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An American put option is a derivative financial instrument that gives its
holder the right but not the obligation to sell an underlying security at a
pre-determined price. American options may be exercised at any time prior
to expiry at the discretion of the holder, and the decision as to whether or
not to exercise leads to a free boundary problem. In this paper, we examine
the behavior of the free boundary close to expiry. Working directly with the
underlying PDE, by using asymptotic expansions, we are able to deduce this
behavior of the boundary in this limit.

1. Introduction

Options are derivative financial securities, giving the holder the right to
sell (a put) or buy (a call) some underlying security at a specified price.
They have many uses in the financial world, including hedging, speculating,

generating income, and contributing to market completeness by expanding
the universe of investment opportunities. Although options were in exis-
tence prior to 1973, when the Chicago Board Options Exchange (CBOE) intro-
duced standardized, listed options, it was only after this date that the first
secondary market for options came into existence and they became widely
traded. Prior to the opening of the CBOE, in practical terms, it was difficult if
not impossible for the holder of an option to sell it, meaning that the holder
either had to exercise the option or hold it till expiry.

Most options are either European, meaning that they can be exercised
only at expiry, or American, meaning that they can be exercised at or before
expiry. European options are comparatively easy to evaluate, with the well-
known Black-Scholes formula having been available to investors since 1973,

the same year the CBOE opened its doors. American options are harder to
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evaluate. Because early exercise is possible, the holder is constantly faced
with the decision as to whether to retain an option or exercise it, and that
leads to a free boundary problem for the optimal exercise boundary which
divides the region where exercise is optimal from the region where it is
optimal to hold the option. To date, no closed form solution is known for this
optimal exercise boundary, and instead we must rely on numerical solutions
and approximations. One such approximation, which we employ here, is to
study the optimal exercise boundary close to expiry, so that we can regard
the time left till expiry as small and pose an expansion.

For the call, which gives the holder the right to buy the underlying stock,

it is possible to use straightforward asymptotic analysis (Alobaidi [3] and
Wilmott [8]) to find a series for the location of the optimal exercise bound-
ary close to expiry. The motivation for doing this is that with relatively few
terms, it is possible to obtain a fairly accurate answer extremely quickly,
while a finite-difference scheme would take several minutes to arrive at the
answer.

Turning to the optimal exercise boundary for the American put, two stud-
ies using alternate approaches are the motivation for the work presented
here. Barles et al. [4] were able to find upper and lower bounds for the
optimal exercise boundary near to expiration and then prove that these up-
per and lower bounds approached each other as expiration was approached,

leading them to conclude that the value of the option behaved like

Sf(t) ∼ E
(
1−σ

[
(T −t)

∣∣ log(T −t)
∣∣]1/2

)
(1.1)

for t < T near T , where E is the strike price of the option and σ is the
volatility. Kuske and Keller [6] derived an integral equation for the free
boundary using a Green’s function method and solved it iteratively. They
stopped after three iterations, with the leading order term on their solution
agreeing with that of Barles et al. [4]. In what follows, we will attempt to
use an asymptotic analysis to analyse the free boundary near to expiration,

and see why a naı̈ve expansion will not work, and what must be done to
make an expansion work. This allows us to recover the leading order result
of the two studies mentioned above.

2. Analysis

It is well known that the value P(S,t) of a put option on a dividend paying
stock obeys the Black-Scholes PDE

∂P

∂t
+

σ2S2

2

∂2P

∂S2
+

(
r−D0

)
S

∂P

∂S
−rP = 0, (2.1)

where S is the price of the underlying, r is the risk-free rate, D0 is the (con-
stant) dividend yield, and σ is the volatility. The pay-off at expiry (t = T)
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is given by P(S,T) = max(E−S,0), subject to the boundary conditions that
P(0,t) = Ee−r(T−t) and P(S,t) → 0 as S → ∞. For an American put, the pos-
sibility of early exercise leads to the constraint P(S,t) ≥ max(E−S,0) for t <

T , which is the pay-off that would be achieved by immediate exercise. One
approach commonly taken with this system is to apply the transformation
S = Eex, t = T −2τ/σ2, P = E−S+Ep, k1 = 2r/σ2, and k2 = 2(r−D0)/σ2,

which leads to the new equation:

∂p

∂τ
=

∂2p

∂x2
+

(
k2 −1

)∂p

∂x
−k1p+f(x), (2.2)

where the nonhomogeneous term f(x) = (k1−k2)ex−k1, subject to the pay-
off at expiry p(x,0) = max(ex −1,0) and the constraint p(x,τ) ≥ max(ex −

1,0) for τ > 0.
The first step in our analysis is to find the location of the free boundary at

expiry. At τ = 0, if x > 0, we have p = 0 and ∂p/∂τ = 0. This last derivative
comes from evaluating the PDE (2.2) at τ = 0. However, if x < 0 then at
τ = 0, we have p = 0 and ∂p/∂τ = f(x) < 0. Because this derivative is
negative, close to expiry, p itself will also become negative, which violates
the constraint p(x,τ) ≥ max(ex −1,0), and so this tells us that the optimal
exercise boundary starts at x = 0 when τ = 0. This corresponds to S = E in
the original variables.

Having found the location of the free boundary at τ = 0, we now attempt
to find the location of the boundary close to expiry, denoting this boundary
by xf(τ). In the original variables, we require (e.g., Wilmott [8]) that P = 0

and ∂P/∂S = −1 at S = Sf(t), which corresponds to p = ∂p/∂x = 0 at
x = xf(τ). We know from above that xf(0) = 0, so we attempt to perform
a local analysis in the vicinity of x = 0, τ = 0, and we are interested in
the region x > xf(τ). To perform our analysis, we introduce the rescaled
coordinates x = νX, τ = µξ, and p(x,τ) = ερ(X,ξ), where ν, µ, and ε are
small positive quantities. Substituting these new variables into our PDE and
considering the possible balances between various terms leads us to conclude
that µ = ν2 = ε2, so that (2.2) becomes

∂ρ

∂ξ
=

∂2ρ

∂X2
+ν

[(
k2 −1

) ∂ρ

∂X
−k2

]
+ν2

[
−k1ρ+

(
k1 −k2

)
X
]

+
(
k1 −k2

)(ν3X2

2!
+

ν4X3

3!
+

ν5X4

4!
+ · · ·

)
,

(2.3)

with the condition that ρ(X,ξ = 0) ∼ X+νX2/2!+ν2X3/3!+ν3X4/4!+ · · · .
To solve this, we attempt to expand ρ,

ρ ∼ ρ0 +νρ1 +ν2ρ2 + · · · . (2.4)
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Substituting this into (2.3), we get at leading order,

∂ρ0

∂ξ
=

∂2ρ0

∂X2
(2.5)

with the boundary condition that at ξ = 0, ρ0(X,ξ = 0) = X. Writing ρ0 =

ξ1/2g0(η), where the similarity variable η = Xξ−1/2, we get an equation for
g0,

g′′
0 +

1

2
ηg′

0 −
1

2
g0 = 0, (2.6)

with a solution

g0(η) = η+C0

[
2e−η2/4 −π1/2ηerfc

(
η

2

)]
. (2.7)

Taking the limit η → ∞, we recover the limit ξ = 0. Looking at the free
boundary, from our rescaling we assume that we can write

xf(τ) = x1τ1/2 +x2τ+x3τ3/2 + · · · , (2.8)

so that the free boundary is located at

Xf(ξ) = ν−1xf(τ) = x1ξ1/2 +νx2ξ+ν2x3ξ3/2 + · · · , (2.9)

and the boundary conditions that p and ∂p/∂x vanish at the free bound-
ary mean that, at leading order we require, at X = x1ξ1/2 we require ρ0 =

∂ρ0/∂X = 0, which translates into requiring that g0(x1) = g′
0(x1) = 0. Ap-

plying this leads to the two equations

x1 +C0

[
2e−x2

1/4 −π1/2x1 erfc
(

x1

2

)]
= 0,

1−C0π1/2 erfc
(

x1

2

)
= 0,

(2.10)

which means that we require e−x2
1/4 = 0 or x1 = ∞, and this implies that

our scaling is wrong.
Having seen our naı̈ve expansion fail, the standard approach in a situ-

ation like this is to introduce logarithms (e.g., Goldstein [5] and Mallier
[7]). This is because the derivative of logτ is τ−1, and this provides missing
terms in the expansion. We therefore assume that near to expiration the free
boundary behaves like

xf(τ) = x1τ1/2(logτ)γ0 + · · · (2.11)

for some power γ0 of the logarithm, rather than the simple expansion (2.8)
as we had assumed earlier. Our expansion for the option value therefore takes
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the form

p(x,τ) ∼ λγ0

[
g

(0)
0 (η)+λ−1g

(0)
1 (η)+λ−2g

(0)
2 (η)+ · · ·

]
+τ1/2λγ1

[
g

(1)
0 (η)+λ−1g

(1)
1 (η)+λ−2g

(1)
2 (η)+ · · ·

]
+ · · · ,

(2.12)

where η = xτ−1/2 and λ = logτ, with the free boundary given by xf(τ) =

τ1/2Yf(τ), where

Yf(τ) ∼ λδ0

[
y

(0)
0 +λ−1y

(0)
1 +λ−2y

(0)
2 + · · ·

]
+τ1/2λδ1

[
y

(1)
0 +λ−1y

(1)
1 +λ−2y

(1)
2 + · · ·

]
+ · · · .

(2.13)

Substituting the expansion (2.13) into the governing equation (2.2), we find
that the leading order τ0λγ0 term obeys

g
(0)′′

0 (η)+
1

2
ηg

(0)′

0 (η) = 0, (2.14)

which has a solution which vanishes as τ → 0,

g
(0)
0 (η) = C

(0)
0 erfc

(
η

2

)
. (2.15)

Amongst the τ1/2 terms, there will be a homogeneous term at O(τ1/2λ0)

which satisfies

g
(1)′′

0 +
1

2
ηg

(1)′

0 −
1

2
g

(1)
0 = 0, (2.16)

which has a solution that satisfies the condition as τ → 0,

g
(1)
0 (η) = η+C

(1)
0

[
2e−η2/4 −π1/2ηerfc

(
η

2

)]
. (2.17)

We need this to balance the leading order contribution from g
(0)
0 (and sub-

sequent terms such as g
(0)
1 ,g

(0)
2 , . . .) at the free boundary. To evaluate g

(0)
0

at the free boundary, we recall that

erfc
(

η

2

)
∼

2e−η2/4

ηπ1/2

(
1−

2

η2
+

12

η4
+ · · ·

)
. (2.18)

Crucial in our analysis is the behavior of the term e−η2/4 at the free bound-
ary, η = Yf,

e−Y2
f /4 = exp

[
−

λ2γ0y
(0)2
1

4

]

×exp

[
−

λ2γ0

2λ

(
y

(0)
0 y

(0)
1 +λ−1

(
y

(0)
0 y

(0)
2 +

y
(0)2
1

2

)
+O

(
λ−2

))
+O

(
τ1/2

)]
.

(2.19)
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To help us with the conditions at the free boundary, we need the leading or-
der contribution from g

(1)
0 to balance that from g

(0)
0 . To do this, we require

the term exp[−λ2γ0y
(0)2
1 /4] to be of the form exp[(1/2) logτ] = τ1/2 (be-

cause g
(1)
0 is multiplied by τ1/2 in the expansion). Recalling that λ = logτ,

this can only hold if δ0 = 1/2 and y
(0)2
0 = −2, so that exp[−λ2γ0y

(0)2
1 /4] =

τ1/2. Physically, we also require that xf(τ) be a monotone decreasing func-
tion of τ, so that the free boundary slopes downwards. Thus we have recov-
ered the leading order behavior of the free boundary close to expiry,

xf(τ) ∼ −(−2τ logτ)1/2 +O
(
τ1/2(logτ)−1/2,τ

)
. (2.20)

This result agrees with earlier studies using different methods. Kuske and
Keller [6] used a Green’s function to convert the problem into an integral
equation, which they then solved iteratively, stopping after three iterations.
Their result was

Sf ∼ E

(
1−

[
2σ2(T −t) log

(
σ

r[2π(T −t)]1/2

)]1/2
)

∼ E

[
1−σ

√
T −t

(√
| log(T −t)|+

log
(
σ/

(
3r
√

2π
))

√
| log(T −t)|

+ · · ·
)]

.

(2.21)

Converting their solution to the variables used in this study, we recover

x ∼ τ1/2

(
−

√
−2 logτ− log

(
σ2

6r
√

π

)√
−

2

logτ
+ · · ·

)
+ · · · , (2.22)

the leading order term of which agrees with our result.

3. Discussion

In Section 2, we considered the optimal exercise boundary of an American
put option, and used asymptotic analysis to find the behavior of that bound-
ary close to expiry, finding that at leading order xf(τ) ∼ −(−2τ logτ)1/2. This
agrees with previous studies by Barles et al. [4] and Kuske and Keller [6],
who used different methods to consider the same problem.

In a sense, this result, although expected, is disappointing because it
suggests that asymptotic analysis is much less practical for a put than for
a call. It should be recalled that a call option allows the holder to buy the
underlying stock, while a put gives the holder the right to sell it. For a
call (Alobaidi [3] and Wilmott [8]), a straightforward series of the form xf ∼

x0+x1τ1/2+x2τ+· · · is possible for the optimal exercise boundary, meaning
that a very good approximation for the location of the boundary close to
expiry can be obtained with fairly few terms, and such an approximation
could be evaluated extremely quickly numerically, whereas a standard finite-
difference solution might well take several minutes.
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Mathematically, the difference between the put and the call in terms
of the asymptotic analysis presented here is the appearance of the loga-
rithmic terms in the series for the put. It follows that for the put, be-
cause of the presence of these logτ terms, it is not possible to get the
same level of accuracy as for the call, even if a large number of terms
is calculated. Further, it appears that the calculation of subsequent terms
would be extremely challenging, as it would appear that terms of the form
log(logτ), log(log(logτ)), . . . , will enter the series at later orders. A prelimi-
nary investigation of that aspect of the problem is given in Alobaidi [3].

Finally, we mention in passing that in this study, as was the case with
those of Barles et al. [4] and Kuske and Keller [6], we have assumed that
the underlying stock prices follow a log-normal random walk, or geometric
Brownian motion, and that the value of an option obeys the Black-Scholes
equation. Ait-Sahalia (Ait-Sahalia [1] and Ait-Sahalia and Lo [2]) has consid-
ered the case where the price of the underlying stock obeys a more complex
stochastic process; he showed that the price of an option could be found us-
ing state-price densities or SPD’s, which can be estimated non-parametrically
using market data, rather than relying on specific assumptions. The Black-
Scholes model can be recovered from Ait-Sahalia’s approach as a special case.
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