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ABSTRACT. The main result is that if the translation complement of a translation

2
plane of order q contains a group isomorphic to SL(2,q) and if the subgroups of

order q are elations (shears), then the plane is Desarguesian. This generalizes

earlier work of Walker, who assumed that the kernel of the plane contained GF(q).
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2 r
THEOREM. Let w be a translation plane of order q where q p and p is a

prime. Let G SL(2,q) be a subgroup of the translation complement of w whose ele-

ments of order p are elations. Then w is a Desarguesian plane.

This theorem is a special case required in the classification of all translation

2
planes w of order q which admit a collineation group G -- SL(2,q) [i, 2]. That clas-

sification is a generalization of the work of Walker and Schaeffer [3, 4], who

assume, in addition, that the kernel of w contains GF(q).

To begin the proof, let W be a vector space of dimension 2r over GF(p). Since
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is a 4r-dimensional vector space over GF(p), we may represent as W @ W so that

the points of are vectors (x,y), where x,y E W. The components of (i.e., the

lines containing (0,0)) have the form [(0,y)" y E W} and (x,xA)" x E W} for various

GF(p)--linear transformations A: W / W. We will denote the components by their de-

fining equations x 0 and y xA, respectively. Next, note that each Sylow p-sub-

group Q of G is abelian and hence all the elements (# l) of Q have the same elation

axis. Let S denote the set of all components of and let N be the subset of elatior

axes; thus ISl q +l and INI q+l.

LEMMA i. (Hering [5], Ostrom [6]). We may coordinatize as above such that

where K is a field of 2r 2r matrices over GF(p) and K -- GF(q). Further, the ela-

tion axes (that is, the elements of N) have the form y xA (A E K) and x 0.

LEMMA 2. There is an element g G such that the following conditions are sat-

isfied: (i)Igllq+l (ii)Igl Ipt-1 for t < Pr; and (iii)g fixes a component

of which is not in the set N.

PROOF. The integer s is a p-primitive prime divisor of q -1 if s is a prime,

2 pt 2slq -i, and s -I for 0 t 2r (hence slq +i). q -I has a p-primitive prime

divisor s unless q 8 or q p and p +I 2
a [7]. In the first case, let gl s sc

that g satisfies conditions (i) and (ii). Then g also satisfies condition (iii)

because Igl is a prime and g permutes the q(q-l) components in S\N. If q 8, choose

g such that Igl 9. Since IS\NI 56 0 (mod 3), g must fix one of the elements of

S\N. Finally, if q p and p +l 2
a

h
2

choose h of order 8 in G and let g Then

g has order 2 in G SL(2,K), so g fixes every component of 7. Hence, h

has orbits of lengths i, 2, and 4 in S, and since 4 p(p-l) then h has an orbit of

h
2

length i or 2 on S\N. Therefore g fixes an element of S\N.

LEMMA 3. Choose g G so that g satisfies the conditions of Lemma 2, and let

L(g) be the ring of matrices generated by g over GF(p). Then L(g) is a field-- GF(q and L(g) contains the subfield

K:= A(

PROOF. g G c GL(2,K) by Lemma i. As a 2 2 matrix over K, g has a minimum
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[
polynomial f(x) over K of degree g 2. Since Igl q(q-l), then the degree of f is 2

2and f is irreducible over K. Therefore, g and K generate a field U -- GF(q’ which

as a subfield. Since Igl IPt- i (for t < 2r), then L(g) U andcontains L(g)

L(g)

LEMMA 4. Let g of Lemma 2 fix the component y xT of S\N. Then KIT] is a

field isomorphic to GF(q ).

PROOF. L(g)and hence I[0A A0]. A E K1 fix the component y xT, thus K

centralizes T. T and the elements of K are 2r 2r matrices which act on a vector

space V V(2r,p) of dimension 2r over GF(p). K makes V into a 2-dimensional vector

space and T acts as a K-linear transformation of V. Hence, the minimum polynomial

f(x) of T over K has degree < 2. If T has an eigenvalue A in K, then the distinct

components y xT and y xA of w must intersect, which is impossible. Therefore, T

is irreducible over K and KIT] -- GF(q ).

We can now complete the proof of the Theorem. Let w* denote the Desarguesian

affine plane of order coordinatized by the field L KIT]; i.e., the points of

are [(x,y)" x,y E L} and the components of * are [y xC- C E L} U Ix 0}. Clearly,

GL(2,L) acts as a collineation group of *. We superimpose * on w by identifying

the points of w* and . Since K c L and T L, the components y xA of N and y xT

are components both of * and . Since G= SL(2,K) GL(2,L), then G acts both as a

collineation group of w* and of . Finally, recall that SL(2,K) acts transitively on

the q(q-l) components of * outside of N (for example, the stabilizer subgroup in

SL(2,K) of a component of * outside N has order q +i). Therefore, the images of

y xT under G constitute q(q-l) components both of * and of ; so as

required.
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