Internat. J. Math. & Math. Scdi. 363
VokL. 6 No. 2 (1983) 363-370

FUNCTIONS IN THE SPACE R2(E)
AT BOUNDARY POINTS OF THE INTERIOR

EDWIN WOLF

Department of Mathematics
Marshall University
Huntington, West Virginia 25701

(Received September 15, 1982)

ABSTRACT. Let E be a compact subset of the complex plane C. We
denote by R(E) the algebra consisting of (the restrictions to E of)
rational functions with poles off E. Let m denote 2 - dimensional
Lebesgue measure. For p 2 1, let RP(E) be the closure of R(E) in

LP(E,dm) .

In this paper we consider the case p = 2. Let x ¢ JE be a bounded
point evaluation for Rz(E). Suppose there is a C > 0 such that x is
a limit point of the set S = {y|ye Int E, Dist(y,dE) = Cly - x|}.
For those y ¢ S sufficiently near x we prove statements about
[£(y) - f(x)lfor all f ¢ R(E).
KEY WORDS AND PHRASES. Rational functions, compact set P - spaces, bounded point
evaluation, admissible function.
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1. INTRODUCTION AND DEFINITIONS

Let E be a compact subset of the complex plane C. We denote by
R(E) the algebra consisting of (the restrictions to E of) rational
functions with poles off E. Let m denote 2 - dimensional Lebesgue
measure. For p 2 1, let RP(E) be the closure of R(E) in LP(E,dm).
A point x ¢ E is said to be a bounded point evaluation (BPE) for

RP(E) if there is a constant F such that
1

|£(x)| s Fe{] |£(2)|Pam(2) }Pfor all feR(E).
E
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In [4] we studied the smoothness properties of functions in
RP(E), p > 2, at BPE's. When p = 2, the situation is quite different
(see Fernstrom and Polking [2] and Fernstrom [1]). 1In [5] we
showed that at certain BPE's the functions in R2(E) have the following
smoothness property: Let x ¢ 3E be both a BPE for Rz(E) and the
vertex of a sector contained in Int E. Let L be a line segment that
bisects the sector and has an end point at x. Then for each ¢ > 0

there is a § > 0 such that if

y e L and |y - x| < §, |[f(y) - £(x)]| = e”f”2 for all £ ¢ R(E). The
goal of this paper is to extend this result to certain cases where
there may not be a sector in Int E having vertex at x, but x is still

a limit point of Int E.

If x ¢ E is a BPE for RZ(E), there is a function g ¢ Lz(E) such
that £(x) = [ fg dm for any f ¢ R(E). Such a function g is called a
E

representing function for x.
A point x ¢ E is a bounded point derivation (BPD) of order s for

RZ(E) if the map £ - f(s)(x), f ¢ R(E), extends from R(E) to a bounded

linear functional on Rz(E).

n-1

Let A (x) denote the annulus {z]27 s |z - x| = 277}, Let

A;(x) = {z]2'"‘2 < |z - x| s 2—n+l]_ If x = 0, we will denote A _(0)

] )
by Al and An(o) by A .

For an arbitrary set X ¢ C we let CZ(X) denote the Bessel capacity

of X which is defined using the Bessel kernel of order 1 (see [3]).

We say that ¢ is an admissible function if ¢ is a positive, non-
-1 . .
decreasing function defined on (0,«), and re.¢(r) is nondecreasing

+
and tends to zero when r = 0 .

Using the techniques of [4] and [2] one can prove:
THEOREM 1.1. Let s be a nonnegative integer and E a compact set.

Suppose that x is a BPE for RZ(E) and ¢ is admissible. Then x is
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represented by a function g ¢ Lz(E) such that

g S € LZ(E)
(z-x) "+ g (| z-x|) -
-]
if and only if I 22“(S+1)¢(z'“)'2c2(An(x)-E) < o

n=0

2. THE MAIN RESULTS

Let X ¢ J3E be a BPE for RZ(E). We may assume that x = 0 and
that E © {|z] < 1}. Suppose there is a positive constant C such that
0 is a limit point of the set S = {y|y ¢ Int E, Dist(y,3E) 2 C|y|].
We will construct a function g ¢ LZ(E) which represents 0 for R2(E)

and has support disjoint from S.

LEMMA 2.1. Let 0 €dE be a BPE for R2(E). Suppose there is a
positive constant C such that 0 is a limit point of the set
S = {y|y ¢ Int E, Dist(y,3E) 2 C|y|}. Then there is a function

g e LZ(E) such that:

(i) g represents 0 for R2(E),

(ii) m((supp g) N S) = 0,

2

(iii) For all n 22, [ |g] - E)

am < r & 2%k c,(
A _NE

- f5]

where F is a constant independent of n.

Aokl

PROOF. For each i, i =0,1,2,... consider all the intersections

-i-1

of the set A, = {z|2 < |z| s 27%} with the bounded components of

C - E. Let Yi be the closure of the union of these intersections.

Since Yi is compact, it can be covered by finit :ly many open discs of

radius <c3"1271"1 et the union (finite) of these discs be denoted

by Bi' The set Bi is bounded by finitely many closed Jordan curves

each of which is the union of finitely many circular arcs. Each set
B, is contained in a set Ci bounded by finitely many closed Jordan

curves Fi j = l,2,..,ni such that if z belongs to any one of these

j’
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curves, Dist (z,B;) = 2037127171,

Now for each k, k = 0,1,2,... choose a function Ak € Ci
such that:

1
(1) supp Ay < Ay

~2k-2

-2k-1
(2) A (2) =1 for z ¢ {z]|2 s |z] s 2 3N By
@
(3) kk(z) =0 for z £ u c,
i=o
, (2) A, (2)
k 2k+1 k . 52k+1
S L S - SR PR
where z = x, + ix2 and Fl and F2 are constants independent of k.
-2k-3 -2k-2
(5) A (2z) + A 1(2) =1 for z ¢ {z] 2 s |z| s 2 } N Byyo

Given any ¢ > 0 we use a lemma of Fernstrom and Polking [2] to

obtain functions#k € c® such that:

(1) ¥ (z) =1 for z near A; - {z | pist(z,E) < ¢].
(2) FIoP oy @ |2 am s p22X@lBD e @l -
-k+1 k
|z|=<2
for g = (0,0), (0,1), and (1,0). Here the constant F is independent

of ¢ and k.

1)
Since supp xk c A2k+l , we have *2k+1' lk = Ak on the
1
]

@
set {z | Dist(z,E) 2 ¢}. Thus (2;‘, Yors1® A = Lon {|z] = 4

{z |Dist(z,E) < ¢}. Choose X ¢ C: with x(z) = 1 near E. Set

h(z) = x(z) » _1. For each double index B = (0,0),(0,1), and (1,0)
nz

there is a constant F_, such that

B
10Ph(z) | s Felz"20IEL,

@ @
Set £ = h'ﬁ Yo+l * Mg g Yore1 By

where hk = lkh.
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Since supp lk c A2k+l , the above inequalities imply that

0Ph, (2) | s Fg2 (2K (B

@
The subadditivity of C2 and the convergence of I 2

0
(see Theorem 1l.1) imply that the net [fe} is bounded in Li. There

2k
C2(Ak - E)

is a subsequence that converges weakly to a function f ¢ Li loc
’

which satisfies. f(z) = %éil for z ¢ C - E and f(z) = 0 for every

z ¢ EN {z|Dist(2z,3E) 2 C|z|}. Setg=-23 f. Theng ¢ LZ(E)
2 3z
since f ¢ Ll(E), and g is a representing function for 0. The

proof of (iii) proceeds as in [5] .

The above lemma can be used to prove the following theorem
in almost the same way that in [5] Lemma 5.1 is used to prove

Theorem 5.1.

THEOREM 2.1. Let 0 ¢ JE be a BPE for RZ(E). Let C be a positive
constant such that 0 is a limit point of the set
S = {y|y ¢ Int E, Dist(y,dE) = C |y|}. Let g be a representing

1 € LZ(E) where ¢ is an

function for 0 and suppose that g(z).¢(]|z|)"
admissible function. Then for any ¢ > 0 there is a § > 0 such that if

y ¢ S and |y| < 8,
[£(y) - £(0) | = es(|yD £,

for all £ ¢ R(E).
Using this theorem and the methods in [4] one can prove:
COROLLARY 2.l1. Suppose that all the conditions of Theorem 2.1
hold. Suppose, moreover, that s is a positive integer such that

le L2(E). Then for each ¢ > 0 there exists a

g(z) -2 % g(|z|)”
6 > 0 such that if y ¢ S and |y| < &,

£(s)g
s!

£'(0)

E(y) - £00) = 3= (y = 0) -e*° - (v - 0% = ely-0l7etlyD Il

for all £ ¢ R(E).
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Finally, there is a corollary with weaker preconditions.
COROLLARY 2.2. Let 0,g, and ¢ be as in Theorem 2.1. Suppose
there is a positive constant C such that 0 is a limit point of the
set
S ={y | ye IntE, Dist(y,3E) 2 C.o(|y])|y]|]

Then for each ¢ > 0 there is a § > 0 such that if y ¢ S and |y| < &,

[£(y) - £(0)| = ¢||f]|, for all f ¢ R(E).

The proof is similar to the proof of Theorem 2.1.

One uses the fact that there exists an admissible function ¢ such

-1

that g.¢'l. ) L2 (B).

3. EXAMPLES
EXAMPLE 1. We will construct a compact set E such that 0edE, 0
is a BPE for Rz(E), and 0 is a limit point of Int E. Let D =

{]z] = 1}. Let D,/ i=1,2,3,..., be the open disc centered on the

i.2

“1-3 and having radius r, = exp(—22 i%.

positive real axis at 3 * 2

[
Let E =D - (U D.,. Then since C,(B(x,r)) =< F(log l)_l,r sr_ <1,
j=1 1 2 r o

(see [3]), we have

) 2.2
T2 nCZ(An -E) = £ 2%"(m) <F-
n=1 n=1 n n

8

L w.
1 n2
Thus 0 is a BPE for R2(E). If C is a positive constant sufficiently
small (any positive number < % will do), the set {y|y e Int E,
Dist(y,dE) 2 C |y|} intersects the positive real axis in a sequence
of disjoint intervals [an,bn] such that bn - 0.

EXAMPLE 2. Next we construct a compact set E which is like
Example 1 in that 0 is a limit point of Int E and a BPE for Rz(E).

In this example, however, there exists no sequence {yn} c Int E such

that |f(y ) - £(0)| < cl/f[|, for all £ ¢ R(E) if ly,| < 8. We will use
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important parts of Fernstrom's construction in [1]. Let F be a
positive constant such that C2(B(z,r)) < F(log %)'1 for all

r, r < ro < 1. Choose a, a 2 1 such that

F.5 1

= < Cc,(B(0,1/2)).
% n=1 nlog“n 2

Let Ao be the closed unit square with center at 0. Cover Ao with

4" squares of side 2”". call the squares An(l),i = 1,2..,4n. In

every set An(l)put an open disc Bn(l)such that Bn(l) and An(l) have

the same center, and the radius of B (l)is exp(-a4nnlog2n). Let

Di’ i=1,2,3,... be an open disc centered on the positive real

i-1 2

axis such that D; < {z]| 2~ s |z| = 27"} and r; = exp (-22132),

n(l) where the summation is

For each n, n=1,2,3,..., let Gn =B
' (1) q o
over those indices i such that 1 < i < 4" and B, Yonow Di) = .

o

Set E, = A - U G_. Then RZ(E ) has no BPE's in 3E, as is shown
1 o n=2 0 1 1
in [1].
Now replace a suitable number of the discs
(i) o (W 7
Bn ,Bn c U Gj' to obtain a compact set E, such that 0 is the

j=2

only boundary point of E_ that is a BPE for R2(E2) . (see [1]).

2
-]
This can be done so that Int E2 = U Di' If y ¢ Int Ez, let norm(y)
1
denote the norm of "evaluation at y" as a linear functional on R2(E2).
Then if {yk) c Dy, and Yy = aDi, norm(yk) - o; otherwise some point

on aDi would be a BPE for RZ(EZ).

’ L}
For each i choose an open disc Di < Di such that Di and Di

are concentric and such that if y ¢ D, - Di’ then norm(y) for the

1
space RZ(E2 - Di) is greater than i.
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@
Now let E = E, - U D .
i= i

—

The radii of the Di are so small that 0 is also a BPE for
RZ(E). Let {yn] be any sequence in Int E such that y, = 0. Let
norm(yn) = norm of "evaluation at yn" on R2(E). Then for no

€ >0 is there a & > 0 such that if |y | < 6, |[f(y) - £(0)]=se|fll,
for all f ¢ R(E).

EXAMPLE 3. Let ¢ be an admissible function. Obtain a compact

set E in the same way that the set E, was obtained in Example 2 so

that:
(1) D, is centered at 3 - 27472 254 has radius
r. = ¢(3 27172 . 712
i
- 2n -n, -2
(2) L 2°-¢(27) “c,(a (0) - E) < =, and
_ n
n=0
o .2
(3) 2 nCZ(A (Xx) - E) = for x #0, x £ UD,.
= n 1
n=0
Let y; = 3 '2'1_2. Then by the choice of ri,Dist(yi,E) 2

3-l-¢([yi|){yi|. But there is no C > 0 such that Dist(y,,3E) 2
C[yilfor all i. Hence Corollary 2.2 applies to the sequence {yi]
but Theorem 2.2 does not.
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