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I. INTRODUCTION AND PRELIMINARIES.

An interesting survey of recent results on entire solutions of ordinary differ-

ential equations with polynomial coefficients is given in [I]. In the present paper

we continue the study of distributional solutions to linear functional differential

equations (FDE) in accordance with the concepts outlined in [2] and [3]. There are

profound and close links between spaces of generalized and entire functions [4].

Therefore, the basic ideas in the method of proof may also be applied to the study

of entire solutions to linear FDE, especially with linear transformations of the

argument. We investigate such linear homogeneous FDE with infinitely smooth coeffl-

clents that have solutions in the class of singular functlonals which is impossible

for analogous ordinary differential equations. Solutions of linear FDE with

countable sets of variable argument deviations are considered in the generalized-

function space ($80)’ conjugate to the space $80 of testing functions (t) that

satisfy the restriction [4]

nnBI(n) ct)I < ac
n 8 > 1.
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In the sequel, (n) denotes the nth derivative of the Dirac measure and <’f, $ >

is the value of the functional f applied to the testing function of the real

variable t. The norm of a matrix is defined to be

and E is the identity matrix. In [2], it has been proved that under certain con-

dltions the system

Y. Y. (Aij + tBtj)x(J)(;jt) tx(%t)
+/-=o j=o

has a solution

x(t) r. x (n)(t)
n

n=0

in (S0)’ with arbitrary B > i. To ensure the convergence of series (I.i), it is

sufficient to require that for n / the vectors xn satisfy the inequalities

(1.1)

since

II x,n II < bdn n-nO, > I

n nn=0 n=O

(1.2)

< r. l C"> <o>1 II x II < ab (cdnB-P)n <
n=O n=O

for 8 < P. If series (i.i) converges, its sum represents the general form of a

linear functional in (S0)’ with the support t 0 [5]. Some recent developments in

astrophysics posed new problems about the existence of distributional solutions also

to certain integral equations [2].

2. EXISTENCE OF DISTRIBUTIONAL SOLUTIONS.

We look for solutions of the form (I.i) to the system

m (j)Y. Z A (t) x (t)) 0
i=o j=o

lj +/-j

LEMMA. If to is a fixed point of the function %(t) E C
I (-= and

%’(to O, then in some neighborhood of tO,

0 (n)((t) to (n)(t to / (%’(tO))
n 1%’

(2 .I)
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PROOF. Since %(t 0) t o 0,

%(t) to (t to (t), (t0) %’(to).

There exists a neighborhood D
O of to at all points of which (t) 0, t @ to, for

assuming the opposite we find a sequence t0--+ t o such that %(t0) %(t0) 0 and,

hence, %’(t
O 0.

In D
O for t @ to,

8(n) c%(t) to 8 (n) ( (t) (t to)) O.

But for t to,
(n) (X(t) t o)

(n) :X’ (t o) (t t o)). (2.3)

Thus, (2.3)holds for all t e DO and it remains to observe that

8 (n)(ct) 8 (n)(t) / c
n Icl

THEOREM 2.1. Let (2.1), in which x(t) is an r-vector and Aij (t) are r x r

matrices, satisfy the following hypotheses.

(1) The real-valued functions %ij (t) e C
I
have a cow,non fixed point t o and

0 < XO0 (to/I < 1, Iij (to/I > 1, i + J Z 1.

(ii) The coefficients Aij(t) are polynomials of degree not exceeding p:

P k
Ai](t) kffi0Y" Ai]k(t to A00(t) A(t to)P, p _> I.

(iii) The series E I Ai converges where

max II Aij k ![, ;k
i

inf Iklj(to i + j > 1.
J,k j

(iv) The matrix A is nonsingular ad

c Xo(tO)
-p-1 II A I! -i>lr X’io(tO) l-p-1 II qop 11 > o.

gThen, in some neighborhood of to, there exists a solution x(t) (S)’ with

arbitrary 13 > 1:

x(t) I: x 8(n)(t to).nn=O

PROOF. By virtue of (2.2) and the formula t
k 6(n)(t) (-l)kn!8(n-k)(t) / (n-k)!,

for n > k, and 0 for n < k, we obtain the equations
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kZ (-I) Aij k
i,j,k

Y. (n + j)! Xn(n+j-k)(t to / (n + j k)!
n+j >_k

n+jltjl +/-j o,

ij ’j (to)

for the unknowns x of the solution x(t). Hence,n

-n-k
ij Aijk Xn+k-j 0, n > 0Z (-l)k(n + k)’ lij -I

which can be written as

Y. (-l)P-k(n+k) !-1 -n-k

k-j<p iJ aij Aijk Xn+k-j / (n +,p)! +

+ Z Imi0]-I -n-p 0
i>0

i0 Ai0p)Xn+p

Since A00k 0(k < p), the first sum does not include terms with 00" According

to (iv), the coefficients of Xn+p are nonsingular matrices and

]{ Z lei0 I-i -n-p -i I’ n

:0
%0 A) ! IIl[ [oo

Consequently,
m+p-i

IIn+pll!q+ ’ llX+k_II, 0<q<
k:0

(2.4)

where V is some positive constant. Using the notation

0<i<n

we conclude from (2.4) that

n+II Xn+p II < H(m + p)q PMn+p_I
For large n, there is (m + p)qn+p < I. Hence, II Xn+p ]I < Mn+p_I
and Mn+p Mn+p_I. Thus, starting with some N,

M =MN n >N
n

The application of (2.6) to (2.4) successively yields:

II XN+p+k II < H(m+p) qN+PMN,

(2.5)

(2.6)
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II XN+p+(m+p)+k II <_ p2 (m + p)2qN+pqN+p+(m+p)

11 XN+p+2 (m+p)+kll < 3 (re+p) 3qN+qqN+p+(m+p) qN+p+2 (m+P)MN

(0 < k < m + p I).

The conj ecture

I! XN+p+n(m+p)+k It < n+l(m+p)n+lqn(N+p)+n(n+l) (re+p)/2 (2.7)

may readily be ascertained by induction for all n and the mentioned values of k, and

proves the theorem since the condition 0 < q < I makes it more restrictive than

(1.2).

3. EXISTENCE OF ENTIRE SOLUTIONS.

We apply the method of the previous section to prove the existence of entire

solutions of linear FDE with polynomial coefficients and to evaluate their order of

growth.

THEOREM 3.1. Suppose the system

p
X(e)(t) Z Y.=0Qij(t)X(j)(%ijt), X(j)(0) =Xj j 0, p i (3.1)

i=0 j

in which Qij and X are (r x ) matrices, satisfies the following conditions:

(i) Qij (t) are polynomials of degree not exceeding m;

(ii) %ij are complex numbers such that

0 < ql <-- l%ij] < l, (j=0, p l), 0 < q2 <-- flip] < q3 < l;

(iii) the series I Q(i) converges, where Q(i) max 1[ Qijk ![ and Qijk
j,k

are the coefficients of Qij (t), and i=0Z II Qip(O) II < lo

Then the problem has a unique holomorphich solution, which is an entire

function or order not exceeding m + p.

PROOF. The expansions

m

Qij(t) Z Q k
tk X(t)= Z

k=-0 ij n=0

imply that

X(p)(t) Z X tn(n+p)’ /n’
n--0 n+p

n
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X (j)(%ijt) Z %j Xn+jtn(n + J)! / n!
n--O

m
n-k (n + j k)! / (n k)!Qlj(t) X (j)

(ijt)= Z t
n Z lij QijkXn+j_k

n--0 k=0

and yield the following recursion relations for the matrices X
n

p-I m n!(n + j k)’ n-k(E- Z ln. Z Z Z
(n+p)’(n-k)’ ij

i=0 ip Qip0 Xn+p Qijk Xn+J-ki=0 J=0 k=0

Z y. n!(n + p k)!

iffi0 k=l (n+p)!(n-k)! %n.-k
ip Qipk Xn+p-k n _> 0 (3.2)

Hypotheses (ii) and (iii) ensure the existence of the inverse matrices

(E- Y. n_ -I

i=O ip Qipo for all n:

(E Z in_ )-1 iZ ni=0 ip Qip0 Z k
k=O =0 ip Qipo

ll(v- -r. in -i

i:0 ip Qip0 II ! (i- i:0Z II Qip0 II )-1

Therefore, formulas (3.2) determine the coefficients X uniquely and, since
n

n’(n + j k)’ / (n + p)’(n k)! ! (n + p)-i O<_J <p-i

n!(n + p k)! / (n + p)!(n k)! < i,

we obtain, by virtue of (iii),
p-I m m

nI1 xn+p II < 11 Xn+j_k ]] + bq3 lI Xn+p_k ]ln + p
J=0 k=0 I

n -1For large n, there Is q3 <-- (n + p) and

m+p-i
IIx II <_ c(n + p)-I E llXn+kmk=0

Here a, b, c are some positive constants. Wi:h the notation (2.5), it follows from

(3.3)

(3.3) that

IIXn+p I[ < c(m + P)Mn+p_l / (n + p).

Starting with some N,
c(m + p) / (n + p) < 1, llXn+p II <_ Mn+p_1 Hn+p

and it remains to apply (2.6) successively to (3.3):

]IXN+p+k II <_. c(m + p) / (N + p),

Mn+p_I
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[l+Ft(m+p)+k II < c2(m + p)2 / (N + p)(N + Cm + p) + p)

3 3II .,X+p+2(m+p)+kll <_ c (m + p) / (N+p)(N+ (re+p) +p)(N+2(m+p) +p)

(0 < k < m + p I).

Now it can be proved easily that, for all n,
n

II +p+n(m+p)+k II <_ cn+l(m + p)n+N / --] (N + i(m + p) + p).
i--O

Thus,

II +p+n(m+p)+k II <_ cn+l(m + P) / n!

and the solution X(t) is an entire function whose order of growth does not exceed

m+p.

THEOREM 3.2. If, in addition to the hypotheses of Theorem 3.1, the parameters

%iJ (0 < J < p i) are separated from unity: 0 < ql <-- l%ij < q4 < i, the solution

of (3.1) is an entire function of zero order.

PROOF. Under the conditions of Theorem 2.1, the system

m (j)Z 7. A (t)X (ijt) 0

with real constants aiJ
0 < l=ool < l= jl >_ + J _>

has a distributional solution (i.I), the coefficients X of which satisfy inequali-
n

ties (1.2) and are determined with the exactness to arbitrary X0, Xp_I. We

apply to (3.4) the Laplace transformation assuming ij positive and retaining the

same notation for X(t) and its transform:

p
p+l A-I 7. 7. (_l)p-k oi-I (k)x(P) (sloo) + *oo

+j>o k=0
Aijk(SJx(,loij)) 0

The substitutions s/00 t, and O0/eij %ij reduce this equation to the form

(3.1). This proves the theorem, since the transform of (n)(t) is s
n and the

coefficients Xn satisfy (2.7). These estimates use only the moduli of lJ
hence, the parameters %tJ may be complex. Theorems 3.1 and 3.2 generalize the

results of [6].
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THEOREMS 3.3. The problem

F’(z) 7 Ai(z) F(z ai) +
i=O

7 Bi(z) F’ (z bi),
t=0

(3.5)

lira F(z) F0
Rez+-

with (r r) matrices A, B, F has a unique holomorphlc solution which is an

entire function if:
m

kz
m kz

(1) Ai(z 7 A e Bi(z) 7 B e
k=l ik k=0 ik

(il) al, b
i

are complex numbers such that

0 _< Reai _< MI < , 0 < M2 _< Rebi < M3 <

(iii) the series 7 A
(i) and 7. B

(i)
e-Rebi

converge where A
(1) max II Aik II B(i) max II B

k k

and 7 II Bi(0) II e-Rebi < i.
i=0

z -bl
PROOF The substitutions t e e-ai 8 i e and F(z) X(t)

reduce (3.5) to (3.1) of the .first order with the initial condition X(0) F0
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