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ABSTRACT. Let E be a compact subset of the complex plane C. We

denote by R(E) the algebra consisting of (the restrictions to E of)

rational functions with poles off E. Let m denote 2 dimensional

Lebesgue measure. For p a i, let RP(E) be the closure of R(E) in

Lp (E, dm)

In this paper we consider the case p 2. Let x c 5E be a bounded

point evaluation for R2(E). Suppose there is a C > 0 such that x is

a limit point of the set S [yly Int E, Dist(y,SE) > C ly xl].

For those y e S sufficiently near x we prove statements about

If(y) f(x) for all f e R(E)
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i. INTRODUCTION AND DEFINITIONS

Let E be a compact subset of the complex plane . We denote by

R(E) the algebra consisting of (the restrictions to E of) rational

functions with poles off E. Let m denote 2 dimensional Lebesgue

measure. For p i, let RP(E) be the closure of R(E) in" LP(E,dm).
A point x E is said to be a bounded point evaluation (BPE) for

RP(E) if there is a constant F such that
1

If(x) < F.[ If(z)IPdm(z)]Pfor all fcR(E).
E
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In [4] we studied the smoothness properties of functions in

RP(E), p > 2, at BPE’s. When p 2, the situation is quite different

(see Fernstrm and Polking [2] and Fernstrm [i]). In [5] we

R2showed that at certain BPE’s the functions in (E) have the following

2smoothness property: Let x c bE be both a BPE for R (E) and the

vertex of a sector contained in Int E. Let L be a line segment that

bisects the sector and has an end point at x. Then for each > 0

there is a 6 > 0 such that if

y c L and IY- xl < 6, If(y) f(x) < llfl12 for all f R(E). The

goal of this paper is to extend this result to certain cases where

there may not be a sector in Int E having vertex at x, but x is still

a limit point of Int E.

If x E is a BPE for R2(E) there is a function g e L2(E) such

that f(x) fg dm for any f R(E). Such a function g is called a
E

representing function for x.

A point x e E is a bounded point derivation (BPD) of order s for

R2(E) if the map f f,s, (x), f R(E), extends from R(E) to a bounded

2
linear functional on R (E).

Let A (x) denote the annulus [z 12-n-In
& z- x & 2-n]. Let

A (x) [z 12-n-2n
< z- x < 2

-n+l ]. If x 0, we will denote A (0)
n

by A and A (0) by A
n n n

For an arbitrary set X c C we let C2(X) denote the Bessel capacity

of X which is defined using the Bessel kernel of order 1 (see [3]).

We say that is an admissible function if is a positive, non-

-i
decreasing function defined on (0,), and r.(r) is nondecreasing

0
+

and tends to zero when r

Using the techniques of [4] and [2] one can prove:

THEOREM 1.1. Let s be a nonnegative integer and E a compact set.

Suppose that x is a BPE for R2(E) and is admissible. Then x is
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L2
represented by a function g (E) such that

if and only if . 2
n=0

L2
g

e (E)
(z-x) s.(I z-x[)

2n (s+l) (2-n) -2C
2 (An(X)-E) <

2. THE MAIN RESULTS

Let x 5E be a BPE for R2(E). We may assume that x 0 and

that E c zl < i]. Suppose there is a positive constant C such that

0 is a limit point of the set S

We will construct a function g L2(E) which represents 0 for R2(E)
and has support disjoint from S.

LEMMA 2.1. Let 0 eE be a BPE for R2(E). Suppose there is a

positive constant C such that 0 is a limit point of the set

S [YlY e Int E, Dist(y, SE) a elyl]. Then there is a function

2
g L (E) such that:

(i) g represents 0 for R2(E),
(ii) m((supp g) N S) 0,

k =[] + 1

(iii) For all n a 2, Ig[ 2
dm < F 2 2k C2(A2k+I

A
n

where F is a constant independent of n.

PROOF. For each i, i 0,i,2,... consider all the intersections

of the set A. [zl2-i-i i
i

< Izl 2- with the bounded components of

C E. Let Y be the closure of the union of these intersections.
l

Since Y. is compact, it can be covered by finit .ly many open discs of

radius <C3-12-i-l. Let the union (finite) of these discs be denoted

by B.. The set B0 is bounded by finitely many closed Jordan curves
1 l

each of which is the union of finitely many circular arcs. Each set

B. is contained in a set C0 bounded by finitely many closed Jordan
l

curves Fij, J 1,2,..,n.l such that if z belongs to any one of these
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curves, Dist (z,Bi) 2C3-12-i-l.
1Now for each k, k 0,1,2,... choose a function lk Co

such that:

(1) supp .k c A2k+l

(2) Ik(z) 1 for z [z12-2k-2 2k+l

(3) ]% (z) 0 for z J C.
i=o

lk (z)
2k+l 51k (z) 2k+l

where z x + ix
2
and F1 and F

2
are constants independent of k.

(5) lk(Z) + kk+l(z) 1 for z [z 2
-2k-3 2k-2Izl lab2k+2"

Given any > 0 we use a lemma of Fernstrm and Polking [2] to

obtain function k E C such that:

(l) k(Z) l for z near A
k [z Dist(z,E) < ].

(2) JD # (Z) j2 dm(z) < F-2-2k(I-JSJ)C2(Ak- E)
k

for (0,0), (0,1), and (1,0). Here the constant F is independent

of and k.

Since supp kk c A2k+l we have 2k+l" lk lk on the

set [z Dist(z,E) ]. Thus 2k+l" k 1 on [JzJ 4-I]
o

with X(z) i near E. Set[z JDist(z,E) < ]. Choose X C
O

h(z) X(Z) __i. For each double index (0,0) (0,l) and (l,0)

there is a constant F such that

Set f h.E # I # h
k2k+l k 2k+lo o

where h
k lkh.
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Since supp lk c A2k+l the above inequalities imply that

IDShk (z) < F82(2k+l)(1+181)
The subadditivity of C

2
and the convergence of 2 C2(Ak E)

0 2 There(see Theorem i.I) imply that the net If is bounded in L1.

2
is a subsequence that converges weakly to a function f c Ll, loc

which satisfi6sl f(z)
-,,z, for z c C E and f(z) 0 for everyuz

z e E N [zlDist(z, SE) a Clzl]. Set g 5 f. Then g e L2(E)
5z2

since f e LI(E), and g is a representing function for 0. The

proof of (iii) proceeds as in [5]

The above lemma can be used to prove the following theorem

in almost the same way that in [5] Lemma 5.1 is used to prove

Theorem 5.1.

2
THEOREM 2.1. Let 0 e 5E be a BPE for R (E). Let C be a positive

constant such that 0 is a limit point of the set

S [YlY Int E, Dist(y,SE) > C IYl]" Let g be a representing

function for 0 and suppose that g(z) (Izl) -I 2
L (E) where is an

admissible function. Then for any e > 0 there is a 6 > 0 such that if

y e S and IYl < 6,

for all f R(E).

Using this theorem and the methods in [4] one can prove:

COROLLARY 2.1. Suppose that all the conditions of Theorem 2.1

hold. Suppose, moreover, that s is a positive integer such that

g(z).z-S. (Iz )-i L2(E). Then for each c > 0 there exists a

6 > 0 such that if y S and Yl < 6,

If(y) f(0) f’(0)l., (y 0) .... f(S)0s., (y 0)sl < lY-01s(lYl)llfll2

for all f R(E).
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Finally, there is a corollary with weaker preconditions.

COROLLARY 2.2. Let 0,g, and # be as in Theorem 2.1. Suppose

there is a positive constant C such that 0 is a limit point of the

set

S y Y Int E, Dist(y, BE) C (IYl Yl]
Then for each e > 0 there is a 6 > 0 such that if y S and Yl < 6,

If(y) f(0) llf[12 for all f $ R(E).

The proof is similar to the proof of Theorem 2.1.

One uses the fact that there exists an admissible function such

that g.#-l. -IcL2(E)

3. EXAMPLES

EXAMPLE 1. We will construct a compact set E such that 0E, 0

is a BPE for R2(E), and 0 is a limit point of Int E. Let D

[Izl & i]. Let Di, i 1,2,3,..., be the open disc centered on the

positive real axis at 3 2
-i-3

and having radius r0 exp(-22ii2).
1

Let E D [J D0. Then since C2(B(x r)) & F(log ?)
i=l i

(see [3])., we have

,r & r < 1
o

Z 22nC2(A E) 22nC(Dn) < F- !_ < ..
n=l n n=l n 1 n

Thus 0 is a BPE for R2(E). If C is a positive constant sufficiently

1
small (any positive number < will do), the se.t [YlY Int E,

Dist(y,E) a C IYl] intersects the positive real axis in a sequence

of disjoint intervals an’bn] such that bn 0.

EXAMPLE 2. Next we construct a compact set E which is like

Example 1 in that 0 is a limit point of Int E and a BPE for R2(E).

In this example, however, there exists no sequence [yn] c Int E such

that ,f(Yn f(0) < Ilfll2,, for all f R(E) if .lYnl < 6. We will use
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important parts of Fernstrm’s construction in [i]. Let F be a

1 -i
positive constant such that C2(B(z,r)) < F(log ?) for all

r, r < r < i. Choose , = a 1 such that
o

F. 1 (B(0 1/2))
c n=l nlog 2n’ < C2

Let A be the closed unit square with center at 0 Cover A with
o o

(i)
i 1 2 4 n In.qn squares of side 2-n. Call the squares An

every set A
(i)

n put an open disc Bn(i)such that Bn(i) and An(i) have

the same center, and the radius of B (i)is exp(-4
n

log
2

n n) Let
n

i 1,2,3,... be an open disc centered on the positive realD
i

i- 1
axis such that D c [zl 2- & zl < 2-i] and ro exp (-22ii2).

1 1

For each n, n 1,2,3,..., let G B
(i)

where the summation is
n i n

over those indices i such that 1 < i 4
n and B

(i) N ( D .n 1 i

E1 Ao J Gn. Then R2(EI has no BPE’s in 5E 1
as is shownSet

n=2
in [i].

Now replace a suitable number of the discs

B
(i) B (i)c G to obtain a compact set E

2
such that 0 is the

n n j=2 J’
only boundary point of E

2
that is a BPE for R2(E2 (see [1]).

This can be done so that Int E 2
Di. If y e Int E 2, let norm(y)

denote the norm of "evaluation at y" as a linear functional on R2(E2
Then if [yk] c Di, and Yk Di’ nrm(Yk) ; otherwise some point

on D. would be a BPE for R2(E 2)

For each i choose an open disc D. c D. such that D. and D.
1 1 1 1

are concentric and such that if y D. D’ then norm(y) for the
l i’

R
2 D’space (E

2 i
is greater than i.
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Now let E E
2

D
i=l i

The radii of the D 1 are so small that 0 is also a BPE for

R2(E). Let [yn] be any sequence in Int E such that Yn 0. Let

norm(yn) norm of "evaluation at Yn on R2(E). Then for no

> 0 is there a 6 > 0 such that if lynl < 6, f(yn) f(0)lllfIl2
for all f R(E).

EXAMPLE 3. Let be an admissible function. Obtain a compact

set E in the same way that the set E 2 was obtained in Example 2 so

that:

-i-2(i) D. is centered at 3 2
1

and has radius

-i-2 -i-2r. (3. 2 2
1

(2) 22n #(2-n)-2C2(An(0) -E) < , and
n=0

(3) 22nc (A (x) E) for x 0 x D
n=0 2 n i"

-i-2Let Yi 3 2 Then by the choice of rl,Dist(Yi,E) a

3-i. (lyil) lyi But there is no C > 0 such that Dist(Yi,SE)

ClYilfor all i. Hence Corollary 2.2 applies to the sequence [yi]
but Theorem 2.2 does not.

REFERENCES

I. Fernstr6m, C. Some remarks on the space R
2
(E) Math. Reports,

University of Stockholm 1982.

2. Fernstrm, C. and Polking, J. C., Bounded point evaluations and

approximation in Lp by solutions of elliptic partial
differential equations. J. Functional Analysis, 28, 1-20
(1978).

3. Meyers, N. G., A theory of capacities for potentials of functions
in Lebesgue classes, Math. Scand., 26 (1970) 255-292.

4. Wolf, E., Bounded point evaluations and smoothness properties of

functions in RP(x), Trans. Amer. Math. Soc. 238 (1978),
71-88.

5. Wolf, E., Smoothness properties of functions in R2 (X) at certain
boundary points, Internat. J. Math. and Math Sci. 2 (1979)
415-426.


