
[a,b]

)
,

−
(∣∣û ′

n

∣∣p−2
û

′
n

) ′
(t) =

∂H

∂u

(
ûn(t),m1/q

n

)
+M in [a,b],

m1/p
n ≥ ûn ≥ dn−1 in [a,b],

(3.44)

moreover, we have

0 < · · · < ûn < ûn+1 < · · · , sup
[a,b]

ûn = dn −→ +∞. (3.45)

Hence, Proposition 3.4 is proved. �

Proposition 3.5. Let M > 0. Under the hypothesis (2.3) and (2.5) there
exists some sequence of the positive numbers (mn)n such that there
exists (ûn, v̂n) ∈ (C1([a,b]))2 satisfying((∣∣û ′

n

∣∣p−2
û

′
n

) ′
,
(∣∣v̂ ′

n

∣∣p−2
v̂
′
n

) ′)
∈ (

C[a,b]
)2

,

−
(∣∣û ′

n

∣∣p−2
û

′
n

) ′
≥ ∂H

∂u

(
ûn,mn

1/q
)
+M a.e. in (a,b),

−
(∣∣v̂ ′

n

∣∣q−2
v̂
′
n

) ′
≥ ∂H

∂v

(
mn

1/p, v̂n

)
+M a.e. in (a,b),

mn
1/p ≥ ûn ≥ 0, mn

1/q ≥ v̂n ≥ 0 on [a,b],

max
[a,b]

ûn ≤ min
[a,b]

ûn+1 −→ +∞, max
[a,b]

v̂n ≤ min
[a,b]

v̂n+1 −→ +∞.

(3.46)

Proof. Let (dn) and (mn) be as defined in Proposition 3.2. We study three
cases.
Case 1. We suppose that for all n ∈ N, we have

inf
s∈[dn−1,m

1/p
n ]

∂H

∂u

(
s,mn

1/q
)
+M < 0,

inf
t∈[d ′

n−1,m
1/q
n ]

∂H

∂v

(
m1/p

n , t
)
+M < 0.

(3.47)

Then, from (3.47) we get ∀n ∈ N, there exist sn ∈ [dn−1,m
1/p
t ] and tn ∈

[d ′
n−1,m

1/q
n ] satisfying

∂H

∂u

(
sn,mn

1/q
)
+M < 0,

∂H

∂v

(
mn

1/p, tn

)
+M < 0. (3.48)



100 A multiplicity result for a quasilinear gradient elliptic system

Consequently, the sequence (ûn, v̂n) = (sn, tn) is a sequence of supersolu-
tions satisfying

limsn = +∞, limtn = +∞. (3.49)

Case 2. Assume that for all n ∈ N, we have

inf
s∈[dn−1,mn

1/p]

∂H

∂u

(
s,mn

1q
)
+M ≥ 0, (3.50)

inf
t∈[d ′

n−1,mn
1/q]

∂H

∂v

(
m1/p

n , t
)
+M < 0. (3.51)

(a) From (3.50) and Proposition 3.4, there exist some n0 ∈ N and some
sequence (ûn)n such that, for all n ≥ n0, we have

ûn ∈ C1
(
[a,b]

)
,

(∣∣û ′
n

∣∣p−2
û

′
n

) ′
∈ C

(
[a,b]

)
,

−
(∣∣û ′

n

∣∣p−2
û

′
n

) ′
≥ ∂H

∂u

(
ûn,mn

1/q
)
+M a.e. in (a,b),

mn
1/p ≥ ûn ≥ dn−1 in [a,b].

(3.52)

(b) From (3.51), there exists a sequence (tn)n≥n0
such that

mn
1/p ≥ tn ≥ d ′

n−1,
∂H

∂v

(
mn

1/p, tn

)
+M < 0. (3.53)

Consequently, the sequence (ûn, tn)n satisfies the result.
Case 3. Assume that for all n ∈ N,

inf
s∈[dn−1,mn

1/p]

∂H

∂u

(
s,mn

1/q
)
+M ≥ 0, (3.54)

inf
t∈[d ′

n−1,mn
1/q]

∂H

∂v

(
mn

1/p, t
)
+M ≥ 0. (3.55)

Then from Proposition 3.4, for all n ≥ n0 there exists (ûn, v̂n) ∈ (C1([a,b]))2

such that ((∣∣û ′
n

∣∣p−2
û

′
n

) ′
,
(∣∣v̂ ′

n

∣∣p−2
v̂
′
n

) ′)
∈ (

C[a,b]
)2

,

−
(∣∣û ′

n

∣∣p−2
û

′
n

) ′
≥ ∂H

∂u

(
ûn,mn

1/q
)
+M a.e. in (a,b),

−
(∣∣v̂ ′

n

∣∣p−2
v̂
′
n

) ′
≥ ∂H

∂v

(
mn

1/p, v̂n)+M a.e. in (a,b),

mn
1/p ≥ ûn ≥ 0, mn

1/q ≥ v̂n ≥ 0 on [a,b],

(3.56)
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and the sequence {(ûn, v̂n)}n satisfies

max
[a,b]

ûn ≤ min
[a,b]

ûn+1 −→ +∞, max
[a,b]

v̂n ≤ min
[a,b]

v̂n+1 −→ +∞. (3.57)

This proves the results. �

Now, for problem (1.3) we consider a smooth bounded domain Ω in R
N,

we have the following result.

Proposition 3.6. Under hypotheses (2.1), (2.3), and (2.5), problem (1.3)
has a nonnegative sequence of supersolutions {(u0

n,v0
n)} in W1,p(Ω)×

W1,q(Ω) such that

0 < max
Ω

u0
n ≤ min

Ω
u0

n+1 −→ +∞,

0 < max
Ω

v0
n ≤ min

Ω
v0

n+1 −→ +∞.
(3.58)

Proof. Let M ≥ ‖h1‖∞ +‖h2‖∞ ; P =
∏

[ai,bi] is a cube containing Ω and

b−a = inf
1≤i≤N

bi −ai = b1 −a1. (3.59)

From Proposition 3.5, there exist (mn)n and (ûn, v̂n) in W1,p((a,b)) ×
W1,q((a,b)) such that

−
(∣∣û ′

n

∣∣p−2
û

′
n

) ′
≥ ∂H

∂u

(
ûn,mn

1/q
)
+M a.e. in (a,b),

−
(∣∣v̂ ′

n

∣∣q−2
v̂
′
n

) ′
≥ ∂H

∂v

(
mn

1/p, v̂n

)
+M a.e. in (a,b),

mn
1/p ≥ ûn ≥ 0, mn

1/q ≥ v̂n ≥ 0 on [a,b].

(3.60)

We denote by u0
n and v0

n the functions such that for all x ∈ Ω with x =

(x1,x2, . . . ,xN),

u0
n(x) = ûn

(
x1

)
, v0

n(x) = v̂n

(
x1

)
, (3.61)

(u0
n,v0

n) is clearly in W1,p(Ω) × W1,q(Ω), moreover by (2.1), we obtain
easily, for all n ∈ N

−∆pu0
n ≥ ∂H

∂u

(
u0

n,v
)
+h1 for v ≤ v0

n on Ω,

−∆qv0
n ≥ ∂H

∂v

(
u,v0

n

)
+h2 for u ≤ u0

n on Ω,

u0
n ≥ 0, v0

n ≥ 0 on Ω.

(3.62)

Thus the result follows. �
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3.2. Construction of a sequence of subsolutions {(u0n,v0n)}n>1

Similar to the construction of a sequence of supersolutions we can prove the
following proposition.

Proposition 3.7. Under hypotheses (2.1), (2.3), and (2.6), problem (1.3)
has a sequence of subsolutions (u0n,v0n)n in W1,p(Ω)×W1,q(Ω), such
that

0 ≥ min
Ω

u0n ≥ max
Ω

u0n+1 −→ −∞,

0 ≥ min
Ω

v0n ≥ max
Ω

v0n+1 −→ −∞.
(3.63)

4. Proof of Theorem 2.2

We closely follow an argument introduced in [11]. We define the functional

Φ : W0
1,p×W0

1,q −→ R (4.1)

by setting

Φ(u,v) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx−

∫
Ω

H(u,v)dx. (4.2)

Claim 4.1. Let a lower solution (u0,v0) and an upper solution (u0,v0) of
problem (1.3) satisfy u0 ≤ u0 and v0 ≤ v0 in Ω. Then, problem (1.3)
has a solution (u,v) belonging to C1,σ, for some σ > 0, such that

u0 ≤ u ≤ u0, v0 ≤ v ≤ v0,

Φ(u,v) = min
(w1,w2)∈K

Φ
(
w1,w2

)
,

(4.3)

with

K =
[
u0,u0

]×[
v0,v0

] ⊂ W0
1,p×W0

1,q. (4.4)

Proof. We argue as in [10]. By minimization of the functional associated
with truncated system (1.3). The validity of a weak comparison principle
(see [11]) gives the regularity of solutions. Consider the following problem:

−∆pu =
∂H

∂u
(x,u,v), −∆qv =

∂H

∂v
(x,u,v) in Ω,

u = 0, v = 0 on ∂Ω,

(4.5)

where
∂H

∂u
(x,u,v) =

∂H

∂u
(U,V)+h1(x),

∂H

∂v
(x,u,v) =

∂H

∂v
(U,V)+h2(x),

(4.6)
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with

U(x) = u(x)+
(
u0 −u

)
+

−
(
u−u0

)
+
,

V(x) = v(x)+
(
v0 −v

)
+

−
(
v−v0

)
+
.

(4.7)

Minimization of the functional φ associated to (4.5)

Denote by φ the functional associated to (4.5)

φ(u,v) =
1

p

∫
Ω

|∇u|pdx+
1

q

∫
Ω

|∇u|qdx−

∫
Ω

H(x,u,v)dx. (4.8)

It is easy to show that there exist some constants M1 > 0 and M2 > 0

such that ∣∣H(x,u,v)
∣∣ ≤ M1 +M2

[
|u|+ |v|

]
. (4.9)

Hence, the functional φ is weakly lower semicontinuous. It follows from a
standard theorem in the calculus of variations (see Vainberg [9]) that φ

attains its minimum at (u,v) solution of problem (4.5), that is,

min
(w1,w2)∈W0

1,p×W0
1,q

φ
(
w1,w2

)
= φ(u,v). (4.10)

Weak comparison principle

We show, for example, that u ≤ u0. From (4.7), we denote by U and V the
functions associated to u and v. Then we have

0 ≥ −∆pu−
∂H

∂u
(x,u,v) ≥ ∆pu−

∂H

∂u

(
U,V

)
−h1(x)

≥ [
−∆pu+∆pu0

]
+

[
∂H

∂u

(
u0,V

)
−

∂H

∂u

(
U,V

)]
,

(4.11)

multiplying (4.11) by (u−u0)+ and integrating over Ω, we obtain

0 ≥
∫
Ω

[
|�u|p−2�u−

∣∣�u0
∣∣p−2�u0

]
�(

u−u0
)
+
dx

+

∫
Ω

[
∂H

∂u

(
u0,V

)
−

∂H

∂u

(
U,V

)](
u−u0

)
+
dx.

(4.12)

Denote by Ω+ the set

Ω+ =
{
x ∈ Ω; u−u0 > 0

}
. (4.13)
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We have U = u0 in Ω+. Then
∫
Ω

[
∂H

∂u

(
u0,V

)
−

∂H

∂u

(
U,V

)](
u−u0

)
+
dx

=

∫
Ω

[
∂H

∂u

(
u0,V

)
−

∂H

∂u

(
u0,V

)](
u−u0

)
+
dx = 0.

(4.14)

By the monotonicity of −∆p in Lp(Ω) we get that 0 ≥ ‖(u−u0)+‖Lp(Ω).
Thus u ≤ u0 on Ω and similarly v ≤ v0 on Ω. Then, we conclude that

u0 ≤ u ≤ u0 and v0 ≤ v ≤ v0. Consequently, we obtain

φ(u,v) = φ(u,v) = min
(w1,w2)∈K

φ
(
w1,w2

)
. (4.15)

This ends the proof of Claim 4.1. �

Proof of Theorem 2.2. We are in position to build a sequence {(un,vn)}n of
solutions of (1.3) such that

max
(

sup
Ω

un;sup
Ω

vn

)
−→ +∞. (4.16)

Take an upper solution (u0
1,v

0
1) and a lower solution (u0,v0) of (1.3). We get

a solution (u1,v1) in C1,σ(Ω), for some σ > 0, of (1.3), with(
u1,v1

) ∈ [
u0,u0

1

]×[
v0,v0

1

]
= K1,

φ
(
u1,v1

)
= min

(w1,w2)∈K1

φ
(
w1,w2

)
.

(4.17)

Step 1. Let (ϕ,ψ) ∈ W0
1,p ×W0

1,q be positive in Ω, such that ϕ = 1 and
ψ = 1 on Ω0 ⊂�= Ω, ϕ = ψ = 0, ∂ϕ/∂ν < 0, and ∂ψ/∂ν < 0, where ν

is the outer normal to ∂Ω. Moreover, from (2.5) there exists some positive
sequence (sn) such that

lim
n→+∞

H
(
sn

1/p, sn
1/q

)
sn

= +∞. (4.18)

Consequently, from (2.3), (4.18), and the definitions of ϕ and ψ we have

lim
n→+∞ Φ

(
sn

1/pϕ,sn
1/qψ

)
= −∞ (4.19)

with

Φ
(
sn

1/pϕ,sn
1/qψ

)
=

sn

p
‖ϕ‖p

1,p +
sn

q
‖ψ‖q

1,q −

∫
Ω

H
(
sn

1/pϕ,sn
1/qψ

)
.

(4.20)
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Step 2. Select a number, say s1, such that

u1 ≤ s1
1/pϕ, v1 ≤ s1

1/qψ,

Φ
(
s1

1/pϕ,s1
1/qψ

)
< Φ

(
u1,v1

)
.

(4.21)

Now, take an upper solution (u0
2,v0

2) such that u0
2 ≥ s1

1/pϕ and v0
2 ≥

s1
1/qψ in Ω. We find a solution (u2,v2) in [u1,u

0
2]× [v1,v

0
2] = K2 and

Φ
(
u2,v2

)
= min

(w1,w2)∈K2

φ
(
w1,w2

)
. (4.22)

Thus, since

Φ
(
u2,v2

) ≤ Φ
(
s1

1/pϕ,s1
1/qψ

)
< Φ

(
u1,v1

)
, (4.23)

we conclude that (u2,v2) �= (u1,v1),

max
(

max
Ω

u2,max
Ω

v2

)
≥ min

(
min
Ω

u0
1,min

Ω
v0

1

)
. (4.24)

Iterating this argument, we construct the required sequence of solutions of
problem (1.3) such that

max
(

max
Ω

un,max
Ω

vn

)
−→ +∞. (4.25)

In completely similar way we construct a sequence {(un,vn)}n of solutions
of problem (1.3) satisfying

min
(

inf
Ω

un; inf
Ω

vn

)
−→ −∞. (4.26)

Hence, Theorem 2.2 is proved. �
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[10] J. Vélin, Existance et Non Existance de Solutions Positives pour des Systèmes
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