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ABSTRACT. The modulational stability of both the Korteweg-de Vries (KdV) and the

Boussinesq wavetralns is investigated using Whltham’s variational method. It is

shown that both KdV and Boussinesq wavetrains are modulationally stable. This result

seems to confirm why it is possible to transform the KdV equation into a nonlinear

Schr’dinger equation with a repulsive potential. A brief discussion of Whltham’s

variational method is included to make the paper self-contained to some extent.
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i. INTRODUCTION:

In recent years, considerable attention has been given to nonlinear stability

analysis of periodic wavetrains in fluids and plasmas. The complete investigation of

the instability of periodic wavetrains on the surface of water was carried out inde-

pendently by Lighthill [i], Whitham [2] and Benjamin [3]. Their theoretical and

experimental investigation is now regarded as conclusive evidence of the instability

of Stokes waves in deep water. This instability phenomenon led to the question of

the evolution of weakly nonlinear wavetrains.

For weakly nonlinear waves, the evolution of a wavetrain is described by Whitham’s

conservation equations which consist of the conservation of wavenumber, the conser-

vation of wave action, and the dispersion relation in the form

k +-- ---x 0 (i.i)

a2+- x a 0 (1.2)
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I
k
2 2) (i 3)= g/ I+ a

where k is the wavenumber, m is the frequency and a is the amplitude of the wave-

train. These equations are the leading order equations derivable from the Whitham

averaged variational principle [4].

In order to investigate the evolution of Stokes waves in deep water, Chu and Mei

[5-6] derived the modulation equations of Whitham’s type for slowly varying waves as

a2+ ( i 2)--{ x W a 0 (1.4)

--+ x + a + l-a 0, (1.5)

Based upon these equations, they also conducted a numerical study of the nonlinear

evolution of wave envelope in deep water. It was found that the wave envelope tends to

disintegrate to multiple groups of waves each of which approaches a stable permanent

envelope representing dynamical equilibrium.

It is interesting to point out that equations (1.4) (1.5) can be combined to

obtain the nonlinear Schrodinger equation. To prove this claim, we introduce a small

phase variation defined by W -2x
so that (1.5) becomes

-2*xt +-2fix x 2 + 0 (1.6)

We now integrate (1.6) with respect to x and set the constant of integration to

be zero to transform (1.6) in the form

1 2 1 2
t +g*x g a axx/32a 0 (1.7)

Substituting a exp(4i) into (1.4) and (1.7), we find the nonlinear

Schrdinger equation

1 1 2
it + g xx + *II 0 (1.8)

For the small amplitude equations of Whitham’s theory of slowly varying wavetrains

including the effects of dissipation, it was shown by Davey [7] that the modulation of

the wave is described by a more general nonlinear Schr6dinger equation,

i 2it+ Yxx ell iol. 0 (1.9)

where and y are complex constants and the last term on the left hand side repre-

sents dissipation.

Davey discussed a number of new and interesting points concerning the propagation

of weak nonlinear waves. It was shown that equation (1.9)" reduces to the KdV equation

for purely dispersive long waves (k 0). amd to the Burgers equation for long

dissipative waves.

Taniuti and Wei [8] have presented a class of nonlinear partial differential

equations which admit a reduction to tractable nonlinear equations such as the KdV and

the Burgers equations. Their method of reduction is based on a singular perturbation

expansion. They have shown that it is possible to transform the KdV equation into a

nonlinear Schr6"dinger equation with a repulsive potential which is known not to lead to

a modulational instability.
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Motivated by the above discussion, we find it interesting to examine the problems

of modulational stability further. So the purpose of the present paper is to de-

monstrate the modulational stability of both KdV and Boussinesq wavetrains. We shall

use Whitham’s variational method.

2. WHITHAM’S VARIATIONAL METHOD

In his pioneering work, Whitham [4] developed a general variational method to

describe slow variations of amplitude, frequency, and wavenumber of nonuniform non-

linear wavetrain using a Lagrangian. In fact, he takes an average over the local

oscillations in the medi and prescribes an averaged variational principle with an

appropriate Langrangian.

In cases where the governing equations admit uniform periodic wavetrains as

solutions, Whitham [4] pointed out that the system can be derived from a Hamilton

variational principle of the form,

jrrL(ut,ux,u) dx dt 0 (2.1)

where L is the Lagrangian of the system and the dependent variable u u(x,t).

It follows from (2.1) that the Euler Lagrange equation is

x u

This is a second order partial differential equation for u(x,t). I the equation has

a periodic solution of the form

u U(@), @ kx -mt

(2.3)

it turns out that three parameters ,k,a are connected by a nonlinear dispersion

relation

D(m,k,a) 0 (2.5)

i@In linear problems with the wavetrain solution u U(@) a e the dis-

persion relation becomes independent of a.

For slowly varying dispersive wavetrains, the solution maintains the elementary

form (2.4ab) but ,k, and a are no longer constants so that @ is not a linear function

of x and t. The local wavenumber and frequency are defined by

k @ @ (2 6ab)x’ t

The parameters m, k and a are slowly varying functions of x and t. Thus (2.6ab)

leads to a compatibility condition

k+ - 0 (2.7)

This is indeed an equation for conservation of waves.

If the period of the function u U(O) is normalized to 2, the averaged

Lagrangian is defined by
2

(,k,a) LdO. (2.8)

Then the Whitham averaged variational principle is given by

$ .(,k,a) dt dx 0 (2.9)

(2,4ab)
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This equation is then used to derive equations governing ,k and a.

The Euler equations resulting from the independent variations a and 60 are

3 0a: -a

Equation (2.10) turns out to be the dispersion relation.

3. MODUITIONAL STABILITY OF KdV WAVETRAINS

We consider the KdV equation in the form

(2.10)

(2.ll)

t + x + 8xxx 0

where & (x,t) is the dependent variable.

This has the variational characterization

(3.1)

ffLdt dx 0 (3.2)

where the Lagrangian L is given by

i i ex3_ 1
8xx

2
L tx + x ’ (3.3ab)

For a weakly nonlinear slowly varying oscillatory waretrain, we consider a

solution of the form

i@(x, t)V((3) a(x,t) e (3.4)

where @ k(x,t) and @t m(x t) are slowly varying function9 of x and t
X

and still have the significance of a local wavenumber and local frequency.

Using (3.4), the expression for L assumes the form

I (i )2142n k k2@ @ k

We assume

(3.5)

b@(@) --+ a Cos@ + a
2 Cos20 + (3.6)

where each term is of the higher order than the preceeding one.

In order to derive equations governing ,k,al,a2, we take the average of the

Lagrangian L over the local oscillations, treating m,k,al,a2 as constants. (This

is in the spirit of Krylov Bogliubov method. Bogliubov and Mitropolski [8] assume

the average over the fast time scale in order to obtain equations governing the

slowly varying quantities). It turns out
2n

1 t (3.7)
L L d@

0
where L is given by (3.5).

In view of (3.6), result (3.7) gives2
1 i b

2
i al 2

i 2e k ( bk m) + k(bk m)- + k(bk m 48kB)a2 aI a
2
+ (3.8)

We next apply the Whitham averaged variational principle

y;(,k,al,a2
dt dx 0 (3.9)

This gives the following results corresponding to variations al, a2,.... and @:
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aI -aI 0 (3. i0)

a2 a----
2 0 (3.11)

3@: ( x I)= 0 (3.12)

It follows from equation (3.11) that

a
2 a12/[24k(bk- - 48k3)] (3.13)

Using (3.3), the expression for L in (3.8) takes the form

b
2

1 1 2 4L ( ebk ) + kaI (ebk 8k3) (ek3)2al/[24 x 24k(abk -48k3) ](3.14)

This result can be used to obtain the explicit form of the dispersion relation

(3.10) as
2

(cbk a 8k3) .24x24kZ(abk_J_48k) a
1 O, (3.15)

It is interesting to note that the first part in (3.15) corresponds to the

linearized problem for the KdV equation, and the plituds dependent part in (3.15)

represents the nonlinear effects. It also foliows from (3.15) that

2k 2
(bk 8k3) + aI (3.16)

If the disparsion relation for a nonlinear dispersive wave is of the form

2(k) + 2(k) a (3.17)
o

then, according to Whitham’s theory, the waves in question are modulatlonally unstable

if 2 < 0.

For the present case dealing with the KdV wavetralns, we obtain from (3.16):

2k
> 0. (3.18)2 2168

This confirms the fact that the KdV wavetraln’s are modulationa]ly stable. This seems

to explain why it is possible to transform the KdV equation into a nonlinear

Schrdinger equation with a repulsive potential [8] which is known not to lead to a

modulational ins tability.

4. MODULATIONAL STABILITY OF BOUSSINESQ WAVETRAINS

We apply itham’s variational method to the Boussinesq equation for invest-

igation of modulational stability. We write the Boussinesq equation in the form

tt- #xx xxxx (#2)xx 0. (4.1)

This has the following variational representation

,f.[L dt dx=0 (4.2)

where the Lagrangian L is

i i 2 I 2 i 3L tt@xx- xx + xxx + xx’ xx’ (4.3ab)

For a weakly-nonlinear slowly-varying wavetrain, we assume a solution of the form
i@

@ (@) a e (4.4)
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where @ k(x,t), -@ m(x,t) and a a(x,t) are slowly- varying function of
x t

x and t.

In view of (4.4), the expression (4.3a) for L has the form

1
k
2 2 i 6 3 + i k62e - (2-k2)@@ + k @@ 0@@

(4.5)

We also assume the expansion of (@) as

(0) alcosO + a2cos20 + (4.6)

where each term is of higher order than the preceeding one.

A procedure similar to that described by results (3.7) (3.8) yields

1 2
L =2 . L dO (4.7)

where

i
k
2 2

k
2 I 2 2 k6a12 1

k
6 1 2 22L (-)( a

I + 8a2) + a
2 + (aI + 32a + (4.8)

As before, we apply the Whitham averaged variational principle

6SS(,k al,a2 )dt dx--0 (4.9)

from which one can obtain the following results corresponding to variations 6al,6a2
and 60

0 (4.10)6al -i
6a

2 -2 0 (4. ii)

60: - (---) O (4 12)x
Equation (4. ii) gives

1 2
a2 2-- al (4.13)

so that (4.8) becomes
2

k
6

k
6 4

i k2 2
k
2 2k__6] al [ k2 2 k

2 --]ae (m + - - + 24 36 i (4 14)

This result is used to deduce the explicit form of the dispersion relation (4.10) as

2
k
2 k

4
(m + k4) - a12 0 (4.15)

It is noted that the first term in (4.15) corresponds to the linearized dispersion

relation, and the second term in (4.15) represents the nonlinear effects. It follows

from (4.15) that
I

(k2_ k4)- + k
4

al
2

(4.16)

12 (k2-k4) 1/2

Comparing this result with (3.17), we comclude that

k
4

> 02 12(k2- k4)1/2
This means that the Boussinesq wavetrains are also modulationally stable.

(4.17)
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