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By considering the Adomian decomposition scheme, we solve a generalized
Boussinesq equation. The method does not need linearization or weak non-
linearly assumptions. By using this scheme, the solutions are calculated in
the form of a convergent power series with easily computable components.
The decomposition series analytic solution of the problem is quickly ob-
tained by observing the existence of the self-canceling “noise” terms where
sum of components vanishes in the limit.

1. Introduction

A generalized Boussinesq equation
utt_[D(u”xx_uxxxx :f(X,t), (1'1)

where D(u) is an arbitrary sufficiently differentiable function, with the
condition that [D(u)lxx # O to ensure nonlinearity and f(x,t) is a given
function. The initial conditions are given in the form of u(x,0) = g;(x),
ue(x,0) = ga(x).

Equation (1.1) has been proposed as a model for propagation of pulses
along a transmission line made of a large number of LC-circuits and as a
model to describe vibrations of a single one-dimensional dense lattice [15].
However, in each of these studies, Rosenau remarks that (1.1) is ill-posed,
and additional assumptions must be made on the nonlinearity of D(u) [13].

A classification of (1.1) is undertaken by applying both the classical
method of Lie and the nonclassical method of Bluman and Cole [5]. This
class of nonlinear Boussinesq equation has previously been studied in some
of the references [9, 10, 13]. Clarkson and Kruskal [10] introduced some
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similarity reduction of the Boussinesq equation. These symmetry reductions
are obtained using the direct method. By using this method, the equation is
reduced to the first, second, and fourth Painleve equations, which involves
no group theoretic techniques. Another significant work to find exact solu-
tions of the Boussinesq equation is studied by Clarkson [9]. He stated that
the solutions of this equation are obtained in two different ways: one of
these, by using the classical and nonclassical reductions of the equations to
find the corresponding ordinary differential equations, which are solvable in
terms of the first, second, and fourth Painleve equations. The exact solu-
tions are generated from these ordinary differential equations. The second
way, he used new space independent similarity reductions of the Boussinesq
equation. He also generated both the second and fourth Painleve equations
for finding the exact solutions of the equation by using this similarity re-
ductions. In [13], Clarkson and Priestly found conditions on D(u) such that
it allows symmetries, in particular those beyond the translation symmetries
of the independent variables. They used the classical Lie method, and the
nonclassical method, to find these symmetries. Once the symmetries of (1.1)
have been found, they find the associated reductions and test the ordinary
differential equations and then solve the equation. However, the application
of the methods are not entirely straightforward [13].

In this paper, the nonlinear equation (1.1) with three cases of the nonlin-
ear term of D(u) which are given in [13], homogeneous or inhomogeneous,
will be handled more easily, quickly, and elegantly by implementing the
Adomian’s decomposition method [1, 2, 3] rather than the traditional meth-
ods for the explicit solutions. In this paper, we do not use any reductions
or transformation to reduce problem (1.1) to an ordinary differential equa-
tion, a system of simpler partial differential equations or any linearization,
perturbation scheme. The original nonlinear equation is directly solvable
preserving the actual physics and involving much less calculation [3]. The
decomposition scheme is illustrated by studying problem (1.1) to compute
approximate solution for this problem. Furthermore, we also illustrate self-
canceling phenomena for problem (1.1) using the decomposition method.

2. The method of solution

In this section, we outline the method to obtain explicit solution of prob-
lem (1.1) using the decomposition method. We consider problem (1.1) in an
operator form

Li(u)—N(u)—Ly(u) =1(x,1t), (2.1)

where the notation N(u) = [D(u)]xx symbolizes the nonlinear term, the
notations k; = 92/0t? and k, = 9%/0x* symbolize the linear differential
operators. Assuming that the inverse of the operator Lt_1 exists and it can
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conveniently be taken as the two-fold definite integral with respect to t
from O to t, that is, E 1= f(t) f;(-)dt dt. Thus, applying the inverse operator
E; ' to (2.1) yields

Ly 'Le(w) =L ' (Fx, 1) + L T (N(W) + Ly "Ly (w). (2.2)
Therefore, it follows that
u(x,t) =u(x,0)+tue(x,0)+ L T (f(x, 1)) + LT (N(w) + Ly 'Ly(w). (2.3)
We obtain the zeroth component by
uo = g1(x)+tg2(x)+ Ly ' (f(x,1)) (2.4)
which is defined by all terms that arise from the initial conditions, and from

integrating the source term and decompose the unknown function u(x,t), a
sum of components defined by the decomposition series

u(x,t) = Z Un(x,t), (2.5)
n=0
and the nonlinear term N(u) = [D(u)]xx is expressed in the form
N =[Dw)] =) An, (2.6)

where A,, are called the Adomian polynomials as calculated by [2, 18] ac-
cording to specific algorithms. One can use the general form of the formula
for A,, Adomian polynomials as follow:

Ao = [D(w)],,,
b ]
e () ]

ot (2 o+ (3) (2ot

(2.7)

and so on for other polynomials. A variation of the generalized Adomian
polynomials can be found in [2, 18].
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With the zeroth component defined as above, the remaining components
un(x,t), n > 1, can be completely determined such that each term is com-
puted by using the previous term. Since ug is known,

Un :Lt_1 (An,1)—Lt_1LX(LLn,1),

for n > 0. It is useful to note that the recursive relationship is constructed
on the basis that the zeroth component uy(x,t) is defined by all terms that
arise from the initial condition and from integrating the source term. The
remaining components w, (x,t), n > 0, can be completely determined such
that each term is computed by using the previous term. As a result, the
components up,us,uy,... are identified and the series solutions are thus
entirely determined. However, in many cases the exact solution in a closed
form may be obtained.

Several authors have investigated the convergence of the Adomian de-
composition method. The theoretical treatment of convergence of the de-
composition method has been considered by Cherruault [7] and Répaci [14].
In [7], Cherruault proposed a new definition of the technique and then he
insisted that it will become possible to prove the convergence of the decom-
position method. Répaci [14] showed a convergence of this method based
upon a suitable connection with fixed point techniques. This is essentially
the same conclusion derived by Cherruault [7]. These results have been im-
proved by Cherruault and Adomian [8], who proposed a new convergence
proof of Adomian’s technique based on properties of convergent series. They
obtained some results about the speed of convergence of this method en-
abling us to solve nonlinear functional equations. To give a clear overview of
the methodology, we have selected a variety of illustrative examples.

3. Test problems

Problem 1. We first consider, setting D(u) = (1/2)u? in (1.1) yields the
Boussinesq equation

1
Upp = {zuz} FUyxnx + (%, 1) (3.1)

which is a solution equation solvable by inverse scattering [11, 19], origi-
nally used by Boussinesq [6] to describe the propagation of long waves in
shallow water. We would like to illustrate the proposed method, (3.1) has
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been chosen with an inhomogeneous term
f(x,t) = 2x3 — 15x*t?, (3.2)

for the set up equation (3.1). The solution of the equation (3.1) is to be
obtained subject to the initial conditions

u(x,0) =u(x,0) =0. (3.3)

For the solution of this equation, we simply take the equation in operator
form as given in (2.3) and using (2.4) to find the zeroth component of uy as

%:ﬁﬁ—%r, (3.4)

and obtain in succession uy,uz,us, ... by using (2.8) to determine the other
individual terms of the decomposition series, we find

x*e  3t8  7x5t10  x6¢l0

T 1/ 2 1
w =5l (u5) o Lt "L (uo) = 97 30 T o (3.5)
1
Uy = ZL;1 ((2u1uo)xx) +17L, (ur)
3.6
B ﬁ N 7x°¢10 B 21x6t™4 B 7x°t12 N ox’tle N (3.6)
14 30 338 66 1183 ’

and so on. It is obvious that the self-canceling “noise” terms appear between
various components, looking into the last term of uo, (3.4), and first term
of uy, (3.5), are the self-canceling “noise” terms. We can readily observe
that the second and third terms in u; and the first and second terms in
uy, (3.6), are self-canceling “noise” terms, and so on. Keeping the remain-
ing noncanceled terms and using (2.5) leads immediately to the solution
of (3.2) with initial conditions (3.3) given by u(x,t) = t*x> which can be
verified through substitution. It is worth noting that noise terms between
components of series will be canceled, and the sum of these “noise” terms
will vanish in the limit. This has been justified by [4, 17].

Problem 2. The equation we are now considering is
U = afu® +cul e F U (3.7)

which is sometimes called the cubic Boussinesq equation [13]. Without loss
of generality, we can set a = —2 and b = —1/2. The problem (3.7) is given
with the initial condition by

1 1 t
3
Uy =—2 {u — Zu] XX"’u—xxxx» u(x,0) = X u(x,0) = —X*Z- (3-8)
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Taking (3.8) in an operator form, the same as (2.3), we obtain
u(x,t) = ulx, 0+t (x,0) = 2Ly T (N(w) + Ly 'Lk (), (3.9)

where N(u) = [u® — (1/2)ulxx = Y _, An. For using the general formula
of (2.7), one can generate A,, Adomian polynomials as follow:

1
Ao = |u3— zuo] )

Aq

1
3u(2)u1 — —uq ,
L 2 XX

(3.10)

[ 1
Ay = 3uou12—|—3uéu2— Euz] ,
L XX

Az

[ 1
u? +6upouiuy +3u§u3 — —LL3:| ,
L 2 XX
and so on for other polynomials.
The decomposition series solution u(x,t) into Y 7 un(x,t) in (2.4) and
(2.8) with Adomian polynomials (3.10) yield the term-by-term components

1t
uo =u(x,0) +tue(x,0) = - — —, (3.12)
X X
t2 3 15t 210
_ —1 —1 _
up =—-2L ' (Ao) + Ly 'L (uo) = Ao T (3.12)
uy = 72]_;] (A])-i-]_;]LX(U.])
ottt 5 15t 27315 et® 2724° (3.13)
x5 x6 0 X7 5x8  x7  5x? k

and so on, in this manner the rest of the components of the decomposition
series were obtained. Again, the self-canceling “noise” terms appear between
various components for this problem, looking into the third term of wuq,
(3.12), and third term of u,, (3.13), are the self-canceling “noise” terms, and
so on. Substituting (3.11), (3.12), and (3.13) into (2.5) gives the solution
u(x,t) in a series form and in a closed form by

u(x,t) = (3.14)

x+t
This result can be verified through substitution.
Problem 3. The other equation we are considering is

Ut = [lnu+cu]xx F Unxxx, (315)
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where ¢ is a constant. Without loss of generality, we can set ¢ = 3. The
problem (3.15) is given with the initial conditions by

U = —2[Inu+ 3l x +Usxxx, u(x,0) =e*, ue(x,0) = 2e*. (316)
Taking (3.16) as in (2.3), we get the form
u(x,t) =u(x,0) —|—tut(x,0)—&—l_t’1 (N(u))—l—l_t’]LXX(u), (3.17)

where N(u) = [lnu+3uly =Y o, Ay, for this equation. For using the gen-
eral formula of (2.7), one can generate A,, Adomian polynomials as follow:

Ao = [Inuo+3uplx,

A= [u1ug1 +3u4 |

xx’

2
Ay = {uzu()] — ;2 —|—3uz] , (3.18)
2 XX
LL3
As= |:u3u51 —2uupuy i+ ?‘ug-” +3u3} ,
XX

and so on for other polynomials.
The decomposition series solution u(x,t) into Y’ un(x,t) in (2.4) and
(2.8) with Adomian polynomials (3.10) yield the term-by-term components

ug = e*+2te”,

2t)? 2t)3
w = (Ro) +1 (o) = ¥ 2 o B

2t)4 2t)5 (3.19)
uzzL;1(A1)+L(]LX(u1):e"(4!) +€X(5!) ,

2t)° 2t)7
W= (A2) L L (wz) = 63 ter! 73 :

and so on, in this manner the rest of the components of the decomposition
series are obtained. Substituting (3.19) into (2.5) gives the solution u(x,t)
in a series form and in a closed form by

u(x, t) = e¥e?t = ex+2t (3.20)

which can be easily verified.

4. Conclusions

In this paper, we calculated the explicit solution of certain generalized
Boussinesq equation (1.1) by using the Adomian decomposition method. We
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demonstrated that the decomposition procedure is quite efficient to deter-
mine solutions in closed form when they exist. However, the method gives
a simple and powerful tool for obtaining the solution without linearization
nonlinear equations. It is also worth noting that the advantage of the decom-
position methodology sometimes displays a fast convergence of the solution.
It may be achieved by observing the self-canceling “noise” terms as discussed
in [4, 17]. In addition, the numerical results obtained by this method have
illustrated a high degree of accuracy as discussed in [12, 16].
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