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ABSTRACT. A fixed point theorem for a pair of random generalized non-linear contrac-

tion mappings involving four points of the space under consideration is proven. It is

shown that this result e!udes the result of Lee and Padgett [i]. Also an application

of the result is given.
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1. INTRODUCTION.

The idea of fixed points plays a very important role in solving deterministic

operator equations. Recently the idea of random fixed point theorems which are the

stochastic generalization of the classical fixed point theorems has become a very ira-

portant part of the theory of some operator equations which can be regarded as random

operator equations. Many interesting results have been established by various authors

(see for example Bharucha-Reid [2], Hans [3], Padgett [4], Tsokos [5], Tsokos and Pad-

gett [6], Lee and Padgett [7]) in this area.

Recently, a fixed point theorem for a pair of generalized non-linear contraction

mappings involving four points of the space under consideration, which includes many

well known results as special cases has been established by Achari [8] (see also

Achari [9], Pittanuer [i0]).

The object of this paper is to study a stochastic version of a pair of generalized

non-linear contraction mappings of Achari [8]. Also it has been shown that this result
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generalizes the result of Lee and Padgett [i]. It is interesting to note that with

suitable modification of the conditions of the theorem, we can easily obtain stochastic

generalizations of the results of different classical fixed points. Finally, we apply

Theorem 2 to prove the existence of a solution in a Banach space of a random nonlinear

integral equation of the form

x(t;) h(t;) + k(t,s;)f(s,x(s;))d(s) (I.i)
S

where S is a locally compact metric space with metric d defined on S S, D is a corn-

plete -finite measure defined on the collection of Borel subsets of S and the inte-

gral is a Bochner integral.

2 PRELIMINARIES

In this section, we state some definitions as used by Lee and Padgett [i]. Let

(,S,P) be a complete probability measure space, and let (X,) and (Y,C) be two mea-

surable spaces, where X and Y are Banach spaces and B and C are -algebras of Borel

subsets of X and Y, respectively. First, we state the usual definitions of a Banach

space-valued random variable and of a random operator.

DEFINITION i. A function V: - X is said to be an X-valued random variable

(Random element in X, or generalized random variable) if { : V() B} S for

each B .
DEFINITION 2. A mapping T(): X Y is said to be a random operator if

y() T(m)x is a Y-valued random variable for every x X.

DEFINITION 3. Any X-valued random variable x(o) which satisfies the condition

P({: r()x(Io) y()}) i

is said to be a random solution of the random operator equation T()x y().

DEFINITION 4. Let yj(), j 1,2, n be second order real valued random vari-

ables on a probability space (f,S,P), that is yj() L2(,S,P). The collection of all

n-component random vectors y’ () (YI(I)’ Yn ()) constitutes a linear vector

space if all equivalent random vectors are identified. Define the norm of y by
1/2

max ;IYjl max lyjl2dp)
L
2 l<j-<n l<j<n

The space of all n-component random vectors y with second-order components and norm

n
given by I’ll n

above is separable Banach space and will be denoted by Lm(,S,P or
L
2
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n
simply L2. Let S be locally compact metric space with metric d defined on S S and

let be a complete o-finite measure defined on the Borel subsets of S.

n(,S,P)) to be the space of all continu-DEFINITION 5. We define the space C(S,L
2

n(,S P) with the topology of uniform convergence on com-ous functions from S into L
2

n
pacta. It may be noted that C(S,L2(,S,P)) is locally convex space whose topology is

defined by a countable family of seminorms given by

sup Ix(t;)II n’ j 1,2Ix(t;) lJ
tecj e

2

DEFINITION 6. Let B and D be Banach spaces. The pair (B,D) is said to be ad-

missible with respect to a random operator U() if U()(B) D.

DEFINITION 7. A random operator T() on a Banach space X with domain D(T()) is

said to be a random generalized nonlinear contraction if there exists non-negative

r
real-valued upper semicontinuous functions i()’ i 1,2 5 satisfying i ()(r) <

for r > 0, i()(0) 0 and such that

IIT(oJ)xI T(oo)x211 -< ql(llxI x211) + q2(I IxI r(o)XllI) + q3(Ilx2
+ 4(I IxI T()x21 I) + 5(I Ix2 T()Xll I)

for all Xl,X2 D(T()).

3. A FIXED POINT THEOREM FOR A PAIR OF RANDOM GENERALIZED NONLINEAR CONTRACTIONS.

THEORY.! i. Suppose AI( and A
2 () are a pair of random operators from a separ-

able Banach space X into itself such that

IAl()xI Am()x211 < @l(IIxI x211) + 2(IIxI Al()x31 I) + 3(Ilx2 Am()x411)
+ 4(I IxI A2()x41 I) + 5(I Ix2 Al()x31 I) (3.i)

where . (), i 1,2 ,5, are non-negative real-valued upper semicontinuous functions

r
satisfying i()(r) < for r > 0, i=O()(0) and for all Xl,X2,X3,X4 X. Then there

exists an X-valued random variable N() which is the unique common fixed point of

AI() and A2().
PROOF. Let x,y X and we define

x
I A2()y x

2 Al()x x
3 x, x

4
y,

Then (3.1) takes the form
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IAI()A2()Y A2()AI()xll -< i(I IAI() x A2()Yl I) + 2(I IAl()x A2()y I)

+ $3(I IAl()x A2()Yl I)- (3.2)

Let x
O

X be arbitrary and construct a sequence {x defined by
n

Al()Xn_I Xn, A2()xn Xn+l, Al()Xn+I Xn+2, n 1,2

Let us put x x_1 and y x in (3.1), then we have
n+/- n

IAI ()A2 ()Xn-A2 ()AI ()Xn_I II < i (I IAl()xn_l-A2 ()Xnll) 2 (I IAI ()Xn_l-A2
()x

n
If)

or

+ 3(I IA1 ()Xn_1
A
2

Xn+2 Xn+II < i(I Ixn Xn+II I) + 2(I Ixn Xn+II I) + 3(I Ixn Xn+iI I) (3.3)

We take n to be even and set n IXn-i Xn II- Then

n+2 II Xn+ Xn+2 II < i (llXn Xn+l I) + 2 (IIxn Xn+i I) + 3 (I Ixn Xn+1
< i (5,+i) + 2 (n+l) + @3 (an+l)" (3.4)

From (3.4) it is clear that a decreases with n and hence a a as n 0%
n n

Then since i is upper semicontinuous, we obtain in the limit as n

3
a _< l(a) + 2 () + 3 () < e

which is impossible unless O.

LetS> 0.

Now, we shall show that {x is a Cauchy sequence. If not, then there is an e > 0 and
n

for all positive integers k, there exist {m(k)} and {n(k)} with m(k) > n(k) >_ k, such

that

d
k lXm(k) xn(k) ll > E.

We may assume that

lXm(k)_l xn(k) ll < g,

by choosing m(k) to be the smallest number exceeding n(k) for which (3.5) holds.

(3.5)

Then we have

< ]Xm(k) Xm(k)_iI + lXm(k)_1 Xn(k) ll

< m(k) + < + E

which implies that d
k

g as k . Now the following cases are to be considered.

(i) m is even and n is odd,

(ii) m and n are both odd,
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(iii) m is odd and n is even,

(iv) m and n are both even.

"e (i)

d
k lxm Xnll < lxm Xm+lll + lXm+1 Xn+iIl + fixn

< r+l + n+l + IIAl()Xm-
By putting x

I Xn, x
2 Xm, x

3 Xn_l, x
4 Xm_1 in (3.1), we have

< m+l + n+l + }i(I IXm- Xnll) + 2(I IXn Al()Xn-iI I) + 3(I IXm A2()Xm-ll I)

+ }4(I Ixn Am()Xm_ll I) + 5(I Ixm Al()Xn_ll ])

-< m+l + n+l + 91() + 94(dk) + 5 (dk)"

Letting k we have

3
g <g.

This is a contradiction if g > 0. In the Case (ii), we have

d
k lxm xnll< lxm Xm+lll + lXm+2 Xm+iII + lXm+2 Xn+lll + lxn Xn+lll

< m+2 + m+l + n+l + IIA2()Xm+l- Al()Xnl I.

By putting xI xn, x
2 Xm+I, x

3 Xn_I, x4 Xm in (3.1), we get

< em+2 + m+l + n+l + 91(I IXm+1 XnIl) + 2(I Ixn Al()xn_ilI)
+ 3(llXm+I A2()Xmll) + 4(IIxn A2()Xmll) + 5(llxm Al()Xn_ll I)

< m+2 + m+l + n+l + i (dk + am+l) + 4 (dk + am+l) + 5(dk + am+l)"
3

Letting k in the above inequality we obtain < g, which is a contradiction if

g > 0. Similarly, the cases (iii) and (iv) may be disposed of. This leads us to con-

clude that {x is a Cauchy sequence. Let N() be the limit of the sequence. We shall
n

now show that Al(00)( () A2()(). Putting x
I Xn_l, x

2
(), x

3 Xn+l,

x
4

xn, in (3.1), we get

l()Xn_l A2()N()I < i(I IXn_1 n()ll) + 2(I IXn_I Al()Xn+ll I)

+ 3(I In() A2()Xnl I) + 4(I IXn_I A2()Xnl I) + 95(I In() Al(m)Xn+ll I).

Letting n o% we get {N(m) A2<)N<)I < 0 which is a contradiction and hence

N() A2()N(). In the same way, it is possible to show that N() AI()N().
Thus N() is a common fixed point of AI() and A2(). Suppose there is another fixed



4 72 J. ACHARI

point () # () of AI() and A2(). Then putting x
I

x
4 () and x

2
x4 ()

in (3.1), we have

If:i() ()II < i(I I() ()I I) + 2(I I() ()I I) + 3( () () )

3

which is a contradiction. Hence () (). This completes the proof. If in Theo-

rem lwe put AI() A2() A() and x
I x

3 x, x
2

x
4 y then we have the fol-

lowing theorem which we only state without proof.

THEOREM 2. If A() is a random generalized nonlinear contraction from a separ-

able Banach space X into itself, then there exists an X-valued random variable which

is the unique fixed point of A().

We now have the following corollary of Theorem 2.

COROLLARY i. If Ab() is a random generalized contraction from X into itself for

some positive integer b, then A() has a unique fixed point () which is an X-valued

random variable.

PROOF. Since Ab() is a random generalized nonlinear contraction operator on X,

by Theorem 2, there exists a unique X-valued random variable () such that

AD()N() N().

We claim that A()() (). If not, consider

3 IB (m)-# (m) (m) )4 11A(m)(m)-# (m) (m) )5 11 (m)-#+l (m) (m) (3.6)

Moreover, the left hand side of (3.6) is

From (3.6) and (3.7), we have

(3.7)

IA()() () -< : (I IA()()-()I I+3(I IA()()-() I)+5 (I

which is a contradiction and hence A()() ().

We remark that under the conditions AI() A2() A() and x
I

x
3 x, x

2
x
4 y,

l ’ j()(r) 0, j 2,3,4,5, the Theorem i reduces to the following corollary.

COROLLARY 2. (Lee and Padgett [i]). If A() is a random nonlinear contraction

operator from a separable Banach space X into itself, then there exists an X-valued

random variable () which is the unique random fixed point of A().
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4. APPLICATION TO A RANDOM NONLINEAR INTEGRAL EQUATION.

In this section we give an application of Theorem 2 to a random nonlinear integral

equation. To do so we have followed the steps of Lee and Padgett [I] with necessary

modifications as required for the more general settings. We shall assume the following

conditions concerning the random kernel k(t,s;). The function k(.,.;.): S x Sx-R

is such that

(i) k(t,s;00): S x S L(,S,P) such that II Ik(t,s;)lll lx(s;)ll is -n
L2n(,S,p)) where for eachintegrable with respect to s S for each t S and x C(S,L2

(t,s) S x S

II Ik(t,s;) II Lo (fl, S;P)

is the norm in Loo(,S,P)

(ii) for each s S, k(t,s;) is continuous in t S from S into Lo(,S,P); for

each t e S, k(t,s;) is continuous in s S from S into L(fl,S,P); and

(iii) there exists a positive real-valued function H on S such that

n( S,P)) and such that for each t s SH(s)[[x(s;)l is -integrable for x C(S,L2

111k(t,u;) k(s,u;)IIl Ix(u;)[l < H(u)[Ix(u;)l[
n n

L
2 L2

n(,S,P) We now define theThus, .for each (t,s) S x S, we have k(t,s;)x(s;) L
2

n(,S,P)) byrandom integral operator T() on C(S,L2

[T (m) x] (t ;) k(t,s;)x(s;)d(s) (4.1)
S

where the integral is a Bochner integral. Moreover, we have that for each t e S,

n
[T(m)x](t;) L2n(,S,P) and that is a continuous linear operator from C(S,L2(fl,S,P))
into itself. We now have the following theorem.

THEOREM 3. We consider the stochastic integral equation (!.i) subject to the

following conditions

n
(a) B and D are Banach spaces stronger (cf. [i]) then C(S,L2Q,S,P)) such that

(B,D) is admissible with respect to the integral operator defined by (4.1);

(b) x(t;) - f(t,x(t;)) is an operator from the set

Q(O) {x(t;m): x(t;) D, l[x(t;m) l[ D 0}

into the space B satisfying



474 J. ACHARI

< i()(I Ix(t;) y(t;)llD + 2()(I Ix(t;)lf(t,x(t;)) f(t,y(t;))ll
B

f(t,x(t;))l ID)+3()(] ]Y(t;)-f(t,y(t;))ll D) + l()(] Ix(t;)-f(t,y(t;))l D)

+ 5()(I lY(t;)-f(t,x(t;))l D)

for x(t;), y(t;) Q(O), where i ()’ i 1,2 5 are non-negative real-valued

r
upper semicontinuous functions satisfying i()(r) < for r > 0 and i()(0) 0;

(c) h(t;) D.

Then there exists a unique random solution of (i.I) in Q(0), provided c() < i and

+ 2c() If(t;0) B
< 0(i- c()) where c() is the norm of T().

PROOF. Define the operator U() from Q(p) into D by

[U()x](t;) h(t;) + | k(t,s;)f(s;))d(s).
S

Now

< lh(t;)l + c()llf(t x(t;))ll BII [U()x](t;)]l D D

< lh(t;)llD + c()llf(t;0)ll B

Then from the conditions of the theorem

+ c()llf(t,x(t;)) f(t;0) IIB.

c()llf(t,x(t;))-f(t,0)ll B
< c()[I() (I Ix(t;)ll D

+ 2()(I Ix(t;)-f(t,x(t;))llD)

Hence

i.e.

+ 3(m)(llf(t;0)l ID) + 4()(llx(t;)llD) + 5()(llf(t,x(t;))llD),
3 <

3 3
c() If(t,x(t;) f(t’0)

B
c()p + c()l ]f(t;0) 1B

< lh(t;)ll + 2c()llf(t;0)ll B + c()pl[g()x](t;m)ll D D

< p(1 c()) + c()p

<

Hence [U()x](t;) e Q(O).

Now, for x(t;), y(t;) e Q(O) we have by condition (b)

l[U()x](t;) [U(o)y](t;o)II
D

Ill k(t,s;oo)[f(s,x(s;o)) f(s,y(s;o))ldD(s)ll
D

S

< c()[I()(I Ix(t’) Y(t;)l] D)< c()l If(t,x(t;)) f(t,y(t;))ll
B

+ 2()(llx(t;) f(t,x(t;)) D) + 3()([ lY(t;) f(t,y(t;)) D)

+ 4()(] Ix(t;) f(t,y(t;))l + 5()(lly(t;) f(t,x(t;))llD)
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<- i()(I Ix(t;) -y(t;)llD + 2()(llx(t;) f(t,x(t;))l D

+ 3 ()(I ly(t;) f(t’y(t;))I ID) + 4 ()(I Ix(t;) f(t,y(t;))I D)

+ 5()(I ly(t;) f(t,x(t;))l D)

since c() -< i. Thus U() is a random nonlinear contraction operator on Q(p). Hence,

by Theorem 2 there exists a unique X-valued random variable x*(t;) e Q(p) which is

a fixed point of U(), that is x*(t;) is the unique random solution of the Equation

(1.1).
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