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ABSTRACT. We consider the lattice of function semi-norms over a measure space,

as well as certain distinguished subsets. We determine which subsets are

sublattices and, in turn, which of these are Dedekind complete. We also investigate

the extent to which the distributive and DeMorgan Laws are valid in this setting.
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1. INTRODUCTION.

In this paper, we investigate the sublattice structure of the lattice of

semi-norms on a fixed measure space.

Section 2 is devoted to establishing the necessary preliminaries. In

Section 3, we distinguish the semi-norms of interest, namely those having either

the Riesz-Fisher, weak or strong Fatou properties, those satisfying the infinite

triangle inequality and those which are of absolutely continuous norm. In

determining the sublattice status of each of these collections, we are also

interested in Dedekind completeness for each of these, as well as for the space

of all semi-norms. In particular, when a subset is closed under arbitrary

suprema or infima, we wish to know the specific description of these extrema.

The answers to these questions in the case of the supremum are essentially known.
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For the sake of completeness, these are summarized in Section 4. However, the

answers to these questions in the case of the infimum are hardly known at all. In

fact, the notion of infimum is not unique; it depends on which sublattice is

being considered. The main difficulty here involves the infimum of an arbitrary

collection of function semi-norms. There are three candidates for this notion

which we define and study in Section 5. Here we also determine which infimum

goes with which sublattice. This is the main section of this paper. In Section 6,

we are then able to determine (i) whether a given subset of semi-norms is a

sublattice and (2) if it is complete.

In Section 7, we turn our attention to the DeMorgan Laws. As we shall see,

the validity of these laws depends on which of the two laws is being considered--as

well as its interpretation.

In concluding, Section 8 observes that the sublattices under consideration

are not distributive in general and also shows that there is a connection between

the lattice theory of function semi-norms and finite sums of such semi-norms.

2. PRELIMINARIES.

Here we recall the preliminary results we will require throughout the

remainder of this paper. A general reference for this section is [5].

Let (X,S,) be a fixed sigma-finite measure space and [0, =] the extended,

non-negative real numbers. As usual, the real numbers and the natural numbers

will be denoted by and equipped with their usual measure structures.

If C is the complex numbers, define

M {f:X C f is -measurable}

and

M
+

{f:X [0,] f is g-measurable}

In general, we will not distinguish between elements of M or M
+

which are

equal almost everywhere.

In will also be convenient to denote x X f(x) # 0 by supp(f)

+ +
DEFINITION 2.1. A(function) semi-norm on M is a mapping p M [0,]

satisfying:
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(i) o(o) 0

+
(ii) o(af) a 0 (f) a 0 f M

+
(iii) o(f + g)-< p(f) + o(g) f,g M

(iv) o(f) -< o(g) whenever f _< g f,g g M
+

The semi-norm 0 is a norm if o(f) 0 implies f 0 Let P denote the

set of all semi-norms and P the subset of all norms (never empty). Of course,o

0 II’II is a norm for each _< p _<
P

Observe that P is canonically partially ordered by

Pl >- P2 if Ol(f) _> 02(f f s M
+

EXAMPLE 2.2. For f in M define (f) 0 Then P P
o

+
Also, for f in M define (f) f # 0 e(0) 0 Then e P

o

Clearly, 0 and e are the smallest and largest elements of P

/ +LEMMA 2.3. Let 0 P and g s M Define Og(f) o(fg) f s M

Then is a semi-norm. Of particular interest are the cases whereg

(i) g is the characteristic function X
E

of a measurable set E or

(ii) p is the El-norm [[’[[I
Now define

and

LO {f s M o([fl) < }

NO {f s M @(Ifl) 0}

Then LP is a semi-normed linear space with N a closed subspace. Thus,

L0 [O/N@ is a normed linear space. If II’]I then L0 is the familiar
P

LP-space

EXAMPLE 2.4. Let g X
E

as in 2.3, with @ P Then PE Og -< O

so that LO__c L
OE

On the other hand, for E X we have L0 L
OE

Hence,

in general,

DELP=A {L
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REMARK 2.5. If 02’ 02 P then the pointwise supremum sup(pl:02) of

pi,2 belongs to P [5,p.442]. This is not the case for the pointwise infimum.

DEFINITION 2.6. Let i’ PZ s P For f in M
+

define

inf(ol’@2)(f) inf{@l(fl) + 02(f2) fl’f2 M+’fl + f2 f}

The function inf(Pl,@2) is a semi-norm and is the infimum of i,2
in P

[5,Ex. 71].

In what follows, it will be convenient to write @I v 2 for sup(o1,P2)
and Pl A 2 for inf(01,02) Now let

F-- {:M+ [o,,] (0) --o)

(Note that an element of F need not be a semi-norm.) For such p we may

define the associate ’ by

@’(f) Sup{/x (fg)d @(g) _< I} f s M+

Observe that the supremum is taken over a non-empty set. The function ’ is a

semi-norm, i e p’ s P In particular, 0’ co, co’ 0 and (@p)’ 0p
where I/p + I/p’ _< p _<

(ii) IfLEMMA 2.7. (i) If 01,02 g P and i -< 2 then Pl 2
(n) (n+2)

then " _< p and p p n 1,2,3,

LEMMA 2.8. (Finite DeMorgan Laws) If i’ 2 s P then

and (I v 2)’ A(Pl A 02 Pl V P2 Pl P2
PROOF. The first law is well-own [5,Ex.71.2]. The second law is much

less well-known; in fact, there appears to be no proof of it in the literature.

The proof we give next is due to Luxemburg [3]. We are grateful to Professor

Luxemburg for permitting its inclusion here.

( v 02 (i 14),For 01,02 g P we have I’02 < I v 02 so that 01 02
i.e., (I’ ^ ) >- (01 v 02 )’ To prove the other inequality, let 01 v 02
and suppose f is an element of M

+
such that 0’ (f) < (otherwise, equality

0’is trivial) Since f L it corresponds to a bounded linear functional
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on L
p

given by

(g) fgd g s L
X

Also, the Banach dual norm p* of p is equal to p’ on L
p’ It then follows

from [2, p. 247] that there exist non-negative linear functionals i 2 on

Pl P2
on L

p
andL L such that I + 2

p’(f) p (f) p (@) pl(l + P2(2

Since i,2
on L

p
it follows from the Radon-Nikodym Theorem that

pVPl
L

2
f2 0 in Li,@2

are integrals, i.e., there exist functions fl’
respectively such that

i(g / gfid g L
p

Xp,
Thus, fi s L

i
and Pi*(i Pi’(fi) i 1,2 Since I + 2 it

follows that f fl + f2 also, p’(f) pl(fl) + P2(f2) Consequently,

AA ’)(f) i.e. (Pl V p2 )’ Pl P2P’ (f) >- (Pl P2

3. THE SUBSETS.

In addition to the subset P of F we will be interested in studying a

chain of subsets of P having certain desirable properties. In this section we

recall these properties, show their relationships to each other and consider some

general examples. References for this section are [4,5]. With the exception of

the subset satisfying the infinite triangle inequality, these subsets have been

studied before.

DEFINITION 3. i. Let p P Then:

(i) p has the Riesz-Fisher Property (RFP) if for each sequence {f in M+
n

such that %p(f < it follows that there exists a sequence {gn } in M
+

n

such that p(fn-gn) 0 and p(Egn) <

(ii) p satisfies the Infinite Triangle Inequality (ITI) if for each sequence

{fn in M+ it follows that p(Efn -< Y’P(fn
(iii) 0 has the Weak Fatou Property (WFP) if for each sequence {f } in M

+
n
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such that f i f s M+ and lim p(fn < it follows that p(f) <n

(iv) O has the Strong Fatou Property (SFP) if for each sequence {f } in M+
n

such that f + f f M+ it follows that lim (fn) (f)n

(v) p is of Absolutely Continuous Norm (ACN) if L Lp where L is defined
a a

to be the subspace of f in L
p

having absolutely continuous norm. Recall that

f in L has this property if for each sequence {f } in M
+

such that
n

fl >_ f + 0 the sequence {(f )} converges to 0
n n

Let R (resp.l,W,S) denote the subset of P consisting of the RFP

(resp. ITI, WFP, SFP) semi-norms. Also, let A denote the subset of S

(equivalently W) consisting of the ACN semi-norms. Finally, if B is any

subset of P let B denote the set B P of norms in B Thus, we obtain
o o

the subsets R ,I ,Wo,So,A of P where I R [4, Thm.4.2]. We then have
o o o o o o

the following sequences of proper inclusions:

A c S c W c I c R c P and A c S c W c R c P
o o o o o

Moreover, B c B for each choice of B A,S,W,I,R,P (Note that e Ao

and s A .) These inclusions, as well as the counter-examples for properness,o

can be found amongst the results and examples of [4.5].

is as in 2.3, then pgLEMMA 3 2 If pg
does.

belongs to S (resp.A) if

Recall that if O s F then ’ s P; actually, more is true.

LEMMA 3.3. If s F then ’ s S Also, if p s S then " o

PROOF. Let o--II.II Then o s S and hence, o s S for all g in
g

such that @(g) _< 1(3.2) Moreover, ’ sup{o o(g) _< I}. Hence,
g

S since P and S are closed under pointwise suprema (left to the reader).

The second part of the lemma is well-known.

QUESTION 3.4. Recall that A {p s W p is ACN} If P is ACN,

is it automatically WFP, i.e., in W ?

4. SUPREMA.

We begin our study of the lattice theory of P by asking if the subsets of

P introduced in Section 2 are closed under the formation of arbitrary pointwise
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suprema. We have already seen that P and S have this property" (proof of 2.3).

Our objective here is to summarize (for the sake of completeness) the known answers

to this question for the other subsets.

4. i. P is closed under the formation of arbitrary pointwise suprema. (In
o

fact, if {pj j j} c__ p and Pk is a norm, for some j k then sup(j)
is a norm.) The converse is false, i.e., it is possible for sup(@j) to be a

norm while all the @j are just semi-norms [4]. All that is required of the

Oj for their pointwise supremum to be a norm is that they be total, i.e.,

pj(f) 0 all j J implies f 0.

4.2. R and I are closed under the formation of arbitrary pointwise suprema.
o

This is not the case for R [4,p.147].

4.3 W and W are closed under the formation of finite pointwise suprema.
o

This is not true for infinite collections. In fact, there exists [4,p.150] a

sequence in W whose pointwise supremum is not in W
o

Although I R we have seen that W c I c R Furthermore, I is
o o

closed under the formation of arbitrary pointwise suprema, while W and R are

not. This is good reason for distinguishing the ITI property from WFP and RFP in

general.

4.4. S (as well as S is closed under the formation of arbitrary pointwise
o

suprema.

4.5. A and A are closed under the formation of finite pointwise suprema.
o

This is not true for infinite collections. In fact, there exists a sequence in

A whose pointwise supremum is not in A
o

QUESTION 4.6. Is R closed under the formation of finite pointwise suprema?

5. INFIMA.

In Section i, we saw that the infimum in P of two semi-norms @i,2 is

given by

(I A O2)(f inf{Pl(fl) + 2(f2) fl,f2 M
+

fl + f2 f}’ f e M
+

There are two cononical generalizations of this formula to the context of an

arbitrary collection {pj j J} of semi-norms. In this regard, it will be
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convenient to refer to a collection (fj)j
in M

+
(of countable type) if:

in M
+

as a J-decomposition of f

(i) fj 0 for all but countably many j in J

(ii) Z f. f in the almost-everywhere sense.
j J

If (fj)j has the property (i’) f. 0 for all but finitely many j in J

then we will say it is of finite type. Now let f s M+ and define:

and

k(f) inf{Z pj(fj) (fj)j
J

is a J-decomposition of f}

y(f) inf{Z p.(f (f) is a J-decomposition of f of finite type}
j 3 J J J

Note that the sums in each case have at most countably many non-zero terms.

As suggested by Luxemburg in [3], there is another less canonical generalization

of (Pl ^ 2)(f) motivated by (I ^ 2)’ I’ v P2’ namely,

o (sup(pj))’
In this section, we shall make use of all three of these generalizations.

It is well-known that o is a semi-norm; in fact, o S Moreover:

THEOREM 5.1. Each of the mappings y,k is a function semi-norm.

PROOF. The only part of the theorem for k needing verification is the

monotonicity; we will show this. The proof for y is similar to that of k

Suppose f, g M+ with f _< g Let {gk} be a sequence in M
+

such that

Zg
k

g Define fl min(f’gl) Then fl -< gl and fl -< f i.e.,

f f 0 Suppose we have obtained f f in M+ such thatfl I- 1’’’’’ n

fk gk k n and f + + fn -< f so that f’n f fl
Define fn+l min(fngn+l) Then fn+l -< gn+l and

fn+l -< f’n f fl fn’ i.e., f + + fn + fn+l <- f In this way, we

obtain a sequence {fk in M
+

such that fk f and fk gk k We

next show Ef
k

f (in the almost-every-where sense).

We have f(x) _< g(x) for x outside a null set. Let x be a point in

f >_0
n

X outside the null set. If f(x) g(x) then fk(x) gk(x) for all k so
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that

Efk(x %gk(x) g(x) f(x)

If f(x) g(x) then f(x) < g(x) and hence, fi(x) gi(x) for some i

Consequently,

i.e.,

fi(x) f’
i-I

(x) f(x) fl(x) fl(x) fi-l(X)

f(x) fl(x) + + fi_l(X) + fi(x)
which implies Zfk(x) f(x) i.e., Zf

k
f

Therefore, each decomposition of g by a sequence (gk) in M+ yields

+
a sequence decomposition (fk) of f in M having the properties fk <- gk

-< k Consequently, the same is true for any J-decomposition of g in M
+

since such is essentially a sequence (define f. 0 for g_. 0) Hence,

+
if (gj)j is a J-decomposition of g in M there exists a corresponding

J-decomposition f <_ g_. j e J Necessarily,j)j of f in for which fj
k(f) _< k(g) since the infimum for i(f) is over a larger index set.

Observe that each X,T,o is a lower bound for {pj j J}

Next we wish to compare y,k,o Obviously, k _< T Moreover, if J is

finite, then T k

LEMMA 5.2. If p satisfies the ITI (i.e., p I) and p is a lower

bound for {@j j e J} then _< X.

+
PROOF. Let f s M and let (fj) J

By our hypothesis, we have

be a J-decomposition of f in M+

o(f) p(Z fj) -< % @(fj) -< % @j(fj)
J J J

from which follows that p(f) _< X(f)

THEOREM 5.3. Let {pj j e J} be a subset of P with ,k,o as above.

Then o < k < y and o T" k" o"

PROOF. Since o S c I and o _< @j j J we have _< X _< %" (5.2)

j J ie %,’Hence, o o" k" %’" Now %" _< pj implies %’’ > Oj
is an upper bound for { j J} Thus, %’’ >- o’ since ’ sup(p)
Consequently, %’" _< o" o and o %’" This establishes the equalities. The
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following examples establish the inequalities.

EXAMPLE 5.4. Let X-- IN Define

(f) Zf(n)/2n (f) lim sup f(n)

and

pj(f) (f) + (f) f M
+

j 1,2,

so that {pj} is a constant sequence of norms. We leave to the reader the task

of verifying that X < y for this choice of {@j}
EXAMPLE 5.5. Let p be a non-trivial element of P such that O S

i.e., p" # in which case @" < For the collection {Oj} {O,2p}

we have o " < p-- X, i.e., o < X

LEMMA 5.6. For finite collections in S we have X =y (use 2 .8)

For the remainder of this section, we investigate the status of the infimum

in P,R,I,W,S,A. Once again, for {@j j J} ! P let a,X,y be as above.

LEMMA 5.7. The infimum of the . in P is T notationally,

y infp(@j) In particular, i A 2 infp(Pl,02 In this sense, P is

closed under the formation of arbitrary infima.

LEMMA 5.8. The infimum of a family in P which is bounded below in P
o o

also belongs to P This is not true for arbitrary families in P (For
o o

example, consider {(I/n)} for P .)
o

pj in I isTHEOREM 5.9. If {j}
_

I then the infimum of the

notationally, infl(Pj) X In particular, Pl A 2 infl(Ol’@2) In this

sense, I is closed under the formation of arbitrary infima.

PROOF. Fix > 0 and let {gn } be a sequence in M
+

for which

Z(gn) < By the definition of for each n there exists a jn-decomposition

(gn,j)jn of gn in M
+

such that

Let J {j jn
n gn,j

jnZ oj(gn,j) < k(gn + s/2n

# 0} Then J is a countable subset of jn and
n

oj(gn,j) Z @j(gnj) n 1,2
J
n
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Let J UJ which is also a countable subset of UJn Furthermore, if
n

j J then gn,j 0 all n Observe that

Z Z P (gn < Z + e/2n

n J J j [X(gn)
n

n

_< Z k(gn) + e
n

Therefore, rearranging the double series, we obtain

Z Z pj() Z Z pj(gn j)
n J

gn,
n J

n

% % Pj(gn J)
J n

Moreover {gn j g J n IN is a countable subset of M
+

satisfying
j

Thus, {gn,j

Z Z gn Z gn
n J ’J

is a subset of M
+

which is indexed by IN x J has countably

many elements and satisfies

Z Z gn,j Z Z gn Z gn
Jn nJ n

Thus, the family (Z gn,j)j is a J-decomposition of Z gn is M
+

n n

Consequently,

k(Egn) _< Z @j(Zg j)
n J n n’

Z Z @j(gn j) (@j s I)
J n

-< E Z @j (gn j)
n J

n

< Z k(gn + , for arbitrary > 0
n
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Hence,

n n

which implies that k I

If p is in I and p is a lower bound for {pj} then by 5.2 p

Hence, k infi(oj
COROLLARY 5.10. If {Oj _c Ro Io and % is a norm, then k is the

infimum of the Q. if R
3 o

COROLLARY 5.11. If Ol,p2 Ro and Pl A P2 is a norm, then Pl ^ P2
is the infimum of pl,P2 in Ro

PROPOSITION 5.12. If pl,O2 e W then I A 2 is the infimum of

pl,O2 is W Thus, W is closed under the formation of finite infima.

PROOF. Recall that belongs to W if and only if is equivalent

to " [5,p.472], i.e., there exists 0 < a such that a "
Thus, for pl,O2 e W there exists 0 < ai-< such that aioi-< Oi" Pi
i 1,2 Letting a min(al,a2) we have 0 < a _< and aPi-< Oi" Oi
i 1,2 From this it follows that

p2a(p A Pl" A P2 Pl A P2

i.e., Pl ^ P2 is equivalent to PI" ^ P2" However, by 2.8 we have that

Pl ^ P2 (Pl ^ P2 Hence, Pl ^ P2 W

COROLLARY 5.13. If PI’P2 Wo and pl ^ P2 e Po then Pl ^ P2 e Wo
PROPOSITION 5.14. If {pj c_C S then the infimum of the pj in S is

; notationally, infs(Pj) In particular, Pl ^ P2 infs(PI’P2)
(recall 5 .6) In this sense, S is closed under the formation of arbitrary

infima.

PROOF. We have seen that is a lower bound for {pj If p in S is

p,any lower bound for {pj} then p’ >_ pj j J so that >_ sup(p

Consequently, p" (sup(p)) i e p

PROPOSITION 5.15. The infimu of a family in S which is bounded below
o

S is also in P This is not true for arbitrary families in S (5.8),
O O O
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PROOF. By 5.14, o infs(Pj belongs to S for {pj} _c So and

bounded below in S In order that s S it is necessary and sufficient
o o

that sup(oj’) be saturated [5,p.458]. By hypothesis, there exists in So
j s J so that ’ sup(@)such that p-< @j j s J Hence, p’ @j

where ’ is saturated [5,p.458]. Therefore, sup(o) is also saturated

[5,p.454], i.e., is a norm.

PROPOSITION 5.16. If @l,P2 s A then Pl A P2 is the infimum of @i,2
in A Thus, A is closed under the formation of finite infima.

QUESTION 5.17. Are P ,R closed under the formation of finite infima?
o

6. SUBLATTICES AND COMPLETENESS

We are now prepared to determine (as well as we can) which of the subsets

introduced in Section 3 are sublattices of P For those which are, we are also

interested in whether or not they are complete. This section is essentially a

lattice-theoretic summary of the previous three sections.

With regard to completeness, it is worthwhile recalling the following. A

lattice is complete if it is closed under arbitrary suprema and infima. A

lattice is Dedekind complete if it is closed under arbitrary suprema and infima

of collections which are suitably bounded above for suprema and below for infima.

Since s A and s A these two notions of completeness are usually the
o

same but not always.

As a consequence of the results of Section 5, we see that it is possible

for a subset of a sublattice to have an infimum in the sublattice which is

different from its infimum in the whole lattice. Therefore, it is possible for

a sublattice to be a complete lattice, but not a complete sublattice!

THEOREM 6.1. P is a complete lattice with supremum given pointwise and

infimum given by T of Section 5. (See 2.5, 2.6, 4.1, and 5.7.)

REMARKS 6.2. It is not clear whether P is a sublattice of P since we
o

do not know if P is closed under finite infima. For this reason, it is also
o

difficult to determine the sublattice status of R ,W So,A However, P is
o o o

Dedekind complete in the sense that: (i) it is closed under the formation of
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arbitrary pointwise infima and (ii) it is closed under the formation of

y-infima of arbitrary collections bounded below in P
o

THEOREM 6.3. I is a sublattice of P with supremum given pointwise and

infimum given by k of Section 5. Thus, I is also a complete lattice

(4.2, 5.9), but not a complete sublattice of P (next example).

EXAMPLE 6.4. Let X lq and define

+
oj(f) supf(n) f M j 1,2

j lq} the correspondingso that pj S all j For the collection {pj
Y is given by

%’(f) lim sup(f(n)) f s M+

We may verify that 3" I i.e., infp(@j) I

THEOREM 6.5. W is a sublattice of I which is not (Dedekind) complete

in general (4.3, 5.12).

THEOREM 6.6. S is a sublattice of W with supremum given pointwise and

infimum given by o of Section 5. Thus, S is also a complete lattice, but not

a complete sublattice of W

PROOF. See 4.4 and 5.15. That S is not complete in W can be seen from

the example in 7.3. For this choice of {O
n

we may verify that

+
k(f) %,(f) sup(f(n)) + lim sup(f(n)) f s M

Then s S all n k W [4,p.150], k S while o S Thus we
n o

have another example of o # k (recall 5.5).

THEOREM 6.7. A is a sublattice of S which is not (Dedekind) complete.

PROOF. See 4.6 and 5.16.

7. DEMORGAN’S LAWS

In view of 2.8, it is natural to ask if DeMorgan’s Laws hold in general.

Once again, let {j j J} c__ p The next theorem shows in what sense one

of the two DeMorgan Laws is valid.

THEOREM 7.1. In general, [infp(@j)]’ sup(p’)j
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PROOF. For convenience, let y infp(pj) and sup(p) We then

have

sup Jv IfgldL Y(g) -< i} f g M
+y’ (f)

To show %" first observe that %’’ >_ since %" _< @j i.e.,

%’’ >- Oj’ j e J Suppose next that f s M
+

%’(g) <_ and (gj) is a

J-decomposition of Igl in M
+

of finite type. Since %’(g) _< we may

assume Zpj(gj) < i.e., pj(gj) < j s J If (f) then

’(f) < j e J and hence%’’(f) also. If (f) < then @j

f ]fgld Zfj fgjd (finite sum)

X X

_< Zj pj’(f) @j(gj) (Hider’ s Inequality)

-< (f) Z oj(gj)
J

Thus, from the definition of %" it follows that

Ifgldg -< (f)%’(g)

_< (f)

y’(f) -< (f) i.e.,

This theorem yields an alternate proof of the equality in 5.3. Specifically,

we have

COROLLARY 7.2. Let the notation be as in 5.3. Then o %,"

’) by the theorem, soPROOF. Since %" infp(pj) we have %’’ sup(oj
that %’" (sup(pj)) o

In general, as the next example verifies, the other DeMorgan Law is false.

EXAMPLE 7.3. Let X IN Define

@n(f) sup(f(k)) + sup(f(k)) f s M’ n 1,2
k k> n
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We may verify that:

(i) each Pn is an SFP norm, i.e., On S
o

n 1,2

(ii) infp(pn)(f) sup(f (k)) + lim sup(f (k)) f M
+

k k
(iii) infp(pn does not have the SFP.

Consequently, letting o
n On we see that infp(On infp(@n) does not

have the SFP while (sup(on) does. Therefore, (sup(On)) can’ t equal

infp (On’)
Despite the previous example, there is a partial result of interest.

{Oj ’) (apply 2 .7).LEMMA 7.4. If J J} ! P then (sup(0j))’ -< infs(Oj
However, infs(Oj)’ sup(oj)

Of course, for finite families {0j} it is true that (sup(oj))’ infp(Oj)

infs(@j) (recall 2.8).

8. CONCLUDING REMARKS.

A lattice-theoretic question which we have not yet considered is whether P

(or any of its sublattices) is distributive. As indicated by Luxemburg in [3],

the answer is "no in general. More specifically, there exist norms 01,02,03

in A for which
o

(Pl v p2 A P3 > (Pl A p3 V (P2 A p3

thus violating one of the distributive laws. As a consequence of this, the

other distributive law is also violated, in general, because

^p) v < v p) ^ (’ v ’)(Pl P3 01 P2 P3

Therefore, both distributive laws fail in A and hence, in P and each of
o

its sublattices of interest.

Finally, observe that at first glance, finite sums seem to have nothing to

do with lattice theory of function semi-norms. However, quite the opposite is

e P and is equivalent totrue If {01 ,@n c p then 01 + + On

sup(pl,...,pn Consequently, its associate (@i + + On)’ is equivalent to

infp(@I,... ,)
In view of the previous, it is of interest to know which of the subsets of
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P (introduced in Section 2) are closed under equivalence. The spaces

P R, I, W are closed under equivalence; S isn’t. Is A
O
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