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ABSTRACT. The classical "shire" theorem of P61ya is proved for functiuns with alge-

braic poles, in the sense of L. V. Ahlfors. A function f(z) is said to have an alge-

bralc pole at z
0 provided there is a representation f(z) lk=_Nak(z z 0) + A(z),

where p and N are positive integers and A(z) is analytic at zO. For p i, the proof

given reduces to an entirely new proof of the shire theorem. New quantitative results

are given on how zeros of the successive derivatives migrate to the final set.
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i. INTRODUCTION.

Plya [1,2] defined the "final set" S(f) of a meromorphlc function f(z) as

follows. A point z0eS(f) if every neighborhood of z0 contains zeros of infinitely

many derivatives of f(z). The final set determines, roughly speaking, the final

position of the zeros of the derivatives of f(z).

For functions with two or more poles, Plya characterized the final set by

showing that zoeS(f) if and only if z
0

is equidistant from two or more poles.

Whlttaker’s "shire" [3] descripition of P61ya’s Theorem is quite illuminating. Let us
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say that the shire of a pole I of f(z) will consist of all points z in the plane which

are nearer to I than to any other pole of f(z). Then the final set of a meromorphic

function consists of the boundaries of the shires of its poles.

If f(z) has but one pole, the final set is empty, and the single pole generates

zero-free regions for the successive derivatives of f(z). The asymptotic size of such

zero-free regions has been obtained in [4]. Thus the poles of f(z) may be thought of

as repellers of equal strength of the zeros of the derivatives of f(z). A refinement

of the "equal strength" aspect of the Plya shire theorem is one of the features of

this paper.

The general questions posed in P61ya’s classic paper [i] concern the effect of

the singularity structure of an analytic function on its final set. The present paper

takes up the problem of determining the final sets of functions with algebraic singu-

laritie8. We take a countable set A of points in the plane , and for each lea we let

(%) denote the "principal branch line" (%) {z % + tlt < 0}, corresponding to I.

We assume in addition that each bounded region D intersects the branch lines of

only finitely many leA. The functions f(z) we study are those which have "algebraic

poles", in the sense of Ahlfors [5, p. 299], at the points of A. To say that f(z) has

an algebraic pole at z0 means that there are integers p > i and N > i such that f(z)

has the representation

k/pf(z) [ Ck(Z-ZO) C_N#0
k=-N

(1.1)

in a neighborhood of z 0. For each lea we associate integers p(1) > i, N(1) > i and

coefficients Ck(1), -N(1) < k < , with C_N(l (1) # 0. Given a bounded region D, let

A(D) {leAl(1) intersects D}; A(D) is a finite set. We shall suppose that the func-

tion

f(z) . [ Ck(1)(z -l) k/p(1) (z) (1.2)
lea (D)k=-N(1)

is analytic in D. By (z l) we mean the branch which is analytic for z(%) and real

if Ira(z) Im(1) and Re(z) > Re(1). The factors (z-l) k/p(1) k > 0 cannot be thrown

over into the analytic part AD(Z), as would happen if f(z) were meromorphic. Thus the
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singularities of f(z) in D arise from the algebraic poles and branch lines there, and

may be subtracted off in the manner of poles for meromorphic functions. Since the

unique representations (1.2) for f(z) are to hold for arbitrary D, then the coeffi-

cients {ck()}k=0 must be entire coefficients; i.e., for each %EA, the series

k0Ck(%)(z %)k/p(%) must converge for all complex numbers z.

Disregarding the branch lines, form the shires of the points %cA by the classical

definition and let P(A) be the union of all the boundaries of the shires. Our princi-

pal result asserts that in spite of algebraic singularities, P(A) is still the final

set of f(z), with one exceptional case. Not surprisingly, difficulties arise when a

horizontal line segment in P(A) determined by two points %l,%2eA coincides with the

branch line of a third point %3eA. Should this occur, we will suppose that II and 2
are of unequal strength, in that either (Nl/Pl) # (N2/P2) or feN1 # ICN21 if (Nl/Pl)

(N2/P2), where N
1

N(% I), Pl P(%I )’ etc.

THEOREM i. If f(z) is defined and restricted as above, the final set of f(z) is

Note that the theorem makes no mention of the branch lines apart from the excep-

tional case; the branch lines come into play only in the proof, and only in the excep-

tional case.

We prove Theorem i in the next section, after which we make a series of Remarks

on how the proof can be modified to cover various situations. For example, it is

reasonable to ask how the theorem would be altered if we allow zeros of derivatives of

all branches to contribute, instead of a single, fixed branch.

There is no hope of treating the case where (1.2) is replaced by a doubly in-

finite series. Even if p i, essentially nothing is known about final sets for

functions with isolated essential singularities.

Our proof of Theorem i covers the case where f(z) is meromorphic (p--i) and with-

out restriction on the location or strength of poles. As such, it is a new proof of the

Plya shire Theorem, independent of the two existing proofs in [6], [I], [3]. More-

over, the classical proofs do not extend to the case of algebraic singularities, and

this is why it was necessary to devise a new proof.
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The classical theory asserts that the location of the final set does not depend

on the order of the poles or the size of their coefficients. Even so, our proof

reveals the previously unobserved phenomenon that if adjacent poles have unequal

strength, then all the zeros of sufficiently high order derivatives are pushed to one

side of the common boundary of the two shires.

Various other features of the proof bearing on the migration of zeros to the flna.

set are mentioned in the Remarks.

2. PROOFS AND REMARKS.

It is convenient to express the derivatives of the factors (z %)k/p in terms of

the Gamma function, and in terms of certain factors Ck,n which were studied in the

paper [4]. For an arbitrary integer k, let us define

k(k + p)(k + 2p) (k + (n l)p)

where p > i, so that the tn-h derivative of (z %)k/p may be written as

dz
n

d
n

%) k/p(z (k/p) ((k/p)-l) .((k/p)-(n-l)) (z-%) (k/p)-n

(-l) np-n (-k) (-k + p) (-k + 2p)... (-k+(n-l)p) (z-%) (k/p)-n

n -n %) (k/p)-n(-i) p C_k,n(Z-
(2.1)

(-l)n{F(-kp-I +n)/F(-kp-I) }(z-%) (k/p)-n

(see [7, p. 25.-,). We require certain information about the asymptotic behavior of

the terms in (2.1). To begin with, if a and b are arbitrary real numbers, then [7, p.

257]

li {nb-aF(a + n)/F(b + n)l 1
n-=

Therefore, if N is a positive integer we have

CI (p-l+n) (Np-.I),n F F 0 (n(1-N)/P), n =,
CN,n r(p-I r (Np-l+n)

using order-of-magnitude notation.
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Let [x] denote the greatest integer not exceeding the real number x, and define

max
l_<k< (n-l) p]

IC-k,n/Clnl n-- 1,2,3,...

We shall need the result of Lemma 3.1 of [4] which asserts that there is a constant A,

which depends only on p, such that

6 n
I/p -< A n i, 2, 3 (2.2)

n

Finally, we note that if k > [(n-l)p] +i, then p > i implies k > (n-l)p > n-l,

and therefore k > n. Also for k > [(n-l)p] +i,

Cln
k! k(k-p)...(k-(n-l)p)

n! (k-n) k(k-l) (k- (n-l))

k! k< --(n! (k-n) n

(1)(2)---(n)
(i) (l+p).-. (l+(n-l)p)

(2.3)

the binomial coefficient.

Our first lemma is a result which shows that compact subsets of shires of points

are zero-free for sufficiently high order derivatives of f(z). A similar result

for meromorphic functions appears in Polya’s original proof [1,3].

LEMMA I. Let aeA and let f(z) be defined as in Theorem i. Then

lid z al If (n)<-)/n!l lln 1

uniformly on compact subsets of a-shire.

PROOF. Let K be a compact subset of a-shire and let R > 0 be such that K is con-

tained in Iz a < (R/2). Let D be the disc Iz a < R and put A(D) {%AI(%)

intersects D, # a}. Then for zD- %AU(D)(%) and z(a), f(z) can be represented

as

f(z) . ak(z-a)
k/p + . cj(%)(z-%)

j/p(E) + (z)
k---N A(D) j =-N (k)

(2.4)

where (z) is analytic in D and where we have written a
i ci(a) and N N(a).
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Computing derivatives in (2,4) and using (2.1), we obtain

(_l)nf (n)
(z) . {akF(_kp-l+n)/F(_kp-l)l(z_a) (k/p)-n

k=-N

leA(D) j=-N(1)

+ (-l)n4n) (z)
(2.5)

a_NF (Np-l+n)

F (Np-I) (z-a) (Nlp)+n
{i + F (z) + Gn(z) + Hn(Z)n

where

akr (Np-I) r (-kp-l+n) (k+N) /p
F (z) [, (z a)
n k=-N+l a_NP (-kp-I) r (Np-l+n)

c, (1) F (Np-I) F (-j p (1)-l+n)
G (z)
n j=-N(1) a_NF (-jP (1)-l) F (Np-i +n)leA(D)

(z-h) (j Ip (1))-n

(z_a)- (N/p)-n

H (z)
F(Np-I) (z-a) (Nlp)+n

n
a_Ni, (Np-l+n)

(-l)nn) (z)

For n > 0 the terms in (2.5) corresponding to k 0 and j 0 vanish since i/r(0) 0.

We are going to show that the sequences F (z) Gn(Z) and H (z) all converge to 0
n n

as n , unifory on D. Starting with F (z), we first break its defining sum into
n

three parts, with k ranging successively over -N + 1 k -1, 1 k [(n-1)p]([x]

greatest integer function) and [(n-1)p] + 1 k < . The kt--)-h term of F (z) in the
n

first range has order of magnitude, for large n, r(-kp-l+n)/r(Np-l+n) 0(n-k+N)/p)

o(i), n =, since k >- -N + i. Since the sum over the first range has only finitely

many terms, it follows that this part of F (z) is uniformly small for large n, zeD.
n

The sum over the second range is in view of (2 i) and the definition of 6 bounded
n

by

la_N i-i
(n-l)p]

lakl IC_k,n/Cl n[ [CI /C
N [z al (k+N)/p

k=l ,n ,n

_< J a-Nl-I [(nl)p]..lakl 6n n
k=l

(1-N)/p ]z aI(k+N) Ip
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where J is constant. By (2.2), the above does not exceed

JAIa-N I-In-(N/p) k=l lakl Iz al(k+N)/p"

Since
k=l akl z a

k/p
is uniformly bounded over D, it follows that the compo-

nent of F (z) coming from the sum over the range i _< k -< [(n l)p] also converges
n

uniformly to 0 on D. Looking at the third range, k -> [(n l)p] + i, we use (2.1) and

(2.3) and bound the sum by

J la_N I-I n(I-N)/P lakl nk Iz al (k+N)/p

k=n

.01a_NI-I n(i-N)/Plz-a IN/pJ
k=n

(nk)( lakil/klz_all/p)k

Since lak ll/k O, then lak ll/k Iz- al I/p <-y < (1/2) for all zeD, if k is

sufficiently large. This means that the infinite sum in the above expression does

not exceed

k -i n+lk
yn Y i -k=n

for n sufficiently large. Since (/(l-y)) < i, then the component of F (z) taken from
n

the range k > [(n-l)p] + i is asymptotically smaller than n(l-N)/P(/(l-l)) n+l O,

n . This completes the proof that F (z) 0, n uniformly in D
n

As for G (z), we need the fact that K is compact and in a-shire so that there
n

assuredly is a number T, 0 < T < i, such that z a < z l for all zeK and

leA(D). We pick one leA(D) and break the corresponding sum over j into three parts

exactly as above. A typical term in G (z) lying in the range -N(1) _< j _<-i has order
n

of magnitude "r
n n-(J+N)/P(1) O, n ,. Hence this component of G (z) tends uni-

n

formly to 0 over K. The arguments for the ranges i <_ j _< [(n-l)p(1)] and [(n-l)p(X)]

+ I <_ j < run exactly as the corresponding ones for F (z) except that we now have
n

zeK and the additional factor n before each sum. We omit the details but conclude

that G (z) 0, n , uniformly on K.
n

Working with H (z), we first have
n
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(z a) n gn)(z)n! n’ [ ek(z a)k
dz
n

k=0

(z a) n k!k
n’ [ (k-n)’ (a a)k-n [ (k) ek(z-a)

k=n k=n
n

j +n
j

j--0
n +n (z a) j+n

j+nNow .laj+nl0 0(i), n + j m, if 0 < R, since uA(z) is analytic in D. Therefore

a) n n)(z) 0
z a j + n z a j 0

If zeK then (Iz -allo) <-7 < (i12), for some 0 < R and a constant 7, and so the

0-term in (2.6) is dominated by O(y/(l y))n. Then since n! F(n + i), we have

H (z) 0 n o(i), n zeK
n 1-7

Going back to (2.5) we now have

(z-a) (Nlp)+nf (n) (z)
n!

lln a-Nr (Np_l+n) lln

r(Np-I) r (n+l)
(1 + o(1)

and since [r(Np-l+n)Ir(l+n)] n
(N/p)-I

the desired result follows

Lemma i shows that no point of any shire can be in the final set. The next lemma

establishes the existence of zeros of derivatives near points on the boundaries of

shires, and thus Theorem i will follow.

LEMA 2. Let $eP(A) and let f(z) be defined as in Theorem i. Then every neigh-

borhood of $ contains zeros of f(n)(z) for n sufficiently large.

PROOF. First we note some reductions. If $ lies on the boundaries of a-shire,

b-shire and other shires, then we can consider a point ’ near which lies on the

boundaries of a-shire and b-shire only. If we produce zeros in arbitrary neighbor-

hoods of $’, then zeros in neighborhoods of $ are implied by elementary arguments.

We note that in this reduction the point ’ can also be taken not to lie on any branch
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line with the single exception that a and b have the same real part. In this case, re-

call our hypothesis that a and b are of unequal strength. Our proof, then, splits in-

to the two cases where either does or does not lie on a branch line, but in any case

is on the common boundary of exactly two shires.

CASE I: E does not lie on a branch line. Suppose E lies on the common boundary

of a-shire and b-shire, let R > 0 so that I al < (R/2) and b < (R/2), let

be the union of the discs Iz a < R and Iz b < R, and put A()--{eAl(%) inter-

sects , % # a, # b}. Then if ze- hA)(%), f(z) may be expressed as

f(z) Z ak(z-a) k/P + bk(Z-b)k/q
k---N k=-M

+ [ [ cj() (z-)jlp() + A(z)
%eA() j=-N(%)

where A(z) is analytic in and p, ak, N, q, bk, M have obvious meaning. If we

differentiate this representation, we get

f(n) (z) [
k=-N

(-l)n [akF (-kp-l+n) / F(-kp-I) (z-a) (k/p)-n

+ [ (-i) n[bkF (-kq-l+n) / F (-kq-I) (z-b) (k/q)-n

k=-M

+ Z Z (-1)n [cj
%eA()j=-N(%)

() F (-jp ()-l+n)/F(-jp()-i) (z_%)(j/p (%))-n

+ A
(n) (z)

(-1) na_NF (Np-l+n)
F(Np-z-a)(N/p)+n {i + Fn(Z) + Gn(z) + Hn(Z) + In(z)}

where

akF (-kp-l+n) F (Np-I) (z-a) (k+N)/p

F (z) [. -1n k---N+l a_NF (-kp F (Np-l+n)

DkF (-kq-l+n) F (Np-I) (z-a) (N/p)+n

G (z) Zn -i -/q)+n
k---M a_NF(-kq )F(Np-l+n) (z-b)

(2.7)
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c. (%) F (_j p (%) -l+n) F (Np-l) (z_a) (N/p)+n

n %eA() j=-N(%) a_NF(-jp(%)-l)F(Np-l+n) (z-%) -(j/p())+n

I (z)
(-I)nF(Np-I) (z-a) (N/p)+n

-Ia_NF (Np + n)
A(n) (z)

If we group Gn(Z) with I (z) and factor out the term [(z-a)/(z-b)]n we get the ex-
n

pression

bkF (-kq-l+n) F (Np-I)
G (z) + In(Z) [

-i)n
k=-M a_Nr (-kq r (Np-l+n)

(z_a) N/P (z_b) k/q

+ (-I) nF (NP-I) (z-a) N/p (z-b) n (n)
A (z)

a_Nr(Np
-I + n) z b

[Un(Z)+ V (z)] (’z a)nn z b

where U (z) and V (z) denote the respective terms in the brackets. Let T be a compactn n

neighborhood of , with in its interior and

T {Iz a < (R/2)} u {[z b[ < (R/2)} %eAu()(%)

We calculate the asymptotic form of U (z) as n , zeT. Write U (z) in the form
n n

U (z) =[-b-MF(Mq-I + n) F(Np-I) (z a) N/p

n
[a.(Np-I + n) F(Mq-l)(z b) M/q

+

-i -IbkF(Np )F(-kq + n)
+
k-M+l b_r (-kq-1) r (Mq-1 + n)

N/p(z b)k/q ].
We proceed to treat the above infinite sum inside the brackets just as in Lemma i

i.e., we break it up into summands with ranges M k -i, i k [(n-l)q] and

[(n-l)q] + i k < . The kth term in the first range has dominant asymptotic form

-(k+M)/q
n 0, n , since k e -M + i. In the middle range, take note of (2.1) and

(2.2) to see that the significant terms asymptotically are
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(n-1)q]

k--i
[bk[ [C-k,n/Cl,n[ [Cl,n/CM,n[ [z b[k/q

< J

(n-l)q]

[bk[ 6n n
(I-M)/q

z b[k/q
k=l

< JA(q) n
-M/q [bk[ [z b[k/q

k=l

where J is a constant and the terms of (2.1) now depend on q instead of p. This term

tends to 0 with n in view of the fact that Ek=I [bk[ [z-b[ k/q
is uniformly bounded

on T. The sum in U (z) over the range [(n-1)q] + i k < behaves llke
n . [bkl IC_k, /Cl,nl ICI, z

n n/CM,n[ b[ k/q
k= (n-l) q]+l

<Jn
(l-M)/q Z

k--n
n
k bk[ z a[k/q

and the rest of the proof runs as in Lemma i. Consequently, we may say that

Un(z)
r(Np-1) (z.-.a)N/P + o(i) n

a_Nr(Np-l+n F(Mq-I) (z-b)M/q

where o(i) denotes a term which,converges uniformly to 0 in T.

Since T lies in [z b[ < (R/2), we may treat the term V (z) as we did the func-
n

tion AD(Z) in (2.6). That is,

IVn(Z)[ ]r(Np-1.).r(l..+n) A
(n) (z)(z b) n

a_Nr (Np-l+n) n
N/p

1-(N/p y n
0 n i’ "Y n zeT

which means that V (z) 0 uniformly in T. Moreover, if we let W (z) U (z) + V (z),n n n n

it then follows that

z-anGn(Z) + In(Z) Wn(Z) (z b
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where

w (z)
n (z-a) N/p

lira (M/q)-(N/p) --W M/q" (.W-- constant)
n-= n (z-b)

and the convergence is uniform in T.

The functions F (z) and H (z) in (2.7) have the same form as F (z) and G (z) in
n n n n

(2.5). It is easy to see that the arguments of Lemma i carry over to show that F (z)
n

and H (z) 0 in (2.7), uniformly in T.

If we let

f (z) (-l)nr (Np-I) (z-a) (Nlp)+n (n)
n -i

f (z)

a_Nr (Np + n)
zT

then f (z) 0 if and only if f(n)(z) 0, and the foreBoing discussion yields the
n

representation

z-a)nf (z) I + F (z) + Hn(Z) + Wn(Z) Z bn n
(2.9)

where (2.8) holds, and moreover,

F (z) + H (z) o(i), n zeT
n n

(2.10)

All terms in (2.9) are analytic in T.

Let us now consider the covering properties of the mapping w (z-a)/(z-b) for z

near . Recall that lies on the perpendicular bisector of the line segment from a

to b. Moreover, we may assume without loss of generality that # (a+b)/2. The image

i0
m e of under the map lies on the unit circle in the w plane. In fact, the image

of the perpendicular bisector is the circle lwl i. Note that m # I and m # -I

(the image of (a + b)/2) so that we can surround m with a sectorial neighborhcod

S r < ]w] < r-1, 0 g < arg w < + g, where 0 < r < 1 and g > O, whose image omits

the points w i and w -i. The inverse image of S under the mapping w= (z-a)/(z-b)

is the region S in the z-plane which contains and is bounded by the four circles

-1
which are the inverse images of the circle Iwl r, Iwi r and lines arg w + ,
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arg w-- e 6; see Figure i. Let F I, F2’ 3’ 4 denote the boundaries of S formed

respectively by appropriate portions of lwl r, arg w e 6, lwl r-I and arg w

+ 6, and let YI’ 2’ Y3’ 4 be the corresponding inverse images forming the bound-

aries of S. Finally, suppose that and (i r) are sufficiently small that S T.

Figure i

Let e >0. By (2.8) we can make the argument of W (z), as z ranges over a small T,n

vary by less than by taking n sufficiently large; i.e., AT arg Wn(Z) < e for all

large n. Now as z ranges over 71’ w (z-a)/(z-b) traces out the circular arc F
1

on

lwl r. Thus we can make [(z-a)/(z-b)]n wrap around lwl r as many times as desired

by taking n large. Thus for suitably large n, the variation of the argument of

W (z)[(z-a)/(z-b)]n for ze71 can be made large. Specifically requirewen

Ayl Wn(Z)[(z-a)/(z-b)]n > 4n + 4e, for all large n.

On Y2 and Y4’ (z-a)/(z-b) has .constant argument, so we may impose

Ay2 arg Wn(z)[(z-a)/(z-b)]n < and A4 arg Wn(Z)[(z-a)/(z-b)]n < simply by taking

n large enough.

(M/q)- (N/p)On 71’ l(z-a)/(z-b)l r < i whereas W (z) has order of magnitude n
n

by (2.8). Thus if n is large enough, IWn(Z)[(z-a)/(z-b)]nl < (3/4) for all ZeTl.
Similarly, IWn(Z)[(z-a)/(z-b)In > (5/4) for all zo when n is large.
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Taking into account the arguments and modull restricted as above, we see that the

image of S under the map Wn(Z)[ (z-a)/(z-b)]n contains the doubly-covered annulus

(3/4) < lwl < (5/4). Hence the image of T under W (z)[(z-a)/(z-b)]n contains a disc
n

centered at -i of radius (1/4) (in fact, the image contains a disc of radius (1/4)

centered at each point of w I).

All that remains is to make n large enough that, say Fn(Z) < (1/16) and

IN (z) < (i/16)for zeT. Then by (2.9) and Rouch’s Theorem f (z) maps r onto a
n n

region which contains a disc centered at 0 of radius (1/8). Thus f (z) has zeros in
n

T for all n sufficiently large, and this finishes Case I.

CASE II. lies on a branch line. We suppose that lies on the common boundary

of a-shire and b-shire only, where Re(a) Re(b). We represent f(z) exactly as in

Case I, where this time at least one %eA() has imaginary part (a + b)/2. By

hypothesis, a and b have unequal strength, and we assume without loss of generality

that b is stronger than a; i.e either Mq-I > Np
-I NP-I.or b_M > a_N if Mq-I

In (2.9) it is no longer true that each term is analytic in a neighborhood of ,
for at least one term in the sum H (z) has a branch line through . However, all

n

terms in (2.9) are analytic in the lower half S of S, and it is easy to see that

(2.8) and (2.10) hold uniformly over S.
We now proceed with a covering type argument nearly identical to Case I, but for

the half neighborhood S. Let i’ let 7 and 7 be the lower halves of the arcs

Y2 and Y4’ and let 7 be the segment of the perpendicular bisector joining y and .
Thus, 7, 7, , form the boundary of S. Let F, F, F, F be the corresponding

parts of the boundary of the image S* of S under w (z-a)/(z-b).

The function Wn(z) is analytic on S and continuous on its closure. As before,

we make AS argWn(Z) < e and A arg (z)[(z-a)/(z-b)] nW
n

> 4 + 4e by choosing n large

enough. Moreover, (z-a)/(z-b) still has constant argument on 7 and , and therefore

Ay,argWn(Z) [(z-a)/(z-b) in < e A i.argW (z) [(z-a)/(z-b) ]n < e if n is taken largey n

enough.

As for what happens on 7, we consult (2.8) and note the constant W which comes

from U (z). If Mq
-I

> Np
-I

then W (z) , n , everywhere on the closure of S*.n n
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If Mq-I Np
-I

then Ib_M > la_N and it follows that

and so all we can say is that for some constant n > 0, Wn(Z)[(z_a)/(z_b in > i +

for all z and n sufficiently large. As before, lWn(Z)[(z-a)/(z-b)]n < i n for

all zes", when n is large. Consequently, the image of S under the mapping

W (.) [(z-a)/(z-b)]n contains a doubly covered annulus 1 n < lwl 1 + n. In par-
n

ticular, the image contains a disc centered at -1 of radius

Now we make IFn(Z) < (n/4) and IHn(Z) < (n/4) for zS and n sufficiently

large. Then fn(Z) i + Fn(Z) + Hn(Z) + Wn(Z)[(z-a)/(z-b)]n maps S over a disc

centered at 0 of radius (n/2) which completes the proof in Case II.

This completes the proof of theorem i.

I. If f(z) is meromorphic then a trivial modification of Case I gives a proof of the

Polya shire theorem, without restriction on the location or strength of poles. The

argument shows, moreover, that we can make the image S under Wn(Z) (z-a) / (z-b) in
wrap around the annulus (3/4) < lwl < (5/4), any given number of times by taking n

large enough. Having specified a positive integer k, then, all the derivatives beyond

a certain point will have at least k zeros in S. Note that the further away is

from (a-b)/2, the further is away from-i. Loosely speaking, his means n will

have to be taken relatively larger in order that the image of S under the map

W (z)[(z-a)/(z-b)] n contain the point -i. In otherwords, the further out a point is
n

from the poles, the longer one has to wait for the appearance of zeros of derivatives.

Consider a meromorphic function with poles a and b, where b is stronger than a.

Arguing as in Case II, we see that the image of the upper half S* of S is pushed out

away from the disc lwl < i by Wn(Z)[(z-a)/(z-b)]n. Therefore S* will be free of zeros

of f(n)(z) for n large enough. Put another way, we may say that pole b, being stronger

than pole a, pushes the zeros of f(n)(z) past the perpendicular bisector, even though

the cluster points of zeros remain on the bisector. Note that meromorphic functions

real on the real axis, whose derivatives have zeros occurring in conjugate pairs, have

poles which occur in conjugate pairs, with the same orders, and with conjugate Laurent

coefficients.
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2. The choice of the principal branch in Theorem I was only for convenience. Any

fixed branch of f(z) would serve as well, with minor modifications in the proof. We

would have to retain the hypothesis that any bounded region intersects only flnitely

many branch lines.

3. If f(z) has a single algebraic pole, the final set is empty. This is a special

instance of Case I. Moreover, the results of [4] regarding the asymptotic size of

zero-free regions created by a single singularity hold with minor modifications.

4. If we alter the definition of the final set so as to allow all zeros of all

derivatives of all branches, then the conclusion of Theorem I holds without restriction

on the location or strength of singularities. Even if infinitely many branch lines

coincide with a perpendicular bisector, we may say that there exists a branch of f(z)

whose branch lines are elsewhere. Hence Case II is entirely avoided.
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